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Abstract

In the original Virtual Element space with degree of accuracy k, projector opera-
tors in theH1-seminorm onto polynomials of degree ≤ k can be easily computed.
On the other hand, projections in the L2 norm are available only on polynomials
of degree ≤ k − 2 (directly from the degrees of freedom). Here we present a
variant of VEM that allows the exact computations of the L2 projections on all
polynomials of degree ≤ k. The interest of this construction is illustrated with
some simple examples, including the construction of three-dimensional Virtual
Elements, the treatment of lower order terms, the treatment of the right-hand
side, and the L2 error estimates.
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1. Introduction

The Virtual Element Methods (VEM) have been introduced very recently
(see [4]) and first applied to some simple two-dimensional elasticity problems
(see [5]) and plate problems (see [17]).

The origin of Virtual Elements, historically, is clearly from the classical
Mimetic Finite Difference Method (see for instance [30, 26, 18, 27, 28]), and
from their subsequent mathematical frameworks and settings [14, 16, 9, 15].

In their more recent evolution Mimetic Finite Differences (MFD) were often
presented either as a form of Cochain approximation or as a sort of Finite
Element methods in which only the degrees of freedom are used (and, in principle,
there are no test and trial functions attached to them) [33, 19, 1, 2, 20, 11, 22].

Further developments included the use of primal formulations (with nodal
values, or 0-Cochains [12, 3]) as well as higher order methods [8, 25, 7, 6].

Still the lack of trial and test functions inside the elements (or even inside
the faces) was making the presentation and the analysis rather complicated.

In the long run it became clear that life would be much simpler if the MFD
unknowns were considered to be attached to trial functions suitably defined
inside the elements, as is commonly done in Finite Element Methods, thus
motivating the birth of Virtual Element Methods.

In order to preserve the great generality that MFD allow for the geometry
of the elements, the Virtual Element Methods use local spaces of test and trial
functions that, in addition to all the polynomials of the chosen degree (say, k),
contain some additional functions that are solution of suitable PDE problems
inside each element.

In this respect the VEM are getting closer to other attempts to generalize
Finite Elements on polygons, like the use of rational functions (see e.g. [34]),
the Polygonal Finite Element Methods (see for instance [31, 32]) or the Extended
Finite Element Methods (see [24] and the references therein).

One of the basic ideas of VEM is that even on elements K with a rather
general geometry we can compute integrals of polynomials, essentially through
formulae of the type ∫

K

xrdK =

∫
∂K

xr+1

r + 1
nxdS (1)

while the computation of the non-polynomial functions (and of their integrals)
requires some additional trick (and could also be practically unfeasible). In
particular in order to compute the contribution of each of these non-polynomial
functions to the local stiffness matrix of an element K, one has first to compute
a local projector (here denoted Π∇

k ) on the space of polynomials of degree ≤ k.
These are, in general, projectors in the H1

0 (K) scalar product (with a suitable
adjustment of the constant part). See [4, 5, 17].

In many applications, the explicit knowledge of the projector Π∇
k is enough

to complete the discretization process and to perform the analysis. However,
there are obvious cases in which it would be very useful to have an explicit
knowledge, together with Π∇

k , also of the local L2-orthogonal projector Π0
k on

the space of polynomials of degree ≤ k.

2



The main purpose of this paper is to show that in a certain number of cases,
just by changing slightly the definition of the non-polynomial local functions
(that, in any case, are never computed!), one can have a local space in which
the operator Π0

k can be easily computed using Π∇
k and the local degrees of

freedom, so that having computed Π∇
k one can get Π0

k (almost) for free.
As we shall see, the knowledge of the operator Π0

k is very useful in sev-
eral circumstances: in particular it allows an extension of VEM to the three-
dimensional case that is much cheaper than the obvious version that would come
from MFD. Here we will discuss a few other examples of applications, dealing
with the treatment of possible reaction terms and with a simpler treatment of
the forcing term. But the range of application is clearly much wider.

Throughout the paper, we will follow the usual notation for Sobolev spaces
and norms (see e.g. [21]). In particular, for an open bounded domain D, we
will use | · |s,D and ∥ · ∥s,D to denote seminorm and norm, respectively, in
the Sobolev space Hs(D), while (·, ·)0,D will denote the L2(D) inner product.
Often the subscript D will be omitted when no confusion arises. For k a non
negative integer, Pk(D) will denote the space of polynomials of degree ≤ k on
D. Conventionally, P−1(D) = {0}. Sometimes, for the sake of clarity, we will

denote by Π0,D
k and Π∇,D

k the projector operators Π0
k and Π∇

k related to D.
Finally, C will be a generic constant independent of the decomposition that
could change from one occurrence to the other.

Concerning geometric objects (and related items) we will use the following
notation. For a geometric object O of dimension d (d = 1, 2, 3), as an edge, or
a face, or an element, we will denote by xO its barycenter, by |O| its measure
(resp. length, area, or volume) and by hO its diameter. Moreover, for r ∈ N we
denote by Mr(O) the set of polynomials

Mr(O) := {m | m =
(x− xO

hO

)s

for s ∈ Nd with |s| ≤ r} (2)

where, for a multi-index s = (s1, .., sd) we denoted, as usual, |s| := s1 + ..+ sd
and xs := xs11 · ·xsdd . It is elementary to check that the elements in Mr(O) form
a basis for the space of polynomials of degree ≤ r on O, and their number equals
(r + 1) · ·(r + d)/d!. We will also make use of the set M∗

r(O) defined by

M∗
r(O) := {m | m =

(x− xO

hO

)s

for s ∈ Nd with |s| = r}. (3)

The number of elements in M∗
r(O) is d(d+ 1) · · · (d+ r − 1)/r!.

The layout of the paper is the following. In Section 2 we recall some basic
features of Virtual Elements, and in particular the construction of the projector
Π∇

k , in two dimensions. In Section 3, always in two dimensions, we introduce a
variant of the local spaces that allows an easy construction of the L2-orthogonal
projector Π0

k. In Section 4 we show that using Π0
k on each face one can construct

a quite useful version of VEM in three dimensions, and in Section 5 we show
how to use it on a simple model problem (Poisson). In Section 6 we discuss some
additional applications, including the proof of optimal L2 error estimates, the
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treatment of a model reaction-diffusion problem, and some numerical results.
Some conclusions are drawn in Section 7.

