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Abstra
t. We 
onsider the formulation of 
onta
t problems using a Lagrange multiplier

to enfor
e the 
onta
t no-penetration 
onstraint. The �nite element dis
retization of

the formulation must satisfy stability 
onditions whi
h in
lude an inf-sup 
ondition. To

identify whi
h �nite element interpolations in the 
onta
t 
onstraint lead to stable ( and

optimal ) numeri
al solutions we fo
us on the �nite element dis
retization and solution of

a " simple" model problem. While a simple problem to avoid the need for te
hni
alities,

the analysis of the �nite element dis
retizations to solve the problem gives valuable insight

and allows quite general 
on
lusions on the use of di�erent interpolation s
hemes.

1. Introdu
tion

While 
onta
t problems are already being solved for some time, and many �nite element

programs o�er 
onta
t analysis 
apabilities that are being used daily in produ
tion and

resear
h appli
ations, e�orts to rea
h more e�e
tive solution s
hemes are still intense [6℄.

One reason is the multitude of di�erent kind of 
onta
t problems that are en
ountered,

whi
h 
an involve large relative motions, fri
tional for
es, and stati
 or dynami
 
ondi-

tions. Problems involving 
onta
t between bodies are, for example, analysed in me
hani
al

designs of seals, in soil-stru
ture intera
tions, in the analyses of bridges, in metal forming

simulations, and in automobile 
rash and 
rush analyses [6℄.

Another reason for the 
ontinued resear
h on 
onta
t solution pro
edures is simply the

fa
t that a generally appli
able, always e�e
tive, optimal and in pra
ti
e easy-to-use �nite

element 
onta
t solution s
heme is still not available.

To rea
h su
h a solution s
heme, a number of requirements need to be ful�lled [4℄. These

in
lude that the 
onta
t 
onstraints 
an be satis�ed for arbitrary geometries of the 
onta
t-

ing bodies and for arbitrary analyis 
onditions, that a Ja
obian of the 
onta
t 
onstraints

should be available, that an e�e
tive use without user to-be-adjusted fa
tors should be pos-

sible, and most importantly, that 
ertain fundamental mathemati
al 
onditions be satis�ed

by the 
onta
t solution algorithm.

In this paper we fo
us on the fundamental mathemati
al 
onditions that must be ful�lled

by an e�e
tive 
onta
t solution pro
edure. We assume that a Lagrange multiplier mixed

formulation for the solution of the 
onta
t problems is used and we study the stability of

various �nite element 
onta
t dis
retizations that 
an be employed.
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In an earlier 
ontribution, we proposed a new 
onta
t solution pro
edure that satis�es the

pat
h 
ondition and the mixed formulation stability 
onditions [1℄. This 
onta
t solution

algorithm shows optimal 
onvergen
e in the solution, whi
h means that as the mesh is

re�ned the errors at the 
onta
t interfa
e diminish with the optimal rate. The 
onta
t

algorithm was proposed and analysed for stability using the numeri
al inf-sup test, whi
h

is an appropriate test to perform when an analyti
al evaluation of the inf-sup 
ondition

is not available. The obje
tive of the present paper is to present an analyti
al study of

the stability of various 
onta
t dis
retizations 
onsidered in ref. [1℄. The study gives very

valuable insight in the solution s
heme and 
on�rms the numeri
al results published earlier.

While we are interested in 
onta
t solution algorithms that are general in appli
ations,

see se
tion 2, for the purpose of the mathemati
al analysis 
arried out here we 
an 
on-

sider a \simple model problem". We present this problem in se
tion 3. The solution of

the problem en
ompasses the fundamental mathemati
al diÆ
ulties en
ountered in the

solution of geometri
ally more 
omplex 
onta
t problems but avoids 
ertain te
hni
alities,

the dis
ussion of whi
h would not add to the fundamental understanding of the stabil-

ity of the solution s
heme. For the same reasons, we do not dis
uss regularity results for

the solution of our model problem, that in any 
ase would be diÆ
ult to extend to more

general situations. In se
tion 4, we then introdu
e the solution s
heme and the �nite ele-

ment dis
retizations 
onsidered and dis
uss abstra
t error norms. The importan
e of the

inf-sup 
ondition is 
learly demonstrated. In se
tion 5, we present stable �nite element

spa
es whi
h 
an be re
ommended for general analysis use. Finally, in se
tion 6 we give

the 
on
lusions of this investigation.

