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Interacting with the subgrid world

Abstract In a number of applications, subgrid scales cannot be neglected.

Sometimes, they are just a spurious by-product of a discretised scheme that

lacks the necessary stability properties. In other cases, they are related to phys-

ical phenomena that actually take place on a very small scale but still have an

important effect on the solution. We discuss here an attempt to recover informa-

tion on the subgrid scales, by trying to simulate their effects on the computable

ones.

This paper is dedicated to my friend Ron Mitchell

1 Introduction

There are essentially two types of subgrid phenomena that must be taken into account
in modern numerical simulation.

One of them occurs when the discretisation lacks the necessary stability properties.
This is often due to the fact that the numerical scheme does not treat in a proper
way the smallest scales allowed by the computational grid. As a consequence, they
appear as abnormally amplified in the final numerical results. Most types of numerical
instabilities are produced in this way, as it can be easily confirmed by checking the
beautiful review on numerical instabilities reported in [18]. In the last decade it
has become clear that several attempts to recover stability, in these cases, could be
interpreted as a way of improving the simulation of the effects of the smallest scales on
the larger ones. By doing that, the small scales can be seen by the numerical scheme
and therefore be kept under control.

A second type of subgrid phenomena is related, instead, with actual physical ef-
fects that take place on a scale which is often much smaller than the smallest one
representable on the computational grid. These effects have however a strong impact
on the larger scales, and cannot be neglected without jeopardizing the overall quality
of the final solution.

These two situations are quite different, in nature and scale. Nevertheless it is not
unreasonable to hope that some techniques that have been developed for dealing with
the former class of phenomena might be adapted to deal with the latter one. In this
sense, the most promising technique seems to be the use of Residual-Free Bubbles. In
the following sections, we are going to summarize the general idea behind it, trying to
underly its potential and its limitations. In particular we shall first present in Section
2 the basic principles of the strategy: divide and conquer, static condensation and
approximate solution. In Section 3, as an example, we shall show how the strategy
works on a simple model problem. In the final section we shall briefly discuss the
possible extensions of the procedure to different problems.
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2 Basic Principles

At a very general (and generic) level, the procedure can be summarized as follows.
We start with a given problem, that for simplicity we assume to be linear, and in
variational form:







find u ∈ V such that :

L(u, v) = (f, v), ∀v ∈ V.

(2.1)

We assume that we are given a discretised problem:







find uh ∈ Vh such that :

L(uh, vh) = (f, vh), ∀vh ∈ Vh,

(2.2)

where Vh ⊂ V is a finite element space, corresponding to a given decomposition Th of
the computational domain. We suppose, roughly speaking, that Th is the finest grid
we are ready to afford in the computation, in the sense that we are not ready to solve
a final system having more unknowns than the dimension of Vh. Problem (2.2) is now,
temporarily and artificially, augmented by considering a new subspace of V :

VA := Vh + Bh, (2.3)

where Bh is the (infinite dimensional) space of bubbles

Bh := ΠK B(K), (2.4)

and, for every K in Th,

B(K) := {v| v ∈ V, supp(v) ⊂ K}. (2.5)

As a typical example, if V = H1

0
(Ω), Ω being the computational domain, then B(K) =

H1

0
(K). The augmented problem reads now:







find uA ∈ VA such that :

L(uA, vA) = (f, vA), ∀vA ∈ VA.

(2.6)

In principle, problem (2.6), although unsolvable, should be able to take into account
all the small scales that do not cross the boundaries of the elements K. This is a severe
limitation, but corresponds to a sort of divide and conquer principle that might, in
the end, assure some feasibility to the whole procedure.

We now proceed to eliminate, at least formally, the bubble unknowns from problem
(2.6). The technique that we are going to use is well known in the Engineering practice,
under the name of static condensation. However here we apply it in a more general,
infinite dimensional, case.
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Assuming, for simplicity, that in (2.3) we have a direct sum of subspaces of V , we
can write uA and vA, in a unique way, as:

uA = uh + uB, (2.7)

and
vA = vh + vB, (2.8)

respectively. Inserting (2.7) into (2.6), and taking v = vB we obtain the so-called
bubble equation:







find uB ∈ Bh such that :

L(uB, vB) = −L(uh, vB) + (f, vB), ∀vB ∈ Bh.