2. The original projector Π∇
k

Let k ≥ 1 be an integer denoting the degree of accuracy that we want to
obtain. We briefly recall from [4] the core idea of the classical VEM and in
particular of the construction of the projector Π∇

k (we refer to [4] for more
details):

• The trial and test functions contain, on each element, all the polynomials
of degree ≤ k, plus (possibly) other functions that, in general, are not
polynomials.

• The degrees of freedom are carefully chosen so that the local stiffness
matrix (or, actually, its associated bilinear form), can be computed exactly,
whenever the trial entry is a polynomial of degree ≤ k, using only the
degrees of freedom of the test entry.

Using the above properties one can show that for the remaining part of the
local stiffness bilinear form (when a non-polynomial encounters another non-
polynomial) we only need to produce a result with the right order of magnitude
and right stability properties.

In a sense, instead of using, in a more traditional way, a nearly exact value
for all entries in the local stiffness bilinear form (as with the use of numerical
integration formulae) we have exact values when one of the two entries is a
polynomial, and only much rougher approximations in the other cases.

We remind that the properties above bring us quite close to the Patch
Test used by Engineers, as they imply that the method gives the exact solution
whenever this is a global polynomial of degree ≤ k.

Let us see now the construction of the projector Π∇
k in the two-dimensional

case. Given a positive integer k (the order of accuracy) we define first, on each
polygon K, the space

Bk(∂K) := {v : v ∈ C0(∂K) and v|e ∈ Pk(e) for each edge e of ∂K}. (4)

Then the Virtual Element spaces are constructed, on each polygon K, as

Vk(K) := {v : v|∂K ∈ Bk(∂K) and ∆v ∈ Pk−2(K)}. (5)

The corresponding degrees of freedom are chosen, always at the element level,
prescribing for each vh in Vk(K):

• the values of vh at the vertices, (6)

and for k ≥ 2 the moments

• |e|−1
(m, vh)0,e ∀ m ∈ Mk−2(e), ∀ edge e, (7)
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• |K|−1
(m, vh)0,K ∀ m ∈ Mk−2(K). (8)

It is easy to see that both the dimension of Vk(K) and the number of the degrees
of freedom (6)-(8) are equal to

NK,k
V := dimVk(K) = kℓ+ k(k − 1)/2 (9)

where ℓ is the number of vertices of the polygon K. Moreover it was proved
(see always [4]) that the above degrees of freedom are unisolvent in Vk(K).

Remark 1. It is clear that for k ≥ 2 the degrees of freedom interior to each
edge can be chosen differently from (7). For instance, for k = 2, to assign the
value at the midpoint would be as good as assigning the average (7).

Remark 2. The generic elements of Vk(K) will be denoted by vh, but also by
v when a formula is too long and/or no confusion can occur.

We remark that for k ≥ 2 the L2(K)-projection Π0,K
k−2vh of vh ∈ Vk(K)

onto Pk−2(K) is immediately given by the degrees of freedom (8). However,
the moments (vh, q)0,K are, practically, incomputable when q is a polynomial
of degree ≥ k − 1. Hence the L2(K) orthogonal projection operator Π0

k from
Vk(K) onto the space Pk(K) cannot be computed from the degrees of freedom
(6)–(8) of Vk(K). On the other hand, considering the Green formula∫

K

∇vh · ∇q dx = −
∫
K

vh ∆q dx+

∫
∂K

vh
∂q

∂n
ds, (10)

we observe first that knowing the degrees of freedom (6)-(7) of a function vh in
Vk(K) we can easily compute the value of vh on the whole boundary ∂K. Next
we observe that, for k ≥ 2, if q in (10) is a polynomial in Pk then ∆q is in Pk−2,
and hence the first term in the right-hand side of (10) can be computed using
the degrees of freedom (8) of vh. We conclude that using (10) we can compute
the integral ∫

K

∇vh · ∇q dx (11)

for every vh ∈ Vk(K) and every q ∈ Pk(K) using just the degrees of freedom
(6)-(8). It follows immediately that for every vh ∈ Vk(K) we can define Π∇

k vh
as the unique element in Pk(K) that satisfies

(∇(vh −Π∇
k vh),∇q)0,K = 0 ∀ vh ∈ Vk(K), ∀ q ∈ Pk(K) (12)

plus (to take care of the constant part of Π∇
k vh):∫

∂K

(vh −Π∇
k vh) ds = 0 for k = 1 (13)

or ∫
K

(vh −Π∇
k vh) dx = 0 for k ≥ 2. (14)

We notice that the operator Π∇
k is easily computable using the degrees of free-

dom (6)-(8). It is also easy to check that whenever vh ∈ Pk(K) then Π∇
k vh ≡ vh,

showing that Π∇
k is indeed a projection onto Pk(K).
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Remark 3. We note that (12) and (13) (or (14)) define the operator Π∇
k on the

whole space H1(K), and not only on Vk(K), but of course it is not computable
in general.

Remark 4. Note that, once Π∇
k vh is known, all its moments are known as well,

but of course these moments do not coincide in general with those of vh (apart
from the mean value, i.e. the moment of order zero, for k ≥ 2). In particular
we point out that for k > 2 the moments of vh up to the order k− 2 are used in
order to compute Π∇

k vh (see (10)) but, in general, we will have∫
K

vhm dx ̸=
∫
K

Π∇
k vhm dx for m ∈ M∗

r(K), with 0 < r ≤ k − 2. (15)

In a certain number of cases (in particular in two dimensions and when deal-
ing with elliptic operators having only the principal part, as in [4, 5, 17]), the
knowledge of the projector Π∇

k is sufficient to construct the whole discretized
problem and produce an interesting method. On the other hand, in many other
cases (as for instance for three-dimensional problems) the explicit knowledge
of the L2(K)-orthogonal projection Π0

k will be useful and allow a cheaper dis-
cretization. In other cases (as for instance in the presence of nonlinearities) this
knowledge might substantially improve the quality of the method. Here below
we will show that with a minor change of point of view and a minor additional
work one can explicitly construct the operator Π0

k using the knowledge of Π∇
k

and the degrees of freedom (8).

