Corso di Algebra - a.a. 2005-2006

Prova scritta del 23.2.2006 - soluzioni

- 1. K non è vuoto perchè contiene l'elemento neutro. Se $a,b \in K$ e $g \in G$, allora $gab^{-1}g^{-1} = gag^{-1}gb^{-1}g^{-1} = gag^{-1}(gbg^{-1})^{-1} \in H$ perchè gag^{-1} e gbg^{-1} appartengono ad H e H è un sottogruppo di G; ne segue che $ab^{-1} \in K$. Quindi K è un sottogruppo di G. Se $a \in K$ e $\gamma \in G$, allora per ogni $g \in G$ si ha che $g(\gamma a \gamma^{-1})g^{-1} = (g\gamma)a(g\gamma)^{-1} \in H$. Quindi $\gamma a \gamma^{-1} \in K$, e K è normale.
- 2. Sia $\sigma \in S_n$. Se scriviamo σ come prodotto di cicli disgiunti di lunghezze ℓ_1, \ldots, ℓ_h , allora l'ordine di σ è il minimo comune multiplo di ℓ_1, \ldots, ℓ_h . Questo significa che, se l'ordine di σ è 12, uno degli ℓ_i deve essere divisibile per 3 e un altro (o lo stesso) per 4. Ne segue che $n \geq 7$. Viceversa, il prodotto in S_7 di un 3-ciclo e di un 4-ciclo disgiunti ha ordine 12.
- 3. 2 è invertibile modulo 35 perchè è primo con 35. Le potenze successive di 2 modulo 35 sono 2, 4, 8, 16, 32, 29, 23, 11, 22, 9, 18, 1. Dunque la classe di 2 nel gruppo moltiplicativo di $\mathbb{Z}/35\mathbb{Z}$ ha ordine 12. Poiché $2^3 = 8$, se scriviamo n = 3 + h, $2^n \equiv 8 \mod 35$ se e solo se $2^h \equiv 1 \mod 35$. Per quanto si è osservato, questo accade se e solo se h è divisibile per 12. Quindi gli n cercati sono tutti e soli quelli della forma 3 + 12k, dove k è un intero non negativo.
- 4. (a) Se $b, b' \in \text{Ann}(a)$ e $c \in A$, allora (b b')a = ba b'a = 0 e (cb)a = c(ba) = 0, quindi b b' e cb appartengono a Ann(a), che è dunque un ideale.
 - (b) È chiaro che $\operatorname{Ann}(a) \subset \operatorname{Ann}(a^n)$. Per dimostrare il viceversa, notiamo che, se $ba^n = 0$, allora $ba^{n-1} \in \operatorname{Ann}(a)$; poichè $\operatorname{Ann}(a)$ è primo, deve contenere uno dei fattori del prodotto ba^{n-1} . Però $a \notin \operatorname{Ann}(a)$, perchè per ipotesi $a^2 \neq 0$. Quindi $b \in \operatorname{Ann}(a)$, come si doveva dimostrare.
- 5. (a) In $\mathbb{C}[X]$ possiamo scrivere $P(X) = (X \sqrt{5})(X + \sqrt{5})(X i\sqrt{5})(X + i\sqrt{5})$. Quindi il campo di spezzamento di P(X) è $L = \mathbb{Q}[\sqrt{5}, i\sqrt{5}] = \mathbb{Q}[\sqrt{5}, i]$. Ma $[L : \mathbb{Q}] = [L : \mathbb{Q}[\sqrt{5}]][\mathbb{Q}[\sqrt{5}] : \mathbb{Q}] = 2 \cdot 2 = 4$ perchè $i \notin \mathbb{Q}[\sqrt{5}]$.
 - (b) Modulo 2, $P(X) = X^4 1 = (X 1)^4$ perchè l'elevamento a quarta potenza è il quadrato dell'omomorfismo di Frobenius. Dunque il grado cercato è 1.
 - (c) Modulo 3, $P(X) = (X^2 + 1)(X^2 1) = (X^2 + 1)(X 1)(X + 1)$. Dato che $2^2 \equiv 1 \mod 3$, $X^2 + 1$ non ha radici in K. Dunque, se ξ è una radice di $X^2 + 1$, il campo di spezzamento di $P(X) = (X \xi)(X + \xi)(X 1)(X + 1)$ è $K[\xi]$ e $[K[\xi] : K] = 2$.
 - (d) Modulo 5, $P(X) = X^4$, e quindi il grado cercato è 1.