Numero dei polinomi irriducibili a coefficienti in un campo finito

Maurizio Cornalba 3/5/2014

Sia $q=p^h,$ dove p è un numero primo e h è un intero positivo. Indichiamo con μ la funzione di Möbius:

$$\mu(m) = \begin{cases} 1 & \text{se } m = 1\\ (-1)^k & \text{se } m \text{ è prodotto di } k \text{ primi distinti}\\ 0 & \text{altrimenti} \end{cases}$$

Vogliamo dimostrare il seguente risultato, dovuto a Gauss.

Teorema 1. Il numero dei polinomi monici irriducibili di grado n a coefficienti in \mathbb{F}_q è

$$\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) q^d$$

Sia P un polinomio monico irriducibile di grado n e sia α una sua radice. Allora $\mathbb{F}_q[\alpha]$ ha grado n su \mathbb{F}_q e quindi è isomorfo a \mathbb{F}_{q^n} . Poiché \mathbb{F}_{q^n} è una estensione galoisiana di \mathbb{F}_q ne segue che P ha n radici distinte in \mathbb{F}_{q^n} . Osserviamo anche che se due polinomi monici irriducibili hanno una radice comune essi coincidono, per l'unicità del polinomio minimo. Dunque il numero che dobbiamo calcolare è

$$\frac{1}{n}\mathcal{R}_n$$

dove \mathcal{R}_n è il numero degli elementi di \mathbb{F}_{q^n} che hanno grado n su \mathbb{F}_q . In altre parole

$$\mathcal{R}_n = \# \Big(\mathbb{F}_{q^n} \setminus \bigcup_{\substack{K \text{ sottocampo} \\ \text{proprio di } \mathbb{F}_{q^n}}} K \Big)$$

Scriviamo $n = \prod_{i=1}^{\ell} p_i^{e_i}$, dove p_1, \ldots, p_{ℓ} sono primi distinti. Notiamo che i sottocampi di \mathbb{F}_{q^n} contenenti \mathbb{F}_q sono quelli della forma $\mathbb{F}_{q^{(n/d)}}$, dove d è un divisore di n, e che tra questi i sottocampi propri massimali sono i campi $F_i = \mathbb{F}_{q^{(n/p_i)}}$. Dunque

$$\mathcal{R}_n = \# \Big(\mathbb{F}_{q^n} \setminus \bigcup_{i=1}^{\ell} F_i \Big) \tag{1}$$

Per calcolare la cardinalità dell'unione degli F_i useremo un risultato combinatorio classico. Siano X_1, \ldots, X_ℓ insiemi finiti. Se $i_1, \ldots, i_s \in \{1, \ldots, \ell\}$ poniamo $X_{i_1 \ldots i_s} = X_{i_1} \cap X_{i_2} \cap \cdots \cap X_{i_s}$. Il risultato di cui faremo uso è il seguente

Lemma 1.

$$\#\Big(\bigcup_{i=1}^{\ell} X_i\Big) = \sum_{s=1}^{\ell} (-1)^{s-1} \sum_{i_1 < i_2 < \dots < i_s} \#(X_{i_1 \dots i_s})$$

Dimostrazione. Ragioniamo per induzione su ℓ . Se $\ell=2$ l'enunciato si riduce a $\#(X_1 \cup X_2)=\#(X_1)+\#(X_2)-\#(X_1\cap X_2)$. Se supponiamo il risultato dimostrato per unioni di meno di ℓ insiemi possiamo scrivere

$$\#\left(\bigcup_{i=1}^{\ell} X_{i}\right) = \#\left(\bigcup_{i=1}^{\ell-1} X_{i}\right) + \#(X_{\ell}) - \#\left(\left(\bigcup_{i=1}^{\ell-1} X_{i}\right) \cap X_{\ell}\right) \\
= \sum_{s=1}^{\ell-1} (-1)^{s-1} \sum_{i_{1} < \dots < i_{s} < \ell} \#(X_{i_{1} \dots i_{s}}) + \#(X_{\ell}) - \#\left(\bigcup_{i=1}^{\ell-1} X_{i} \cap X_{\ell}\right) \\
= \sum_{s=1}^{\ell-1} (-1)^{s-1} \sum_{i_{1} < \dots < i_{s} < \ell} \#(X_{i_{1} \dots i_{s}}) + \#(X_{\ell}) \\
- \sum_{s=1}^{\ell-1} (-1)^{s-1} \sum_{i_{1} < \dots < i_{s} < \ell} \#(X_{i_{1} \dots i_{s}}) \\
= \sum_{s=1}^{\ell} (-1)^{s-1} \sum_{i_{1} < \dots < i_{s} < \ell} \#(X_{i_{1} \dots i_{s}})$$

Applichiamo il lemma appena dimostrato alla (1) osservando che, quando i_1,\dots,i_s sono distinti,

$$F_{i_1 \dots i_s} = F_{i_1} \cap F_{i_2} \cap \dots \cap F_{i_s} = \mathbb{F}_{q^{\frac{n}{p_{i_1} \dots p_{i_s}}}}$$

Si ottiene

$$\mathcal{R}_{n} = q^{n} + \sum_{s=1}^{\ell} (-1)^{s} \sum_{i_{1} < \dots < i_{s}} \# \left(\mathbb{F}_{q^{\frac{n}{p_{i_{1}} \dots p_{i_{s}}}}} \right)$$

$$= q^{n} + \sum_{s=1}^{\ell} (-1)^{s} \sum_{i_{1} < \dots < i_{s}} q^{\frac{n}{p_{i_{1}} \dots p_{i_{s}}}}$$

$$= q^{n} + \sum_{s=1}^{\ell} \sum_{i_{1} < \dots < i_{s}} \mu(p_{i_{1}} \dots p_{i_{s}}) q^{\frac{n}{p_{i_{1}} \dots p_{i_{s}}}}$$

Ponendo $\frac{n}{p_{i_1}\cdots p_{i_s}}=d$ e ricordando che $\mu(m)=0$ quando nella fattorizzazione di m vi sono primi ripetuti, ciò equivale a

$$\mathcal{R}_n = q^n + \sum_{d \mid n, d \neq n} \mu\left(\frac{n}{d}\right) q^d = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) q^d$$

che è quanto andava dimostrato.