(2.9)

The bubble equation (2.9) will play a fundamental role in the following discussion.
We take advantage of the split nature of the space Bh. For every element K in Th we
define uB,K as the restriction of uB to the element K. Then, for every ϕ ∈ B(K) we
have

L(uB, ϕ) = (f − Luh, ϕ), (2.10)

where L indicates the operator associated with the bilinear form L. Problem (2.10)
can then be written in strong form as

LuB,K = f − Luh, (2.11)

with the associated boundary conditions. In most cases, as we have seen, B(K) will
be equal to H1

0
(K), and the boundary conditions will be simply

uB,K = 0 on ∂K. (2.12)

More generally, the boundary conditions will be implicitly imposed by the two condi-
tions uB,K ∈ V and supp(uB,K) ⊂ K. We shall write the solution of (2.9) (or, in most
examples, of the equivalent problem (2.11)-(2.12)) in compact form as

uB,K = L−1

B,K(f − Luh), (2.13)

which implicitly defines the operator L−1

B,K . With this notation we can write:

uB =
∑

K

L−1

B,K(f − Luh). (2.14)

Having made the dependence of uB on uh explicit in (2.14), we can go back to (2.6)
and take vA = vh; inserting (2.7) and (2.14) we obtain:







find uh ∈ Vh such that :

L(uh, vh) +
∑

K L(L−1

B,K(f − Luh), vh) = (f, vh), ∀vh ∈ Vh.

(2.15)
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Note that (2.15) has the same form (and the same number of unknowns) of (2.2).
However, the additional term

∑

K

L(L−1

B,K(f − Luh), vh) (2.16)

takes now into account the effect of some small scales (the ones that do not cross the
interelement boundaries) onto the scales that are visible on the computational grid.

The only, nonnegligible, difficulty is that, in general, (2.9) (or even the particular
case of problem (2.11)-(2.12)) cannot be solved explicitly, so that the term (2.16)
cannot be computed. We remark however that, in order to compute (2.16) in some
approximate way, we do not need a very accurate solution of (2.9). Indeed, it is only
the effect of the small scales on the larger ones that needs to be simulated, as comes
out clearly by noting that in (2.16) the term L−1

B,K(f −Luh) is tested against vh, which
belongs to the coarse space. We can therefore hope that an approximate solution

of (2.9) (or, more often, of problem (2.11)-(2.12)) can be sufficient to reproduce with
reasonable accuracy the effect of the additional term (2.16). The most important
aspect of the whole procedure is that such an element-by-element approximate solution
can be performed in parallel, as a sort of preprocessing, and its results will then be
used within the process of computing and assembling the final matrix corresponding
to problem (2.15). In the next section we are going to see more practical aspects of
the above discussion for a very simple model problem.

3 A model problem

We consider here, as a model problem, the classical toy problem of advection-
dominated linear equations. From the physical point of view, we may think to the
problem of the passive transport of a scalar diffusive quantity in a fluid whose velocity
is known. Let then Ω be, for instance, a convex polygon, ε a positive number (=
diffusion coefficient), c a bounded mapping from Ω to IR2 (= velocity field) and f , say,
an element of L2(Ω) (= source term). We consider then the problem of finding u in
H1

0
(Ω) such that

−ε∆u + c · ∇u = f in Ω. (3.1)

We can set Lu := −ε∆u + c · ∇u, and

L(u, v) := εa(u, v) + c(u, v) ∀u, v ∈ H1

0
(Ω), (3.2)

where, in a natural way,

a(u, v) :=

∫

Ω

∇u · ∇v dx, and c(u, v) :=

∫

Ω

c · ∇u v dx ∀u, v ∈ H1

0
(Ω). (3.3)

Assume now that we are given a decomposition Th of Ω into triangles, and assume
moreover that c and f are piecewise constant on Th. We take then Vh to be the space
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of piecewise linear continuous functions vanishing on ∂Ω, and Bh as in (2.4) with
B(K) = H1

0
(K) for each K. If we apply the theory of the previous section, the bubble

equation (2.11) becomes, in each triangle K: find uB,K in H1

0
(K) such that

−ε∆uB,K + c · ∇uB,K = −(−ε∆uh + c · ∇uh) + f in K. (3.4)