3. The modified VEM and the projector Π0
k

The basic idea of the modified VEM is now to introduce a new spaceWk(K)
to be used in place of Vk(K) in such a way that

• the degrees of freedom (6)–(8) can still be used for Wk(K),

• all the polynomials of degree ≤ k are still included in Wk(K),

• the projection Π∇
k from Wk(K) to Pk can still be computed exactly,

but, for the elements vh ∈ Wk(K) the moments of order k − 1 and k of vh and
of Π∇

k vh coincide. Note that, as we have seen in Remark 4, this last property
does not hold in Vk(K).

To construct Wk(K) we proceed as follows:

a) We enlarge first Vk(K) to, say,

Ṽk(K) := {vh : vh|∂K ∈ Bk(∂K) and ∆vh ∈ Pk(K)}. (16)

b) We restrict Ṽk(K) to a subspace Wk(K) having the same dimension (and
the same degrees of freedom!) as the original Vk(K), but where the moments of
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degree k − 1 and k of v and Π∇
k v coincide. More precisely, we set

Wk(K) := {wh ∈ Ṽk(K) : (wh −Π∇
k wh, q

∗)0,K = 0

∀q∗ ∈ M∗
k−1(K) ∪M∗

k(K)}. (17)

Proposition 1. The dimension of Ṽk(K) is

ÑK,k
V = ℓk + (k + 1)(k + 2)/2,

and as degrees of freedom in Ṽk(K) we can take the traces on ∂K (piecewise in
Pk) and the moments, in K, up to the order k.

Proof. The proof is virtually identical to that given in [4] for Vk(K) and is based
on the observation that for functions in H1

0 (K) with Laplacian in Pr(K) (r ∈ N)
there is a one-to one mapping between the moments of the functions up to the
order r and their Laplacian.

Proposition 2. The dimension NK,k
W of Wk(K) is equal to that of Vk(K), that

is, as in (9),

NK,k
W := dimWk(K) = kℓ+ k(k − 1)/2. (18)

As degrees of freedom in Wk(K) we can take the same as in Vk(K) (that is,
(6)-(8)).

Proof. It is immediate to check that the dimension of M∗
k−1(K) ∪ M∗

k(K) is
equal to 2k + 1. Hence, without checking the independence of the additional
2k + 1 conditions in (17), we can at least be assured that the dimension NK,k

W

of Wk(K) verifies

NK,k
W ≥ ÑK,k

V −(2k+1) = ℓk+(k+1)(k+2)/2−(2k+1) = ℓk+k(k−1)/2. (19)

We now observe that a function wh ∈Wk(K) that vanishes on ∂K and has zero
moments up to the order k − 2 is identically zero. Indeed, it is immediate to
see from (12)-(14) that in this case Π∇

k wh would be zero, implying that all its
moment are zero, implying (since wh ∈ Wk(K)) that all the moments of order
k−1 and k of wh are also zero. Using Proposition 1 this implies that wh is zero.

This (together with (19)) implies that the dimension of Wk(K) is actually
equal to ℓk + k(k − 1)/2, and that in Wk(K) the degrees of freedom (6)-(8) are
unisolvent.

Remark 5. More generally, we could set, for r ≥ k − 1,

Ṽk,r(K) := {vh : vh|∂K ∈ Bk(∂K) and ∆vh ∈ Pr(K)}

and then define (always for r ≥ k − 1):

Wk,r(K) := {wh ∈ Ṽk,r(K) : (wh −Π∇
k wh, q

∗)0,K = 0

∀q∗ ∈ M∗
s(K) for all s with k − 1 ≤ s ≤ r}. (20)
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For a general r ≥ k − 1 we could again take, as degrees of freedom in Wk,r(K),
the values on ∂K and the moments up to the degree k − 2 in K. Hence, for
a function wh ∈ Wk,r(K) the moments up to k − 2 are among the degrees of
freedom, and the moments of order s with k − 2 < s ≤ r are computable (since
we can compute Π∇

k wh explicitly). However, the maximum available accuracy is
still k (we did not touch the values on ∂K!), which seems to render the choice
r > k totally useless.

To summarize, what we have obtained is the following:

• Every set of ℓk+k(k−1)/2 real numbers, interpreted as degrees of freedom
(6)–(8), uniquely defines a function vh ∈ Vk(K) or a function wh ∈Wk(K).
These functions are clearly different, but they share the same degrees of
freedom. Note however that if, by chance, the ℓk + k(k − 1)/2 values of
(6)–(8) are taken from a polynomial p ∈ Pk, then p ≡ vh ≡ wh.

• Since the computation of Π∇
k only requires the use of the d.o.f. (6)–(8),

we obviously have Π∇
k vh ≡ Π∇

k wh.

• If wh ∈ Wk(K), the moments of order k − 1 and k of wh and of Π∇
k wh

are equal. This information, together with (8), allows us to compute all
the moments of wh up to the order k. This can provide, if needed, the
L2−projection of wh onto Pk(K), as we see here below.

We now show in detail how the operator Π0
k can be explicitly computed. To

start with, we point out that Π0
kvh can be presented as the unique element in

Pk(K) such that∫
K

Π0
kvhmdx =

∫
K

vhmdx for all m ∈ Mk(K). (21)

Clearly (21) is a linear system, whose unknowns are the coefficients of Π0
kvh in

the monomial basis Mk(K). The matrix associated to (21) can be computed
through (1), so that all the difficulties in the computation of Π0

k are in the
computation of the right-hand side.

For k ≥ 2 part of the components of the right-hand side of (21) are im-
mediately available from the degrees of freedom (8), and the others, for vh in
Wk(K), can be obtained from∫

K

vhmdx =

∫
K

Π∇
k vhm dx for m ∈ M∗

k−1(K) ∪M∗
k(K), (22)

once the projector Π∇
k has been computed. To clarify this point, we distinguish

the following two cases.