Throughout the paper, the usual notation for Sobolev spa
es and for their norms jj � jj

and seminorms j � j is used; see for instan
e [17℄, [11℄.

2. The generi
 
onta
t problem 
onsidered

Figure 1 shows the generi
 
onta
t problem 
onsidered. We show here two 
exible bodies,

�xed on the boundary �

D

, and subje
ted to for
es that bring the bodies into 
onta
t over

the area �

C

. Only two bodies and only one 
onta
t area are shown, but the same prin
iples

dis
ussed below are appli
able when there are more bodies in 
onta
t with many 
onta
t

areas. Of 
ourse, in general, the area(s) of 
onta
t are unknown and must be solved for as

part of the overall solution of the problem.

Sin
e we are fo
ussing on the fundamental requirements for stability of the 
onta
t

solution pro
edure we assume 
onditions of zero fri
tion and small displa
ements. The

results that we will derive will of 
ourse also be used when these 
onditions no longer hold.

The basi
 
onta
t 
onditions are that

(2.1)

� � 0; g � 0; g � � = 0

where � is the 
onta
t normal tra
tion between the bodies (positive for 
ompression), and

g is the gap between the bodies. The gap is measured based on the original geometries

and the displa
ements of the bodies.
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Figure 1. Two bodies in 
onta
t

Let x

I

and x

J

be the position ve
tors of material parti
les on the surfa
es S

I

and S

J

respe
tively, see Fig. 2. For a given x

I

2 S

I

let x

�

J

on S

J

be de�ned by

(2.2) jjx

I

� x

�

J

jj

2

= min

x

J

2S

J

jjx

I

� x

J

jj

2

:

Then the gap (or gap fun
tion) between the bodies at x

I

is given by

(2.3) g(x

I

) = (x

I

� x

�

J

) � n

�

where n

�

is the unit normal ve
tor on S

J

(outward from body J) at the material parti
le

with position ve
tor x

�

J

.

The third 
ondition in (2.1) is the 
omplementary 
ondition whi
h stipulates that the


onta
t for
e is zero if the gap is larger than zero, and vi
e versa.

The solution of the problem therefore requires that the 
onditions of equilibrium and


ompatibility, and the 
onstitutive relations be ful�lled for ea
h di�erential element of

the bodies, subje
t to the boundary 
onditions, and that the 
onta
t 
onditions in (2.1)

be satis�ed. For a 
omplex problem, in �nite element analysis, the prin
iple of virtual

displa
ements is generally used with the 
onta
t 
onditions imposed as a 
onstraint.

Figure 3 shows generi
 �nite element dis
retizations of the bodies (shown here in two-

dimensional a
tions). We note that as long as there is no 
onta
t the solution is obtained

as in usual linear elasti
 �nite element analysis, using for example the displa
ement-based

�nite element pro
edures. However, when 
onta
t is established, that is, the gap is 
losed

anywhere along the surfa
es of the bodies, an additional normal 
onta
t tra
tion is devel-

oped along the 
onta
t area and the magnitude of the tra
tion depends on the loading, the

geometry, boundary 
onditions and elasti
 
onstants of the bodies.
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Figure 2. Geometry used to 
al
ulate the gap

Various �nite element approa
hes 
an be used to solve the 
onta
t problem. To develop

the basi
 prin
iple of virtual displa
ements (weak formulation) subje
t to the 
onta
t


onstraints (2.1) we 
an pro
eed as follows.

Let V be the Hilbert spa
e of displa
ements v of the bodies, and K

V

� V be the non-

empty 
losed subset satisfying g(v) � 0; under reasonable geometri
 assumptions, K

V

turns out to be 
onvex. Let �nally f be an element of V

0

; then the fun
tional J(v) is given

by [13, 6, 4, 1, 3, 12, 16℄

(2.4) J(v) :=

1

2

a(v; v)� (f; v)

where a : V � V ! R is the bilinear form of the elasti
ity problem 
onsidered and the

solution u is given as the minimizing argument of J over K

V

, that is

(2.5) J(u) = inf

v2K

V

J(v):

The solution of (2.5) 
an also be obtained as the solution u of the variational inequality

[3, 12, 16℄

(2.6)

�

�nd u 2 K

V

su
h that :

a(u; u� v) � (f; u� v) 8v 2 K

V

:

This is the basi
 prin
iple of virtual displa
ements, where we note that in this inequality

the only variables are the displa
ements of the bodies. However, in pra
ti
e, to rea
h an

e�e
tive solution algorithm for 
omplex problems, it is expedient to introdu
e the 
onta
t

tra
tion � as an additional unknown for the solution of the problem. The resulting solu-

tion pro
edure is then a mixed �nite element method based on the unknown displa
ements

and 
onta
t tra
tion (a Lagrange multiplier), whi
h is 
losely related to penalty methods,

perturbed Lagrangian and augmented Lagrangian te
hniques [6, 4℄. The basi
 step in this
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Figure 3. Dis
retizations of bodies in 
onta
t region; nodal-point displa
e-

ments (and nodal Lagrange multiplier if used) are shown.

mixed �nite element method is to assume the appropriate interpolation for the 
onta
t

tra
tion/Lagrange multiplier � for a given displa
ement interpolation. The pair of interpo-

lations must satisfy the stability 
onditions and ideally 
orrespond to an optimal solution

s
heme.

The 
ru
ial stability 
ondition to be satis�ed in the sele
tion of the interpolations is the

inf-sup 
ondition for the problem formulation [9, 8, 5℄, and we address the diÆ
ulties to

satisfy this 
ondition in the next se
tion. We do not wish to 
laim that the results obtained

below are all new, but present this exposition also in order to show how the mathemati
al

analysis 
an be performed in a rather simple and elu
idating manner.

3. The model mathemati
al problem

To simplify the notation and to avoid te
hni
alities, we 
onsider now a \simple model"

problem. The dis
ussion of this problem is, in our opinion, very valuable to 
larify the

diÆ
ulties related to the satisfa
tion of the inf-sup 
ondition, and to obtain very useful

results (that have quite general appli
ability).

Figure 4 shows the problem 
onsidered. Two adja
ent pretensioned membranes are �xed

on three of their edges and are free to displa
e into the x

3

-dire
tion (only) on the adjoin-

ing edge. The membranes are transversely loaded. Clearly, unless only a spe
i�
 loading

is allowed, a gap will tend to open along the 
ommon boundary � of the membranes.

The physi
al requirement for the problem is that along the 
ommon boundary the trans-

verse displa
ement of the top membrane must be greater than or equal to the transverse

displa
ement of the bottom membrane. Hen
e, we have a 
onta
t problem.
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Figure 4. Model problem 
onsidered: two pretensioned membranes with

displa
ement into the x

3

-dire
tion, tranverse loading into x

3

-dire
tion is

f(x

1

; x

2

).

Let us now mathemati
ally formulate the problem 
onsidered. In Fig. 4 we 
onsider two

re
tangular domains, 


1

and 


2

, with 


1

=℄0; 1[�℄0; 1[ and 


2

=℄0; 1[�℄1; 2[ and denote

by � the 
ommon part of the two boundaries, that is � :=℄0; 1[�f1g. For the analysis we

set, for i = 1; 2,

(3.1) V

i

:= fv 2 H

1

(


i

); v = 0 on �


i

n �g

and, for u

i

; v

i

in V

i

,

(3.2) a

i

(u

i

; v

i

) :=

Z




i




i

ru

i

� rv

i

dx

where 
learly x = (x

1

; x

2

) and 


1

; 


2

are positive 
onstants (representing the prestress in

the two membranes). We also set

(3.3) V := V

1

� V

2


 :=℄0; 1[�℄0; 2[:

Elements of V will be denoted by u = (u

1

; u

2

) and v = (v

1

; v

2

). For u and v in V we set

(3.4) a(u; v) := a

1

(u

1

; v

1

) + a

2

(u

2

; v

2

)
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and

(3.5) g(v) := (v

2

)

j�

� (v

1

)

j�

:

and we 
onsider the 
losed 
onvex subset of V de�ned by

(3.6) K

V

:= fv 2 V; g(v) � 0g:

It is 
lear that on � our fun
tions v 2 K

V

behave like the normal 
omponents of the

displa
ements on the 
onta
t surfa
e of the previous se
tion.