As we already pointed out, equation (3.4) is unsolvable. As we shall see in a moment,
there are ways to get around this difficulty, in a more or less satisfactory way. Before
discussing that, however, we want to point out the use that has to be done of its
solution in the model case we have chosen. In particular, it is not difficult to check
that, in the present case, we have a(uB, vh) = 0 for every uB ∈ Bh and for every
vh ∈ Vh. Hence the additional term (2.16) arising in (2.15) becomes

L(uB, vh) = c(uB, vh) =

∫

Ω

c · ∇uB vh dx = −

∫

Ω

uBc · ∇vh dx, (3.5)

with an obvious integration by parts. We also remark that the term c·∇vh is piecewise
constant. Hence we see that only the mean value of uB in each K will be used in the
final system (2.15) for computing uh. Moreover, still in our assumptions, we observe
that the right-hand side of (3.4) is also constant in K, so that uB,K , in each K, can
be written as

uB,K = bKRK , (3.6)

where
RK := −(−ε∆uh + c · ∇uh) + f (3.7)

is the residual in K (taking uh as approximate solution,) and the bubble bK is the
solution of the scaled problem:







find bK ∈ H1

0
(K) such that :

−ε∆bK + c · ∇bK = 1 in K.

(3.8)

A simple computation shows that, inserting (3.6) in (3.5), the additional term (2.16)
becomes

c(uB, vh) =
∑

K

∫

K
bK dx

|K|

∫

K

(c · ∇uh − f) c · ∇vh dx, (3.9)

where bK is still the solution of (3.8), which is still unsolvable. This, as already pointed
out in [11] (see also [24], [5],) corresponds to the use of the well known SUPG method
(see [12], [14]) with the stabilising parameter chosen as

τK =

∫

K
bKdx

|K|
. (3.10)

We still have to tackle the problem of getting an approximate solution of (3.8). We shall
consider several possibilities. As the present model problem is by far the most deeply
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studied among the various possible applications of the general technique, we shall
obtain a reasonably complete overlook of the various options that can be considered
also in different contexts.

The obvious, and most general, way of approximating (2.9) would consist in using
a Galerkin approximation: we take, for each K, a subspace B∗

K of H1

0
(K) and we look

for u∗
B =

∑

K u∗
B,K such that each u∗

B,K ∈ B∗
K and satisfies

L(u∗
B,K , v) = −L(uh, v) + (f, v) ∀v ∈ B∗

K , (3.11)

where, as usual, we identify a function in B∗
K with its extension by zero on the whole

Ω. In our case, this amounts to solve in each K the following approximated version of
the scaled equation (3.8):







find b∗K ∈ B∗
K such that :

εa(b∗K , v) + c(b∗K , v) =
∫

K
v dx, ∀v ∈ B∗

K .

(3.12)

This would then give the solution u∗
B,K of (3.11) as u∗

B,K = b∗KRK , with RK always
given by (3.7). For our model problem this will correspond, in the end, to use b∗K
instead of bK in (3.9), obtaining an SUPG method with a stabilising parameter given
by

τK =

∫

K
b∗Kdx

|K|
. (3.13)

In general B∗
K will correspond to a subgrid mesh. For our particular problem, the

mesh might include a suitable refinement near the outflow boundary ∂K \ ∂K−. For
a similar approach, although on a different problem, see [17].

The use of a subgrid mesh is surely the most expensive and more general way. On
the other hand, one can try to use a smart cheaper choice, by using a one-dimensional
subspace B∗

K of the form B∗
K = span{ϕK}, for a suitable choice of ϕK . In this case

one can easily see that the solution of (3.12) is b∗K = γKϕK , with γK given by

γK =

∫

K
ϕK dx

εa(ϕK , ϕK)
=

∫

K
ϕK dx

ε
∫

K
|∇ϕK |2dx

. (3.14)

Notice that this (as already pointed out in the early [3]) would produce again an SUPG
formulation, but this time with a stabilising parameter

τK =
(
∫

K
ϕK dx)2

ε|K|
∫

K
|∇ϕK |2dx

, (3.15)

corresponding (for small ε) to a huge value , unless ϕK is suitably chosen. In particular,
an unrealistically blessed choice would be to take ϕK = bK , solution of (3.8), which
gives actually u∗

B,K = uB,K . The need of a convenient shape for ϕK can also be traced
back to the relationships between upwind methods and suitable versions of the Petrov-
Galerkin method, pointed out already long time ago (see e.g. [27]). In the present



Subgrid world 7

context (3.12), a realistic ad hoc choice for ϕK , which produces quite sensible results
for all values of ε, is proposed in [9].