The case k ≤ 2.
In this case we always have Π∇

k = Π0
k. Indeed, for k = 1 we have from (22)∫

K

vhm dx =

∫
K

Π∇
1 vhm dx for m ∈ M∗

0(K) ∪M∗
1(K), (23)
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so that from (21)∫
K

Π0
1vhm dx =

∫
K

Π∇
1 vhm dx for m ∈ M1(K). (24)

Hence, Π∇
1 = Π0

1. On the other hand, for k = 2 we still have Π∇
2 = Π0

2. Indeed
from (14) and (22) we immediately have that the moments of vh and Π∇

2 vh
coincide for k = 0, 1, 2.

The case k > 2.
In this case we cannot ensure that Π0

k = Π∇
k but we can always compute all the

moments in the right-hand side of (21). Indeed, the first k − 2 moments are
given to us by (8), while the moments of order k−1 and k are provided by (22).

Warning: In the lowest order case (k = 1) the degrees of freedom identify
uniquely a function gh on the boundary. To gh we can uniquely associate a
function vh (harmonic in K) in V1(K) and a function wh (with constant Lapla-
cian) in W1(K). These two functions are different, but they share the same
boundary values and hence (for k = 1) the same projection, meaning that
Π∇

1 vh = Π∇
1 wh. Note that we use (13) in order to take care of the constant part

of Π∇
1 . The mean value of wh on K is easily computable. As wh ∈ W1(K) we

obviously have ∫
K

wh dx =

∫
K

Π∇
1 wh dx.

Instead the mean value of vh on K cannot be computed, unless we think that
(from the same degrees of freedom!) we are using wh. In particular one should
not be lazy and use

1

|∂K|

∫
∂K

vh ds (25)

which is already known by (13). Indeed, (25) is only a first order approximation
of the average of vh over K that in many cases could not be good enough.

4. The three-dimensional spaces and projectors

4.1. Three-dimensional Virtual spaces

We consider now a polyhedron K with nV vertices, nf faces, and ne edges.
For every integer k ≥ 1 and for every face f of K we recall the definition (4) of
the space Bk(∂f), and we observe that Bk(∂f) is a linear space of dimension

νf + νf (k − 1) = νfk,

where νf is the number of edges (and the number of vertices) of f . Then we
denote by Wk(f) the space defined in (17) with respect to the polygon f . We
recall from (18) that the dimension of Wk(f) is

Nf,k
W = νfk + k(k − 1)/2.
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At this point we can define for each polyhedron K

Wk(∂K) := {v ∈ C0(∂K) : v|f ∈Wk(f) ∀ face f ⊂ ∂K}. (26)

We finally consider the finite dimensional space Uk(K) defined as

Uk(K) := {v ∈ H1(K) : v|∂K ∈Wk(∂K), ∆v|K ∈ Pk−2(K)}. (27)

It is not difficult to check that the dimension of Uk(K) is given by

nV + ne(k − 1) + nfk(k − 1)/2 + k(k2 − 1)/6 (28)

where the last term corresponds to the dimension of polynomials of degree
≤ k − 2 in three dimensions.

Remark 6. Note that in particular, for k = 1 the local dimension will be equal
to the number of vertices, and for k = 2 to the number of vertices, plus the
number of edges, plus the number of faces plus 1. As an example, for a cube-
shaped hexahedron the local space will have dimension 8 for k = 1 and 27 for
k = 2 (in both cases, the same as you would get for Qk(K)) while for k = 3 the
local space will have dimension 54 (instead of 64 as for Q3(K)).

In Uk(K) we can choose the following degrees of freedom:

- the values of vh at the vertices of K, (29)

and for k ≥ 2 the moments:

- |e|−1(m, vh)0,e ∀m ∈ Mk−2(e) on each edge e of K, (30)

- |f |−1
(m, vh)0,f ∀m ∈ Mk−2(f) on each face f of K, (31)

- |K|−1
(m, vh)0,K ∀m ∈ Mk−2(K). (32)

It is not difficult to check that the dimension of Uk(K), computed in (28),
equals the total number of degrees of freedom (29)-(32), and that the degrees
of freedom (29)-(32) are unisolvent.

Remark 7. We note that on each face f ∈ ∂K the degrees of freedom (29)-(30)
uniquely determine an ”edgewise” polynomial of degree ≤ k on the boundary of
f . Following the two-dimensional theory of the previous section we know that
adding (31) is then equivalent to prescribe vh on f , and that, moreover, out
of the degrees of freedom (29)-(31) we can construct, always on each face f ,

the projector Π∇,f
k (that is, the operator Π∇

k , as defined in (12)-(14), this time

on the face f) and the L2(f) projection operator Π0,f
k onto the set Pk(f) of

polynomials of degree ≤ k on the face f . In turn, these can be assembled to
construct projection operators Π∇,∂K

k and Π0,∂K
k whose restriction to each face

f coincides with Π∇,f
k and Π0,f

k , respectively.
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At this point we can introduce the three-dimensional operator Π∇
k ≡ Π∇,K

k ,
that mimicking the two-dimensional case we define through

(∇Π∇
k vh,∇q)0,K = (∇vh,∇q)0,K ∀ vh ∈ Uk(K), ∀ q ∈ Pk(K) (33)

with ∫
∂K

Π∇
k vh dS =

∫
∂K

Π∇,∂K
k vh dS for k = 1, (34)

or ∫
K

Π∇
k vh dx =

∫
K

vh dx for k ≥ 2. (35)

Let us see the possible problems in the computation on Π∇
k . We consider

again the Green formula, for pk ∈ Pk(K) and for vh ∈ Uh∫
K

∇pk · ∇vh dx = −
∫
K

∆pk vh dx+

∫
∂K

∂pk
∂n

vh ds. (36)

In the two-dimensional case we observed that the first term in the right-hand
side of (10) was computable out of the degrees of freedom (8). Here we have
an identical situation and the degrees of freedom (32) allow us to compute the
first term in the right-hand side of (36). On the other hand the second term
in the right-hand side of (10) was computable because vh could be computed
exactly on the whole boundary ∂K out of the degrees of freedom (6) and (7),
since on each edge vh was a polynomial. Here however vh, on each face, is not,
in general, a polynomial, and the degrees of freedom (31) are not enough, since
the normal derivative of pk is a polynomial of degree k−1 and from (31) we only
know the moments of vh up to the order k − 2. Our life-saver is that on each
face f our vh is taken in Wk(f), and therefore, from the two-dimensional theory

(as already observed in Remark 7), we can compute Π0,∂K
k that is, for each face

f , all the moments of vh|f up to the order k (and therefore, in particular, the
moments of order up to k − 1 that are necessary to compute the last term of
(36)).

