Corso di Algebra 1 - a.a. 2024-2025
Prova scritta del 22/01/2026

1. Dati un gruppo G e un intero positivo m, sia
[(G) :={a€ G : ord(a) < m}.
(a) Determinare i valori di m per cui I',,(Z/67Z) non ¢ un sottogruppo
di Z/6Z.

(b) Dimostrare che, se G & abeliano di ordine una potenza di un
numero primo, allora I';,,(G) & un sottogruppo di G per ogni m.

(c) Dimostrare che, se un intero positivo n non & una potenza di un
numero primo, allora I';,_1(Z/nZ) non & un sottogruppo di Z/nZ.

(d) Fornire un esempio di un gruppo non abeliano G tale che I',,(G)
sia un sottogruppo di G per ogni m.

2. Sia A un dominio e sia ¢: Q[X] — A un omomorfismo di anelli.

(a) Dimostrare che ker(?)) ¢ un ideale primo di Q[X].
(b) Dimostrare che, se ¢ non e iniettivo, allora im(z)) & un campo.

(c¢) Dimostrare che, se A = Q, allora ¢|gp = idg ed esiste ¢ € Q tale
che ker(y)) = (X — q).

(d) Dimostrare che ¢ possibile che sia A = R e ker(¢)) = (X°+4X +2).



Soluzioni

1. (a) I valori cercati sono 3, 4 e 5. Infatti in Z/6Z si ha ord(0) = 1,
ord(1) = ord(5) = 6, ord(2) = ord(4) = 3 e ord(3) = 2. Dunque

['(2/6Z) = {0},  T2(Z/6Z)={0,3} = (3),
['3(Z/6Z) =T4(Z/6Z) =Ts5(Z/6Z) = {0,2, 3,4},
['(Z/6Z) = 7./67Z per m > 6,

e di questi sottoinsiemi di Z/6Z 'unico che non & un sottogruppo &
{0,2, 3,4} (dato che, per esempio, contiene 2 e 3 ma non 2+3 = 5).

(b) Sia #G = p' con p numero primo e [ € N. Dato un intero positivo
m, verifichiamo che I',,,(G) € un sottogruppo di G. Chiaramente
lg € T, (G) perché ord(1g) = 1 < m. Dati a,b € T',,(G), per
il teorema di Lagrange si ha ord(a) = p' e ord(b) = p’ con 0 <
i,7 <lep',p” <m. A meno di scambiare a e b, si puo supporre
i < j. Alloraord(a),ord(b) | p’, e dunque a” = b” = 1. Essendo
ab = ba, segue che

(Clb)pj = Cijbpj = 1glG = 1g.

Pertanto ord(ab) < p/ < m, cioé ab € T',,(G). Infine, se a €
['n(G), anche a! € T,,,(@) perché ord(a™!) = ord(a).

(c¢) Poiché n non € una potenza di un numero primo, esistono a,b € Z
tali che n = ab, med(a,b) = 1ea,b > 1 (da cuisegue a,b < n—1).
Essendo a e b coprimi, esistono ¢,d € Z tali che 1 = ca + db. Se
ne deduce che I';,_;(Z/nZ) non & un sottogruppo di Z/nZ perché
a,b € I',_1(Z/nZ) (dato che ord(a) = b,ord(b) = a < n — 1),
mentre B

ca+db=ca+dv=1¢T, 1(Z/nZ)
(dato che ord(1) = n).

(d) Si puo prendere come G il gruppo Q = {+1,+i, +j, +k} delle
unita dei quaternioni. Infatti in @ si ha ord(1) = 1, ord(—1) = 2,
eord(a) =4 per a € Q\ {£1}. Dunque

Q) ={1}, Ty(Q)=T3(Q)={£1} = (1),
In(Q) = Q per m > 4,

e questi sottoinsiemi di ) sono tutti sottogruppi.



2.

(a)

(c)

Poiché il nucleo di un omomorfismo di anelli & sempre un ideale,
resta da dimostrare che ker(¢)) & primo. In effetti 1 ¢ ker(¢)
perché ¢ (1) = 14 # 04 (un dominio ¢ in particolare un anello
non banale). Inoltre, dati f,¢g € Q[X] tali che fg € ker(y), si
ha 04 =¥ (fg) = ¥(f)¥(g), da cui segue (essendo A un dominio)
B(F) = 04 0 1(g) = O, ciod f € ker() o g € ker(s).

Poiché 1 non ¢ iniettivo, ker(y) # {0}. D’altra parte ker(s) ¢
un ideale primo per il punto precedente. Tenendo conto che Q[X]
¢ un dominio a ideali principali (essendo @ un campo), questo
implica che ker(¢) ¢ un ideale massimale. Per il primo teorema di
isomorfismo per anelli si conclude allora che im(¢)) = Q[X]/ ker(v))
e un campo, dato che il quoziente di un anello commutativo per
un ideale massimale € un campo.

|z: Z — Q & necessariamente 'inclusione (per ogni anello B
esiste un unico omomorfismo di anelli Z — B). Dunque per ogni

ab™' € Q (con a,b € Z e b#0) si ha

P(ab™h) = d(a)y(b) ™ = ab™},
cioe 1|g = idg. Posto ¢ := ¢(X) € Q, si ha inoltre

Y(X —q) =9(X) —(g) =q—q=0,

cioe X — q € ker(¢)). Essendo ker(¢)) un ideale, questo implica
(X —q) C ker(¢). Poiché (X —¢) ¢ un ideale massimale (dato che
Q[X]/(X — q) = Q & un campo) e ker(¢y)) # Q[X] (per il primo
punto), si conclude che (X — ¢q) = ker(2)).

Sia r € R una radice di g := X° + 4X + 2 (si noti che una tale
radice esiste perché g € R[X] e deg(g) = 5 ¢ dispari). Allora la
valutazione in r

¥: QX] =R
f=fr)

¢ un omomorfismo di anelli, e resta da dimostrare che ker(y) =
(g). Poiché ¥(g) = g(r) = 0, si ha g € ker(¢), e quindi (g) C
ker(¢)). Come nel punto precedente, per concludere che tale in-
clusione ¢ un’uguaglianza basta dimostrare che (g) ¢ un ideale
massimale di Q[X]. Questo ¢ vero perché Q[X] ¢ un dominio a
ideali principali e g ¢ irriducibile in Q[X], dato che lo ¢ in Z[X]
per il criterio di Eisenstein relativo al primo 2.



