Corso di Algebra 1 - a.a. 2012-2013

Prova scritta del 17.6.2013

- 1. Sia $G = \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/10\mathbb{Z}$ e sia H il sottogruppo di G generato da $(\bar{1}, \bar{1}, \bar{1})$.
 - (a) Si mostri che tutti gli elementi non nulli di G/H hanno ordine 2.
 - (b) Si determini l'ordine massimo n_{max} degli elementi di G e si determini il numero di elementi di G di ordine n_{max} .
 - (c) Si contino i sottogruppi ciclici di G di ordine n_{max} .
- 2. Sia G un gruppo finito, sia H un sottogruppo normale di G di ordine 5 e sia K un sottogruppo di G di ordine 7.
 - (a) Si contino gli elementi di HK.
 - (b) Si verifichi che $g^4hg^{-4} = h$ per ogni $g \in G$.
 - (c) Si verifichi che HK è isomorfo a $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$.
- 3. (a) Determinare gli interi m per i quali esiste un omomorfismo di anelli $\mathbb{Z}[\sqrt{m}] \to \mathbb{Z}[\sqrt{3}]$.
 - (b) Per ognuno di questi valori determinare il numero dei possibili omomorfismi.
- 4. Sia p un numero primo e sia $L = \mathbb{F}_p$ il campo con p elementi. Sia $P \in L[X]$ un polinomio e sia n il suo grado. Sia ξ una radice di P in una estensione di L. Mostrare che:
 - (a) ξ^p è una radice di P;
 - (b) P è irriducibile se e solo se $\xi, \xi^p, \xi^{p^2}, \dots, \xi^{p^{n-1}}$ sono distinti;
 - (c) se P è irriducibile $L[\xi]$ è un campo di spezzamento di P su L e ha cardinalità p^n .

Solutioni

1. (a) $\mathbb{Z}/6\mathbb{Z}$ e $\mathbb{Z}/10\mathbb{Z}$ sono isomorfi, rispettivamente, a $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ e a $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ e si può fare in modo che, nell'isomorfismo, il generatore $\bar{1}$ corrisponda a $(\bar{1},\bar{1})$. Quindi

$$G \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$

e in questo isomorfismo $(\bar{1}, \bar{1}, \bar{1})$ corrisponde a $(\bar{1}, \bar{1}, \bar{1}, \bar{1}, \bar{1})$. Inoltre, dato che 4, 3 e 5 sono a due a due primi fra loro, $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ è isomorfo a $\mathbb{Z}/60\mathbb{Z}$. Quindi

$$G \cong \mathbb{Z}/60\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \tag{1}$$

- e l'immagine di H in questo isomorfismo è generata da $(\bar{1}, \bar{1}, \bar{1})$. Questo elemento ha ordine 60 e la sua immagine per proiezione sul fattore $\mathbb{Z}/60\mathbb{Z}$ è il generatore $\bar{1}$. Quindi G/H è isomorfo a $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$; in particolare ogni suo elemento non nullo ha ordine 2.
- (b) L'isomorfismo (1) mostra che il massimo ordine di un elemento di $G \geq 60$.
- (c) Gli elementi di ordine 60 sono quelli che, nell'isomorfismo (1), corrispondono a elementi del tipo (a,b,c), dove a genera $\mathbb{Z}/60\mathbb{Z}$ e b,c sono arbitrari. Il numero dei generatori di $\mathbb{Z}/60\mathbb{Z}$ è $\varphi(60) = \varphi(4)\varphi(3)\varphi(5) = 2 \cdot 2 \cdot 4 = 16$, dove φ indica la funzione di Eulero. Il numero cercato è dunque $4 \cdot 16 = 64$.

- 2. (a) $\#(HK) = (\#H \cdot \#K)/\#(H \cap K) = \#H \cdot \#K = 5 \cdot 7$ perché l'ordine di $H \cap K$ divide sia #H = 5 che #K = 7 e quindi vale 1.
 - (b) Se h=1 non c'è niente da verificare. Se $h\neq 1$, è un generatore di H perché H ha ordine primo. Dato che H è normale $ghg^{-1}\in H$, quindi $ghg^{-1}=h^i$ per qualche $i\not\equiv 0$ mod 5, e quindi $g^4hg^{-4}=h^{i^4}$. Ma $i^4\equiv 1$ mod 5 per il piccolo teorema di Fermat, quindi $g^4hg^{-4}=h$.
 - (c) Se $1 \neq g \in K$, allora g^4 è un generatore di K perché 4 è primo con 7 = #K. Segue allora da (b) che $khk^{-1} = h$ per ogni $h \in H$ e ogni $k \in K$. Quindi l'applicazione $H \times K \to HK$, $(h,k) \mapsto hk$ è un omomorfismo; visto che il suo nucleo è $H \cap K$, è un isomorfismo. Ma $H \times K \cong \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$.
- 3. (a) Ricordiamo che ogni elemento di $\mathbb{Z}[\sqrt{3}]$ si scrive in uno e un solo modo sotto la forma $a+b\sqrt{3}$ con a e b interi. Sia $\alpha:\mathbb{Z}[\sqrt{m}]\to\mathbb{Z}[\sqrt{3}]$ un omomorfismo. Se $n\in\mathbb{Z},\ \alpha(n)=\alpha(n\cdot 1)=n\alpha(1)=n\cdot 1=n$. Poi $\alpha(\sqrt{m})^2=\alpha((\sqrt{m})^2)=\alpha(m)=m$. Dunque se scriviamo $\alpha(\sqrt{m})=a+b\sqrt{3}$, con a e b interi, allora