Our problem is now to �nd the minimizing argument u in K

V

of (see (2.4) to (2.6))

(3.7) J(v) :=

1

2

a(v; v)� (f; v)

where f is a given (load) fun
tion in L

2

(
) and ( : ; : ) denotes as usual the L

2

(
)-inner

produ
t. The solution is obtained by solving

(3.8)

�

�nd u 2 K

V

su
h that :

a(u; u� v) � (f; u� v) 8v 2 K

V

:

As mentioned in the previous se
tion, our aim is to impose the 
ondition v 2 K

V

by means

of a suitable Lagrange multiplier on �. For this we de�ne the spa
e

(3.9) M := (H

1=2

00

(�))

0

and the 
onvex 
one

(3.10) K

�

:= f� 2M; � � 0g:

We also de�ne the 
ontinuous bilinear form b on V �M

(3.11) b(v; �) :=< g(v); � >

where < : ; : > denotes the duality pairing between H

1=2

00

(�) and its dual spa
e M , and

we 
onsider the mixed variational inequality

(3.12)

8

<

:

�nd (u; �) 2 V �K

�

su
h that :

a(u; v)� b(v; �) = (f; v) 8v 2 V

b(u; �� �) � 0 8� 2 K

�

:

It is easy to 
he
k that (3.12) also has a unique solution (u; �), where u 
oin
ides with the

solution of (3.8) and

(3.13) � = 


1

�

�u

1

�n

1

�

j�

= �


2

�

�u

2

�n

2

�

j�

= 


1

�

�u

1

�x

2

�

j�

= 


2

�

�u

2

�x

2

�

j�

:

The existen
e and uniquenes of the solution of (3.12) 
an be dedu
ed, for instan
e, as an

appli
ation of [10℄, or as a parti
ular 
ase of the more general result in [2℄. We note that,

in parti
ular, by taking � = 0 and then � = 2� in the se
ond equation of (3.12) we get

(3.14) b(u; �) = 0;

whi
h will be used later on.
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Remark 3.1. We expli
itly point out that the 
hoi
e (3.9) for the spa
e M of Lagrange

multipliers is essential in order to have the well-posedness of (3.12). Indeed this is the


hoi
e whi
h ensures that the 
ontinuous inf-sup 
ondition holds: there exists a �




> 0

su
h that

(3.15) sup

v2V nf0g

b(v; �)

jjvjj

V

� �




jj�jj

M

8� 2M:

Other 
hoi
es for M , as for instan
e M = L

2

(�) used in [15℄, will not satisfy (3.15) and


an result in nonoptimal estimates for the dis
retized problems.

4. Dis
retization and abstra
t error estimates

If V

h

andM

h

are �nite dimensional subspa
es of V and M , respe
tively, and K

h

a 
losed


onvex 
one in M

h

, we 
an 
onsider the dis
rete 
ounterpart of (3.12):

(4.1)

8

<

:

�nd (u

h

; �

h

) 2 V

h

�K

h

su
h that :

a(u

h

; v

h

)� b(v

h

; �

h

) = (f; v

h

) 8v

h

2 V

h

b(u

h

; �

h

� �

h

) � 0 8�

h

2 K

h

:

Existen
e and uniqueness of the solution of (4.1) follow rather easily, by the arguments in

[10℄, provided we have, for all �

h

2M

h

with �

h

6= 0:

(4.2) sup

v

h

2V

h

nf0g

b(v

h

; �

h

)

jjv

h

jj

V

> 0:

With 
lassi
al arguments, assuming that

(4.3) K

h

� K

�

we have then, for u

I

2 V

h

and �

I

2 K

h

:

(4.4)

jju

h

� ujj

2

V

= a(u

h

� u; u

h

� u)

= a(u

h

� u; u

I

� u) + a(u

h

� u; u

h

� u

I

)

= I + b(u

h

� u

I

; �

h

� �)

= I + b(u

h

� u

I

; �

I

� �) + b(u

h

� u

I

; �

h

� �

I

)

= I + II + b(u

h

� u

I

; �

h

� �

I

)

� I + II � b(u

I

; �

h

� �

I

)

= I + II + b(u� u

I

; �

h

� �

I

)� b(u; �

h

� �

I

)

= I + II + III + b(u; �

I

� �

h

)

� I + II + III + b(u; �

I

� �);

where we used the ellipti
ity of a, additions and subtra
tions, the �rst equation of (3.12)


ombined with the �rst equation of (4.1), and, in the �fth-to-sixth line, we used the se
ond

equation of (4.1); �nally, in the last line, we used the (positive) sign of b(u; �

h

), and (3.14).