It is also easy to check that whenever vh ∈ Pk(K) then Π∇
k vh ≡ vh, showing

that Π∇
k is indeed a projection onto Pk(K).

Once we have defined (and constructed) the operator Π∇
k we can finally

consider the finite dimensional space Wk(K) defined as

Wk(K) := {v ∈ H1(K) : v|∂K ∈Wk(∂K), such that ∆v|K ∈ Pk(K)

and (v −Π∇
k v,m)0,K = 0 for all m ∈ M∗

k−1(K) ∪M∗
k(K)}. (37)

As for the two-dimensional case, in the spaceWk(K) we can construct the L2(K)
projection operator Π0

k using the degrees of freedom (32) for the moments up
to the order k − 2 and using (37) for the moments of order k − 1 and k.

Remark 8. As we had in the two-dimensional case, the degrees of freedom in
Uk(K) and in Wk(K) are the same. Hence the discussion made in Remark 6
applies to the present case as well.
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Remark 9. We point out that the natural extension of the original VEM to the
three-dimensional case would correspond to use on each face, instead of (26),

Vk(∂K) := {v ∈ C0(∂K) : v|f ∈ Vk(f) ∀ face f ⊂ ∂K}, (38)

(where Vk(f) is defined as in (5)), and then set

Vk(K) := {v ∈ H1(K) : v|∂K ∈ Vk(∂K), ∆v|K ∈ Pk−2(K)}. (39)

However, as we already saw discussing (36), we could not, with this choice,
compute the second term in the right-hand side of (36), as the normal derivative
of pk has degree k − 1 while in Vk(f) we have, as degrees of freedom, only the
moments up to the degree k − 2. The only possibility, sticking to the original
version of VEM, would then be to add k additional degrees of freedom on each
face, as it was done for the higher order Mimetic Finite Differences in [6].

As we already saw in the two-dimensional case (and we shall see again in
a while even for the three-dimensional case) in a certain number of cases the
knowledge of the projector Π∇

k would be sufficient to construct the numerical
scheme. In these cases we could consider the possibility of using, locally, only
the space Uk(K) instead of Wk(K). However, we point out that from the
practical point of view (meaning the choice of the degrees of freedom and the
actual computations) there is no difference in the two choices, in particular if
one doesn’t need to use the operator Π0

k. Finally, following Remark 9, we point
out once more that the choice (39) with the degrees of freedom (29)-(32) does
not allow the construction of Π∇

k (see (33)- (35)). Indeed, as we said already,
the original MFD version [6] needed to use moments up to the order k − 1 in
(31), with a considerable increase in the total number of degrees of freedom (of
the order of k + 1 times the number of faces in the decomposition).

5. The three-dimensional Poisson Problem

5.1. The continuous problem

Let us see how these new virtual elements can be used to deal with three-
dimensional problems. We consider the model problem

−∆u = g in Ω, u = 0 on Γ = ∂Ω, (40)

where Ω ⊂ R3 is a polyhedral domain and g ∈ L2(Ω). The variational formula-
tion reads {

find u ∈ V := H1
0 (Ω) such that

a(u, v) = (g, v)0 ∀v ∈ V,
(41)

with a(u, v) = (∇u,∇v)0. It is well known that problem (41) has a unique
solution, since

a(u, v) ≤M |u|1|v|1, a(v, v) ≥ α |v|21 ∀u, v ∈ V, (42)

with α =M = 1 in our simplified case.

12



5.2. The decompositions

We discuss now the discretized version of the above problem.
Let {Th}h be a sequence of decompositions of Ω into polyhedral elements K.

On the sequence of decompositions we make the following assumption.

A0 - We assume that there exists a positive real number γ such that

• for every element K, for every face f of K, and for every edge e of f

he ≥ γhf ≥ γ2hK ;

• every element K is starshaped with respect to all the points of a sphere of
radius ≥ γhK ;

• every face f is starshaped with respect to all the points of a disk having
radius ≥ γhf .

In all the sequel, for every decomposition Th we set

|h| := max
K∈Th

hK (43)

Remark 10. Assumption A0 is, at the same time, not very demanding (al-
lowing the use of very general decompositions), and more restrictive than nec-
essary. Actually, we could get away with even more general assumptions, but
then it would be long and boring to make precise (among many possible crazy
decompositions that nobody will ever use) the ones that are allowed and the ones
that are not.

Remark 11. It can be shown that the above conditions imply the existence of
an integer number N such that every polyhedron has less that N faces and every
face has less than N edges.

The bilinear form a(·, ·) and the norm | · |1 can obviously be split as

a(u, v) =
∑

K∈Th

aK(u, v) ∀u, v ∈ V, |v|1 =
( ∑

K∈Th

|v|21,K
)1/2

∀v ∈ V.

(44)
Since in what follows we shall also deal with functions belonging to the space

H1(Th) :=
∏

K∈Th

H1(K), we need to define a broken H1-seminorm:

|v|h,1 :=
( ∑

K∈Th

|v|21,K
)1/2

. (45)

Note that, for discontinuous functions, this is really a seminorm and not a norm:
for instance, |ch|h,1 ≡ 0 for every piecewise constant function ch.

At the abstract level, for a given order of accuracy k ≥ 1, we consider, as in
[4], discretizations that satisfy the following assumptions.

A1 - We assume to have, for each h,

13



• for each K ∈ Th a space Wk(K) ⊂ H1(K);

• a space Wh ⊆ V ∩
∏

K∈Th

Wk(K);

• a bilinear form ah from Wh ×Wh to R which can be split as

ah(uh, vh) =
∑

K∈Th

aKh (uh, vh) ∀uh, vh ∈ Wh, (46)

where each aKh (·, ·) is a symmetric, positive semidefinite bilinear form on
Wk(K)×Wk(K);

• an element gh ∈ W′
h (dual space of Wh).