Another approach, proposed in [19], [20], is to choose ϕK in an arbitrary way (cubic
bubble in K, or the pyramidal bubble with vertex in the barycenter of K) and add
some artificial subgrid viscosity εA to (3.8), which becomes

−(ε + εA)∆bK + c · ∇bK = 1 in K. (3.16)

As pointed out in [7], if one approximates (3.16) with a one degree of freedom subspace
B∗

K = span{ϕK}, the corresponding approximate solution has again the form b∗K =
γKϕK , but now γK is given by

γK =

∫

K
ϕK dx

(ε + εA)
∫

K
|∇ϕK |2dx

, (3.17)

and the corresponding τK becomes

τK =
(
∫

K
ϕK dx)2

(ε + εA)|K|
∫

K
|∇ϕK |2dx

, (3.18)

leaving us with the crucial problem of the choice of εA. For some heuristic attempt to
get a sensible choice for εA, see [7]. It is interesting, and somehow surprising, that the
stabilising effect of the procedure is minor for a big subgrid viscosity εA, and much
bigger for a small subgrid viscosity, as shown by (3.18).

Another possibility (more specially tailored for the present model problem) to
obtain a satisfactory approximate solution of (3.8) is to consider the associated limit

problem: find b̃K in, say, H1(K), such that:







c · ∇b̃K = 1 in K,

b̃K = 0 on ∂K− = {x ∈ ∂K such that c · nK < 0},

(3.19)

where nK is the outward normal to K. It is easy to check that the difference between
the integral of bK and the integral of b̃K is O(ε) for ε → 0. On the other hand, the
solution of (3.19) is elementary, and can be computed with paper and pencil. Hence,
in practice, one substitutes b̃K in place of bK in (3.9), obtaining an SUPG method
with a stabilising parameter given by

τK =

∫

K
b̃Kdx

|K|
. (3.20)

This is essentially the approach proposed in [11], and gives quite reasonable answers
even for ε only moderately small.

To conclude our little discussion on the model problem (3.1), we summarize the
possible choices to get an approximate solution of (3.4) (or of its scaled version (3.8).)
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We can use a Galerkin subgrid method, with a fine enough (or smart enough) grid. We
can use a one-dimensional Galerkin method with a smart choice of the one-dimensional
subspace, or we can use a plain one dimensional subspace and add a smart artificial
subgrid viscosity. Finally, we can solve a reduced equation (3.19) by hand. All of these
approaches will produce in the end an SUPG method, with different values of the
stabilising parameter.

We also note that similar procedures can also be adapted and applied, with minor
additional complications, to the cases in which the original finite element space Vh is
made, say, of piecewise polynomials of degree k > 1. The practical aspects of such
an extension will become clearer in the next section. We just mention here that, for
higher order polynomials, we obtain variants of SUPG that do not coincide with it
anymore, and whose stabilising effect has still to be tested in practice.

Finally, we point out that, from the theoretical point of view, the convergence
analysis developed for SUPG methods clearly applies to the case of our model problem
(3.1), if Vh is made of piecewise linear functions (that is for k = 1.) However, recently,
an independent analysis has been carried out starting directly from the formulation
(2.15) (see [8]). This type of analysis can also be extended to the case of higher order
polynomials. In particular, error estimates of usual type, for k > 1, have been obtained
for ε|u − uh|

2

1
and for c · (u − uh) in a weighted L2-norm in [10]. By usual type we

mean here error estimates that are half an order suboptimal: see [26], [21], [28]. More
recently, global L2-error estimates and local H1-error estimates have been obtained,
for the formulation (2.15), in [29].