The pie
es I and II in (4.4) are then easily estimated by the Cau
hy-S
hwarz inequality,

tra
e theorems, and usual interpolation estimates. However, in order to estimate III we
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need an estimate for �

h

� �

I

. For this we need a stronger form of (4.2), that is the usual

inf-sup 
ondition: there exists a � > 0, independent of h, su
h that

(4.5) sup

v

h

2V

h

nf0g

b(v

h

; �

h

)

jjv

h

jj

V

� � jj�

h

jj

M

8�

h

2M

h

:

Using (4.5) we immediately obtain the existen
e of a w

h

2 V

h

, with jjw

h

jj

V

= 1, su
h that

(4.6)

�

2

jj�

I

� �

h

jj � b(w

h

; �

I

� �

h

) = b(w

h

; �

I

� �) + b(w

h

; �� �

h

)

� Cjj�

I

� �jj

M

+ a(u� u

h

; w

h

) � C(jj�

I

� �jj

M

+ jju� u

h

jj

V

);

where, here and in what follows, C is a 
onstant independent of u and h, possibly having

di�erent values at di�erent o

urren
es. From (4.4) and (4.6) we have then easily

(4.7)

jju� u

h

jj

2

V

� Cfjju� u

h

jj

V

jju� u

I

jj

V

+ jju

h

� u

I

jj

V

jj�� �

I

jj

M

+jju� u

I

jj

V

(jj�� �

I

jj

M

+ jju� u

h

jj

V

)g+ b(u; �

I

� �):

Using the triangle inequality jju

I

�u

h

jj

V

� jju

I

�ujj

V

+ jju�u

h

jj

V

we then have from (4.7)

(4.8)

jju� u

h

jj

2

V

� Cfjju� u

h

jj

V

(jju� u

I

jj

V

+ jj�� �

I

jj

M

)

+jju� u

I

jj

V

jj�� �

I

jj

M

g+ b(u; �

I

� �):

As usual, (4.8) 
an then be 
ombined with (4.6) in order to have an estimate on jj���

h

jj

M

.

For ea
h parti
ular 
hoi
e of V

h

, M

h

, and K

h

, the �rst term of (4.8) will then be estimated

by usual interpolation errors, while the last term will be estimated, on a 
ase by 
ase

basis, using the available regularity and possibly (3.14). Just to give an idea we point out

that, if �

I

is 
hosen as the L

2

(�)- proje
tion of � onto M

h

, then we 
an de�ne g

M

I

as the

L

2

(�)-proje
tion of g(u) onto M

h

and obtain

(4.9) b(u; �

I

� �) =

Z

�

(g(u)� g

M

I

)(�

I

� �) dx

1

whi
h redu
es the whole estimate (4.8) to a 
lassi
al interpolation error.

It is interesting to note that a di�erent estimate 
an also be derived, assuming that we


an easily obtain a good approximation u

I

of u in K

V

. In this 
ase, we 
an use, for u

I

in

K

V

\ V

h

and �

I

2 K

h

, the following estimate

(4.10)

jju

h

� ujj

2

V

= a(u

h

� u; u

h

� u)

= a(u

h

� u; u

I

� u) + a(u

h

� u; u

h

� u

I

)

= I + b(u

h

� u

I

; �

h

� �)

= I + b(u

h

� u

I

; �

I

� �) + b(u

h

� u

I

; �

h

� �

I

)

= I + II + b(u

h

� u

I

; �

h

� �

I

)

� I + II � b(u

I

; �

h

� �

I

)

� I + II + b(u

I

; �

I

)

= I + II + b(u

I

� u; �

I

) + b(u; �

I

� �);
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(having used, to obtain the last line, the positive sign of b(u

I

; �

h

) that was not used in

(4.4)). The estimate (4.10) immediately gives (using again the triangle inequality)

(4.11)

jju� u

h

jj

2

V

� Cfjju� u

h

jj

V

(jju� u

I

jj

V

+ jj�� �

I

jj

M

)

+jju� u

I

jj

V

jj�� �

I

jj

M

g+ b(u

I

� u; �

I

) + b(u; �

I

� �):

It is 
lear however that (4.11) 
an only provide an estimate for the error jju�u

h

jj

V

(although

the estimate for jju � u

I

jj

V

is more diÆ
ult now) but the error jj� � �

h

jj

M


annot be

estimated without the inf-sup 
ondition (4.5). Most importantly, without having at least

(4.2) we 
annot even ensure the uniqueness of the solution of the dis
rete problem (4.1).