$$m = a^2 + 3b^2 + 2ab\sqrt{3}$$

Questo implica che ab=0. Ci sono dunque due possibilità: o b=0, m è un quadrato, $\mathbb{Z}[\sqrt{m}]=\mathbb{Z}$ e α è l'inclusione naturale, oppure a=0 e m è il triplo di un quadrato. Supponiamo ora che $m=3h^2$ con h intero, e mostriamo che esiste un unico omomorfismo α tale che $\alpha(\sqrt{m})=h\sqrt{3}$. Sicuramente esiste un unico omomorfismo $\beta:\mathbb{Z}[X]\to\mathbb{Z}[\sqrt{3}]$ che manda X in $h\sqrt{3}$. D'altra parte $\mathbb{Z}[\sqrt{m}]\cong\mathbb{Z}[X]/(X^2-m)$ e $\beta(X^2-m)=\beta(X)^2-m=(h\sqrt{3})^2-m=0$. L'esistenza e unicità di α segue dunque dal teorema di omomorfismo per anelli.

- (b) Con riferimento ai due casi considerati in (a), nel primo l'omomorfismo è unico, mentre nel secondo vi sono due scelte possibili, quella che manda \sqrt{m} in \sqrt{m} e quella che manda \sqrt{m} in $-\sqrt{m}$.
- 4. (a) Scriviamo $P(X) = \sum a_i X^i$ dove $a_i \in L$; quindi $a_i^p = a_i$ per ogni i. Allora

$$0 = (P(\xi))^p = \sum a_i^p (\xi^p)^i = \sum a_i (\xi^p)^i = P(\xi^p)$$

(b) Se P = ST, dove S e T sono polinomi in L[X] di grado minore di n, ξ è radice di uno dei fattori, diciamo di S. Per il punto (a), $\xi, \xi^p, \xi^{p^2}, \ldots, \xi^{p^{n-1}}$ sono radici di S. Dato che $\deg(S) < n$, non possono essere distinte.

Supponiamo viceversa che $\xi, \xi^p, \xi^{p^2}, \dots, \xi^{p^{n-1}}$ non siano distinte, cioè che $\xi^{p^i} = \xi^{p^j}$ per qualche i e qualche j con $0 \le i < j \le n-1$; poniamo h=j-i. Allora $\xi^{p^{i+h}} = \xi^{p^i}$, cioè

$$(\xi^{p^{j-i}})^{p^i}=\xi^{p^i}$$

Dato che l'elevamento a p-esima potenza è una applicazione iniettiva, ne segue che $\xi = \xi^{p^{j-i}}$. Sia h il minimo intero con 0 < h < n tale che

$$\xi = \xi^{p^h} \tag{2}$$

Scriviamo $E = L[\xi]$ e poniamo

$$Q(X) = \prod_{i=1}^{h} (X - \xi^{p^i}) \in E[X]$$

Per costruzione, Q divide P in E[X] e ha grado $h < n = \deg(P)$. Basterà mostrare che $Q \in L[X]$. Sia $\beta : E \to E$ l'omomorfismo di Frobenius $x \mapsto x^p$. Indichiamo con la stessa lettera β la sua estensione $E[X] \to E[X]$ data da $\sum a_i X^i \mapsto \sum \beta(a_i) X^i$. L'omomorfismo β permuta ciclicamente fra loro le radici di Q. Quindi $\beta(Q) = Q$, il che significa che $\beta(a) = a$ per ogni coefficiente a di Q. Ma allora tutti i coefficienti di Q appartengono a L, come si voleva dimostrare.

Soluzione alternativa. Basta mostrare che P non è il polinomio minimo di ξ su L. La formula (2) dice che ξ è radice del polinomio $X^{p^h} - X$. Ma l'insieme delle radici di questo polinomio è il campo con p^h elementi, che ha grado h su L. Quindi il grado del polinomio minimo di ξ su L non supera h < n. Il polinomio minimo in questione non può dunque essere P.

(c) Se P è irriducibile (b) mostra che tutte le sue radici sono potenze di ξ e quindi appartengono a $L[\xi]$. Ne segue che questo è il campo di spezzamento di P su L. Il grado $[L[\xi]:L]$ è il grado del polinomio minimo di ξ , cioè di P, che vale n. Dunque $L[\xi]$ ha $(\#L)^n = p^n$ elementi.