4 Extensions to other problems

Having the example of Section 3 in mind, we now go back to the more general level
of Section 2, for a brief discussion on possible applications to different problems. It
is clear, from the above section, that all the viable strategies make use of the split
nature of the bubble equation (2.9). This is the crucial point of the divide and con-

quer strategy, essentially contained in assumption (2.5). Splitting (2.9) among the
subdomains, its approximate solution can be done in parallel. However, in order to
perform the static condensation, one has to be able to substitute uB (or, actually, its
approximation) as a function of the original (and final) unknown uh in (2.15). For this,
we proceed in the following way: as a first step we identify, in each K, the smallest
linear space that contains all possible residuals, namely

RK
h := span{f|K , Lvh|K , vh ∈ Vh}. (4.1)

In many cases, f|K can be approximated, without major loss of information, by means
of elements of the space (LVh)|K , that can therefore be used in place of RK

h . In the
previous section, this was the space of constants on K.

The second step is then to choose, for each K, a basis {gi
K}{i=1,..,NK} of the space

RK
h . Clearly, NK denotes the dimension of such space. Then, for each i = 1, .., NK ,
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we seek an approximate solution of the local problem:







find ψi
K ∈ H1

0
(K) such that :

L(ψi
K , v) = (gi

K , v) ∀v ∈ H1

0
(K).

(4.2)

In the example of the previous section, there was just one function gi
K , namely the

constant 1 appearing in (3.8), and the corresponding function ψi
K was denoted by bK .

The most general and widely applicable strategy in order to obtain an approximate
solution of (4.2) consists, as we have seen, in the use of a Galerkin approximation,
corresponding to a suitable choice of B∗

K ⊂ H1

0
(K). Then one can solve NK problems

of the type:






find ψ
∗,i
K ∈ B∗

K such that :

L(ψ∗,i
K , v) = (gi

K , v) ∀v ∈ B∗
K .

(4.3)

The technique has been successfully applied to advection dominated flows, in cases
more complex than the one of the previous Section. See e.g. [17]. For an application
of this technique to the Helmholtz equation see for instance [15], [16].

On more special classes of problems one might also think to extend some of the
tricks of the previous Section. For instance, the use of the limit problem (3.19) can
surely be adapted to advection diffusion problems with a more general choice of Vh.
See e.g. [6].

On the other hand, for singularly perturbed problems where some artificial viscosity
(or similar regularization) is usually employed, the idea of using only a kind of subgrid

viscosity (or subgrid regularization,) as in (3.16), is surely appealing for its simplicity
and rather wide range of applicability. However, as we have seen, the choice of the
subgrid artificial viscosity εA appears to be crucial, and requires deeper investigations.

Another possible interesting area where these ideas can be applied is the solution of
elliptic problems with rough coefficients. Consider for instance the problem of finding
u ∈ H1

0
(Ω) such that

−
∑

i,j=1,2

∂

∂xj

(ai,j(x)
∂u

∂xi

) = f in Ω, (4.4)

where we assume that the matrix ai,j satisfies the usual uniform strong ellipticity
conditions, but has jumps within Ω, on a scale that is only affordable when solving local
problems in parallel. Problems of this type arise for instance in petroleum engineering,
but the range of possible applications is clearly much wider. Notice that writing (4.4)
in mixed form (see e.g. [4]) the space V , in the notation of the Section 2, becomes
H(div; Ω) × L2(Ω). It is interesting to see that the present general strategy, in this
case, gives back the upscaling method of [1], [2]. The mixed formulation, within
this approach, seems to be particularly appealing. Indeed, for an element (σ, u) in
H(div; Ω) × L2(Ω), the condition supp((σ, u)) ⊂ K only requires σ · nK = 0 on ∂K.
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Notice that a conventional variational formulation would use V = H1

0
(Ω), forcing the

elements of the bubble space to satisfy u = 0 on ∂K, which looks as a more severe
limitation. It would be interesting however to compare the two approaches on some
practical problems. Similarly, the relations of these approaches with the one of Hou
(see e.g. [22], [23]) are surely worth investigating.

The application of the paradigm “divide and conquer/ static condensation/ ap-
proximate solution” to some nonlinear problems is currently under investigation. The
obvious choice would be to apply it to the various linearized problems in an iterative
procedure, but in particular cases the structure of the nonlinearity might suggest a
better strategy.
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