Considering our next steps of analysis, it is not within the s
ope of this paper to study

the error estimates, in terms of powers of h and of the regularity of u, that 
an be obtained

from (4.8) or (4.11). Indeed, the results obtained would also not be appli
able for the

solution of the pra
ti
al problems we have in mind, whi
h are mu
h more 
ompli
ated

than our model problem, see se
tions 1 and 2. Instead, we will fo
us on the stability of

various possible approximations, and in parti
ular on the inf-sup 
ondition (4.5). It is

quite reasonable to expe
t that the stability results obtained for our simple model problem

will in fa
t hold for mu
h more 
omplex problems, and in parti
ular the 
onta
t problems


onsidered in se
tions 1 and 2 .

Hen
e in the next se
tion we 
onsider several possible 
hoi
es for V

h

and M

h

, and 
he
k

whether the inf-sup 
ondition is satis�ed.

5. Examples of stable finite element spa
es

Assume now that we are given, for ea
h i = 1; 2, a de
omposition T

i

h

of 


i

. The two

de
ompositions are not supposed to be identi
al on �. For ea
h i = 1; 2 and for ea
h integer

k � 1 we 
onsider the spa
es

(5.1) V

k

hi

:= fv 2 V

i

; v

jT

2 P

k

(T ) 8T 2 T

hi

g

and then the spa
e

(5.2) V

k

h

:= V

k

h1

� V

k

h2

where if the supers
ript k is not given, any k � 1 is 
onsidered. Finally, we assume that

we are given a de
omposition G

h

of �. For any integer s � 0 and r = 0; 1 we 
onsider the

spa
e

(5.3) M

r

s

:= f�

h

2 H

r

(�); �

h

jI

2 P

s

8I 2 G

h

g

and the 
losed 
onvex 
one

(5.4) K

r

s

:= f�

h

2 M

r

s

; �

h

� 0 on �g:

In general, we use s = 0 or s = 1. For a larger s, the 
ondition �

h

� 0 is diÆ
ult to enfor
e

in a �nite element 
ode. In these 
ases, we might just require that �

h

� 0 at the nodes,

but the abstra
t estimates of the previous se
tion must then be adjusted sin
e 
ondition

(4.3) will not hold. We also 
onsider the spa
e M

r

0;s

and the 
one K

r

0;s

de�ned as

(5.5) M

r

0;s

= f�

h

2 M

r

s

; �

h

(0) = �

h

(1) = 0g;
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(5.6) K

r

0;s

= f�

h

2 K

r

s

; �

h

(0) = �

h

(1) = 0g:

As we have seen in the last se
tion, two inequalities are at the basis of the error estimate

(4.8): the ellipti
ity of the bilinear form a(u; v) { that for our problem is always satis�ed for

every 
hoi
e of the dis
rete spa
e V

h

{ and the inf-sup 
ondition { that, on the 
ontrary, will

heavily depend on the 
hoi
es of the spa
es V

h

and M

h

. We are going to identify, in what

follows, three families of 
hoi
es for whi
h the inf-sup 
ondition is satis�ed. The proof,

for ea
h family, will be based on the so-
alled Fortin tri
k [14℄ re
alled in the following

theorem.

Theorem 1 Let V and M be Hilbert spa
es, and let b be a bilinear 
ontinuous form on

V �M su
h that the 
ontinuous inf-sup 
ondition (3.15) is satis�ed. Assume that we are

given a family of subspa
es V

h

� V and M

h

� M , where h is a parameter spanning the

interval ℄0; h

0

℄. We assume that, for ea
h h, we are given a linear operator �

h

from V to

V

h

with the following properties:

(5.7) b(v � �

h

v; �

h

) = 0 8�

h

2M

h

and there exists a 
onstant C

F

, independent of h, su
h that

(5.8) jj�

h

vjj

V

� C

F

jjvjj

V

8v 2 V:

Then the dis
rete inf-sup 
ondition

(5.9) sup

v

h

2V

h

nf0g

b(v

h

; �

h

)

jjv

h

jj

V

� �jj�

h

jj

M

8�

h

2M

h

:

holds with � = �




=C

F

. �

The proof 
an be found in [9, 8, 14℄.