Together with A1 we further assume the following crucial properties.

A2 - For all h, and for all K in Th, we have Pk(K) ⊆ Wk(K) and

• k-Consistency: for all p ∈ Pk(K) and for all vh ∈ Wk(K),

aKh (p, vh) = aK(p, vh); (47)

• Stability: there exist two positive constants α∗ and α∗, independent of h
and of K, such that

∀vh ∈ Wk(K) α∗ a
K(vh, vh) ≤ aKh (vh, vh) ≤ α∗ aK(vh, vh). (48)

We notice that the symmetry of ah, property (48), and the definition of aK

easily imply the uniform continuity of ah with

aKh (u, v) ≤
(
aKh (u, u)

)1/2 (
aKh (v, v)

)1/2

≤ α∗
(
aK(u, u)

)1/2 (
aK(v, v)

)1/2

= α∗ |u|1,K |v|1,K for all u, v ∈ Wk(K).
(49)

5.3. An abstract convergence theorem

The following convergence theorem has been proved in [4] for the two-
dimensional case, but the arguments given therein do not depend on the space
dimension.

Theorem 1. Under Assumptions A1-A2, the discrete problem:

Find uh ∈ Wh such that ah(uh, vh) =< gh, vh > ∀ vh ∈ Wh, (50)
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has a unique solution uh. Moreover, for every approximation uI ∈ Wh of u and
for every approximation uπ of u that is piecewise in Pk, we have

|u− uh|1 ≤ C
(
|u− uI |1 + |u− uπ|h,1 + ∥g − gh∥W′

h

)
,

where C is a constant depending only on α∗ and α∗, and ∥g − gh∥W′
h
is defined

as

∥g − gh∥W′
h
:= sup

vh∈Wh

< g − gh, vh >

∥vh∥V
. (51)

5.4. Projection error

According to the classical Scott-Dupont theory (see e.g. [10]) we have then
the following result.

Proposition 3. Assume that Assumption A0 is satisfied. Then there exists a
constant C, depending only on k and γ, such that for every s with 1 ≤ s ≤ k+1,
for every K, and for every w ∈ Hs(K) there exists a wπ ∈ Pk(K) such that

∥w − wπ∥0,K + hK |w − wπ|1,K ≤ C hsK |w|s,K . (52)

Remark 12. Always following [10] we note that we could take the weaker as-
sumption that (roughly speaking) every K is the union of a finite (and uniformly
bounded) number of star-shaped domains, each satisfying A0.

5.5. Construction of Wh

We can now use what we learned on individual polyhedra in order to design
a Virtual Element space on the whole Ω. In particular: for every decomposition
Th of Ω into polyhedra K, for every integer k ≥ 1, and for every K in Th we
define Wk(K) as in (37). Then we set, as natural:

Wh := {v ∈ H1
0 (Ω) : v|K ∈ Wk(K) for each element K in Th}. (53)

Arguing as we did in the case of a single polyhedron (but remembering that
on ∂Ω we set homogeneous Dirichlet boundary conditions), we can easily see
that the dimension of the whole space Wh is given by

Ntot ≡ dimWh = NV +NE(k − 1) +NF k(k − 1)/2 +NP k(k
2 − 1)/6, (54)

where NV , NE , NF , and NP are, respectively, the total number of internal
Vertices, internal Edges, internal Faces, and elements (polyhedra) in Th.

In agreement with the local choice of the degrees of freedom (29)-(32), in
Wh we choose the following degrees of freedom:

- the values of vh at the internal vertices, (55)

and for k ≥ 2 the moments

- |e|−1(m, vh)0,e ∀m ∈ Mk−2(e) on each internal edge e, (56)
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- |f |−1
(m, vh)0,f ∀m ∈ Mk−2(f) on each internal face f, (57)

- |K|−1
(m, vh)0,K ∀m ∈ Mk−2(K) on each element K. (58)

We explicitly recall that the request Wh ⊂ V implies vh = 0 on the nodes, on
the edges and on the faces belonging to the boundary ∂Ω.

It is not difficult to check that, here too, the dimension Ntot of Wh, com-
puted in (54), equals the total number of degrees of freedom (55)-(58). The
local unisolvence will now easily imply that the global degrees of freedom are
unisolvent for the global space Wh. Exactly as it happens for the usual Finite
Element spaces.

5.6. Interpolation error
Numbering the Ntot degrees of freedom (55)-(58) from 1 to Ntot, we can

denote by χi, i = 1, . . . ,Ntot the operator that to each smooth enough function
φ associates its i-th degree of freedom χi(φ). It follows easily from the above
construction that for every smooth enough w vanishing on ∂Ω there exists a
unique element wI of Wh such that

χi(w − wI) = 0, i = 1, . . . ,Ntot. (59)

More generally, always following for instance [10], it is not difficult to see that
the following result holds.

Proposition 4. Assume that Assumption A0 is satisfied, and that the space Wh

has been constructed following the above procedure. Then there exists a constant
C, depending only on k and γ, such that for every s with 2 ≤ s ≤ k + 1, for
every h, for all K ∈ Th and for every w ∈ Hs(K) the interpolant wI ∈ Wh

defined in (59) satisfies

∥w − wI∥0,K + hK |w − wI |1,K ≤ C hsK |w|s,K . (60)

5.7. Construction of ah
At this point we can follow in a rather slavish way the procedure applied for

the two-dimensional case in [4]. We summarize it briefly. We have to construct
a computable ah that satisfies (47) and (48). For this, for every element K we
use the operator Π∇

k : Wk(K) −→ Pk(K) ⊆ Wk(K) defined in (33)-(35), and
we choose

aKh (u, v) := aK(Π∇
k u,Π

∇
k v) + SK(u−Π∇

k u, v −Π∇
k v) ∀u, v ∈ Wk(K) (61)

where SK(u, v) is, in the canonical basis induced by the degrees of freedom
(29)-(32), the identity matrix multiplied by hK . As in the two-dimensional case
[4], one can easily verify that with the choice (61) Assumption A2 is satisfied.

Remark 13. An approach similar to that used in (61) (although only for the
case of quadrilaterals) can be found in [23].

Remark 14. Most of the use of Assumption A0 is actually hidden here. What
we are using is that the square of the H1(K)-norm of each basis function scales
(in three dimensions) like hK , which would not be the case if, for instance, two
vertices were too close.
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5.8. Treatment of the right-hand side

For k ≥ 2 the treatment of the right-hand side can be easily dealt with in
the classical VEM framework [4]. We can simply take gh := Π0

k−2g since the
integral ∫

K

(Π0
k−2g) vhdK (62)

is always computable directly from the degrees of freedom (32). With this choice
we have

(g − gh, vh)0,K = (g −Π0
k−2g, vh)0,K

= (g −Π0
k−2g, vh −Π0

0vh)0,K ≤ C hk−1
K |g|k−1,K hK |vh|1,K (63)

that easily implies
∥g − gh∥W′

h
≤ C |h|k ∥g∥k−1,Ω. (64)

For k = 1 instead we can take gh = Π0
0g, since∫

K

(Π0
0g) vhdK ≡

∫
K

(Π0
0g)Π

∇
1 vhdK

for vh in W1(K) (as defined in (37)). Proceeding as before, we easily obtain

∥g − gh∥W′
h
≤ C |h| ∥g∥0,Ω, (65)

or, alternatively,
∥g − gh∥W′

h
≤ C |h|2 ∥g∥1,Ω. (66)

Remark 15. We note that for k ≥ 2 and vh ∈ Wk(K) we could have taken
gh = Π0

k−1g, and gain an extra power of h as in (66):

∥g − gh∥W′
h
≤ C |h|k+1 ∥g∥k,Ω. (67)

Theorem 2. Let u be the solution of problem (41), and let uh ∈ Wh be the
solution of the discretized problem (50), with Wh defined in (53), ah defined in
(61), and gh := Π0

k−2g for k ≥ 2 and gh := Π0
0g for k = 1. Assume further that

the right-hand side g belongs to Hk−1(Ω), and that the exact solution u of (41)
belongs to Hk+1(Ω). Then

∥u− uh∥1,Ω ≤ C |h|k |u|k+1,Ω, (68)

with C a positive constant independent of h.

Proof. The result is an immediate consequence of the abstract Theorem 1 and
the estimates (52), (60), and (64) (or (65) for k = 1).
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6. Additional applications

We shall now briefly highlight some other applications of these elements. It
is clear that the range of possible applications is much wider.

6.1. L2 error estimates

We consider now the problem of optimal error estimates in the L2(Ω) norm.

Theorem 3. Let u be the solution of problem (41), and let uh ∈ Wh be the
solution of the discretized problem (50), with Wh defined in (53), ah defined
in (61), and gh := Π0

k−1g for k ≥ 1. Assume further that Ω is convex, that

the right-hand side g belongs to Hk(Ω), and that the exact solution u of (41)
belongs to Hk+1(Ω).

Then the following estimate holds:

∥u− uh∥0,Ω + |h| ∥u− uh∥1,Ω ≤ C |h|k+1|u|k+1,Ω, (69)

with C a constant independent of h.

Proof. The H1 estimate follows from Theorem 1. To prove the L2 estimate we
employ the usual duality argument. Let therefore ψ be the solution of

−∆ψ = u− uh in Ω with ψ ∈ H1
0 (Ω) (70)

that, due to the convexity assumption, satisfies

∥ψ∥2,Ω ≤ C ∥u− uh∥0,Ω (71)

for a constant C that depends only on Ω. Let ψI be an interpolant of ψ in Wh,
for which it holds

∥ψ − ψI∥1,Ω ≤ C|h| ∥ψ∥2,Ω ≤ C|h| ∥u− uh∥0,Ω (72)

(having used estimate (60) and then (71)).
Then, using (70), adding and subtracting ψI , and using (41) and (50) we

have

∥u− uh∥20 = (u− uh,−∆ψ) = a(u− uh, ψ)

= a(u− uh, ψ − ψI) + a(u− uh, ψI)

= a(u− uh, ψ − ψI)+ < g, ψI > −a(uh, ψI)

= a(u− uh, ψ − ψI)+ < g − gh, ψI > +ah(uh, ψI)− a(uh, ψI)

=: I + II + II.

(73)

Obviously we have first, from (42) and (72),

I = a(u− uh, ψ − ψI) ≤ C ∥u− uh∥1,Ω |h| ∥u− uh∥0,Ω. (74)

Then we observe that for every element K we have

(g − gh, q)0,K ≡ (g −Π0
k−1g, q)0,K = 0 ∀q ∈ Pk−1(K), (75)
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so that using (52) (for Π0
k−1 and Π0

0) and again (60)

II =< g − gh, ψI >=< g −Π0
k−1g, ψI −Π0

0ψI >≤ C |h|k|g|k,Ω |h| |ψI |1,Ω
≤ C |h|k|g|k,Ω |h| ∥u− uh∥0,Ω.

(76)
Finally, using (twice) (47)

III = ah(uh, ψI)− a(uh, ψI) =
∑
K

(
aKh (uh, ψI)− (aK(uh, ψI)

)
=

∑
K

(
aKh (uh −Π0

ku, ψI)− aK(uh −Π0
ku, ψI)

)
=

∑
K

(
aKh (uh −Π0

ku, ψI −Π0
1ψ)− aK(uh −Π0

ku, ψI −Π0
1ψ)

)
.

(77)

By adding and subtracting ψ and using (52) and (72) we easily have

∥ψI −Π0
1ψ∥1,Ω ≤ ∥ψI − ψ∥1,Ω + ∥ψ −Π0

1ψ∥1,Ω ≤ C |h| |ψ|2,Ω
≤ C |h| ∥u− uh∥0,Ω,

(78)

that inserted in (77) gives

III ≤ C
(
∥uh − u∥1,Ω + ∥u−Π0

ku∥1,Ω
)
|h| ∥u− uh∥0,Ω. (79)

Using now (74), (76), and (79) in (73) we have then

∥u− uh∥20 ≤ C
(
∥u− uh∥1,Ω + ∥u−Π0

ku∥1,Ω + |h|k|g|k,Ω
)
|h|∥u− uh∥0,Ω (80)

and the result follows from (68) and (52).

Remark 16. We point out that for k ≥ 3 we could have taken gh = Π0
k−2g as

in (62), and still obtain optimal estimates. Indeed, k − 2 ≥ 1 for k ≥ 3, so that
the estimate (76) of II can be made as

< g − gh, ψI > =< g −Π0
k−2g, ψI >=< g −Π0

k−2g, ψI −Π0
1ψ >

≤ C|h|k−1∥g∥k−1,Ω|h|2∥ψ∥2,Ω
≤ C|h|k∥g∥k−1,Ω |h| ∥u− uh∥0,Ω.

(81)

and then we can proceed exactly as before.

6.2. Reaction-diffusion problems

As a further example of application we consider the case of a reaction-
diffusion problem of the type:

Find u ∈ H1
0 (Ω) such that −∆u+ αu = g in Ω (82)
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where g ∈ L2(Ω) as before, and α is a positive constant. It could be convenient
to split the associated bilinear form a(u, v) as

a(u, v) = a∇(u, v) + αa0(u, v) ≡
∫
Ω

∇u · ∇v dx+ α

∫
Ω

u v dx. (83)

Using the discretized space (53) (or (17) in two dimensions) we can define on
each element K:

aKh (u, v) = aK∇(Π∇
k u,Π

∇
k v) + SK

∇ (u−Π∇
k u, v −Π∇

k v)

+ αaK0 (Π0
ku,Π

0
kv) + αSK

0 (u−Π0
ku, v −Π0

kv) ∀u, v ∈ Wk(K). (84)

In the canonical basis induced by the degrees of freedom, SK
∇ can be taken as

the identity matrix multiplied by hd−2
K , and SK

0 can be taken as the identity
matrix multiplied by hdK where, as above, d (typically = 2 or 3) is the dimension
of the object K. It is not difficult to check that with this choice Assumption
A2 is again satisfied, and that the optimal error bound of O(hk) can still be
easily proved.

Remark 17. We point out that the term SK
0 in (84) is not needed, unless the

problem is reaction-dominated. We also point out that a similar approach can
be used to deal with time-dependent problems.

6.3. Numerical Experiments

We present two numerical experiments to exploit the behavior of the method
when a reaction term is present. In the first test we show that the presence of the
reaction stabilization term SK

0 (·, ·) is inessential when the problem is diffusion-
dominated; in the second one we show instead that this term is crucial when
the problem is reaction-dominated.

Test 1: diffusion-dominated case.
We consider the problem {

−∆u+ u = g in Ω

u = u0 on ∂Ω
(85)

where Ω is the unit square and the load term g and the Dirichlet boundary data
u0 are chosen in such a way that the exact solution is

ue(x, y) = sin(2x+ 0.5) cos(y + 0.3) + log(1 + xy).

We approximate problem (85) with the sequence of the four polygonal meshes
shown in Fig. 1. The order of approximation is k = 2. In Fig. 2 we show
the convergence curves of the error measured in a discrete L2 norm against the
mean value of the mesh size h in the two cases: with and without the reaction
stabilization term SK

0 (·, ·). The two error curves are virtually indistinguishable;
note the O(h3) optimal convergence rate.
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88 polygons
h

mean
=1.492912e−01

177 polygons
h

mean
=1.074517e−01

809 polygons
h

mean
=4.908316e−02

1627 polygons
h

mean
=3.451612e−02

Figure 1: Sequence of polygonal meshes for the diffusion-dominated case

Test 2: reaction-dominated case.
We consider the problem {

−ε∆u+ u = 1 in Ω

u = 0 on ∂Ω
(86)

where Ω is the unit square. When ε becomes small, the exact solution tends to
be 1 inside the domain and develops a diffusive boundary-layer close to the whole
boundary. We study the behavior of the VEM approximation of problem (86)
for k = 2 on a fixed mesh (the second of the sequence of Fig. 1) for ε decreasing
from 10−1 to 10−6. We show the results in Figs 3 and 4; in both figures, the first
row corresponds to the approximation without the reaction stabilization term
SK
0 (·, ·), while the results in the second row have been obtained with the term
SK
0 (·, ·).
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Figure 2: Convergence curves for the diffusion-dominated case
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Figure 3: Reaction-dominated case, ε = 10−1, 10−2, 10−3

In Fig. 3 we see that when ε is moderately small the results in the two cases
are very similar, in conformity with what we have obtained in the previous
experiment. On the contrary, when ε becomes smaller we see clearly from Fig. 4
that the reaction stabilization term is needed in order to produce a reasonable
solution.

Remark 18. No adjustments of the methods have been made to actually reduce
the over- and undershoots due to the diffusion layer, which are also typical
of the classical finite element approximations. Indeed, in these circumstances
higher order finite elements exhibit the same oscillations near the boundary,
and the lowest order ones (k = 1) require some mass lumping (at least near the
boundary) to be fixed. Hence we might say that with the reaction stabilization
term the Virtual Elements behave just like Finite Elements, although on much
more general geometries.
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Figure 4: Reaction-dominated case, ε = 10−4, 10−5, 10−6

7. Conclusions

We presented a different point of view on the Virtual Element Methods
that allows the exact computation of the local L2 projection of trial and test
functions on polynomials of degree k (where k is the maximum integer such
that all polynomials of degree ≤ k are contained in the local space). From the
computational point of view, we could briefly summarize the result by saying:
compute the H1

0 (K)-projection Π∇
k v as you do for the original VEM, and then

use it (for the moments of degree strictly higher than k − 2) as if it was the L2

projection. The new approach allows to get away with this “mistake”, showing
that what looks like a mistake is instead perfectly correct if we assume that
we are working in a slightly different space (that however still preserve all the
optimal approximation properties). The trick (of using Π∇

k v as if it was the L2

projection), could be used in a number of different circumstances.
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