Of 
ourse, (3.15) holds for our problem. We are now going to 
onsider parti
ular 
hoi
es

of spa
es V

h

and M

h

. It is intuitively 
lear that, for a given de
omposition G

h

of �, the

worst possible s
enario is obtained when the two de
ompositions T

h1

and T

h2

, restri
ted

to �, 
oin
ide. This indeed minimizes the dimension of the spa
e spanned by all possible

di�eren
es between v

h1

and v

h2

on �. If our aim is to prove the inf-sup 
ondition, it is


lear that a suÆ
ient 
ondition would be to have it satis�ed when the supremum in (5.9)

is just taken only on the pairs v

h

= (0; v

h2

). On the other hand, if the two spa
es (V

h1

)

j�

and (V

h2

)

j�


oin
ide, there is no gain in taking the supremum on all v

h

's rather than just

on the ones of the type (0; v

h2

). Hen
e the 
ondition

(5.10) sup

v

h

2V

h2

nf0g

R

�

v

h

�

h

dx

1

jjv

h

jj

V

2

� �jj�

h

jj

M

8�

h

2M

h

:

is always suÆ
ient for having (5.9), and be
omes ne
essary when (V

h1

)

j�

and (V

h2

)

j�


oin-


ide. In what follows, we are therefore going to see whether a given 
hoi
e of the spa
es

V

h

and M

h

satis�es (5.10). The following lemma is an immediate 
onsequen
e of Theorem

1 and of the above dis
ussion.
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Lemma 1 Assume that the 
ontinuous version of (5.10) holds, namely, there exists a

�




> 0 su
h that

(5.11) sup

v2V

2

nf0g

R

�

v �dx

1

jjvjj

V

2

� �




jj�jj

M

8� 2M:

Assume moreover that for ea
h h 2℄0; h

0

℄ there exists a linear operator �

h

from V

2

into

V

k

h2

satisfying

(5.12)

Z

�

(v � �

h

v)�

h

dx

1

= 0 8�

h

2M

h

;

and there exists a 
onstant C

F

, independent of h su
h that

(5.13) jj�

h

vjj

V

2

� C

F

jjvjj

V

2

8v 2 V

2

:

Then (5.10) holds, and therefore (4.5) also holds. �

To avoid te
hni
alities, we assume that the de
omposition 
ast on � by T

h2


oin
ides

with G

h

. This is a rather parti
ular 
ase, but not unrealisti
. Finally, always in order to

simplify the exposition, we assume that the de
omposition T

h2

is quasi-uniform. Under

this assumption it is rather easy to 
he
k (see e.g. [19℄) that for every v

h

2 V

k

h2

we 
an �nd

a ~v

h

2 V

k

h2

su
h that

(5.14) ~v

h

= v

h

on �;

and

(5.15) jj~v

h

jj

V

2

� C jjv

h

jj

H

1=2

00

(�)

:

Under the above assumptions on the de
ompositions we have therefore the following

theorem.

Theorem 2 Let W

h

be the spa
e of the tra
es of V

k

h2

on �, and assume that we are given,

for ea
h h, an operator �

h

from H

1=2

00

(�) into W

h

with the following properties:

(5.16)

Z

�

(w � �

h

w)�

h

dx

1

= 0 8�

h

2M

h

;

(5.17) jj�

h

wjj

H

1=2

00

(�)

� C

�

jjwjj

H

1=2

00

(�)

8w 2 H

1=2

00

(�);

where C

�

is a 
onstant independent of h and v. Then an operator �

h

satisfying (5.12) and

(5.13) exists (and hen
e the inf-sup 
ondition (5.10) holds.) �

Proof. Given v 2 V

2

we 
onsider w := v

j�

and w

h

:= �

h

w. We then lift w

h

, in an arbitrary

way, to an element v

h

2 V

k

h2

su
h that v

h

= w

h

on �. Then we de�ne �

h

v as ev

h

. Using

properties (5.14) and (5.16) we immediately get (5.12). Then (5.17) and (5.15) easily give

(5.13). �

Remark 5.1. It is quite intuitive that the dis
rete inf-sup 
ondition (5.10) should depend

only on the spa
e M

h

and on the spa
e W

h

of the tra
es of fun
tions in V

h2

, even if norms

over 


2

are involved. The role of Theorem 2 is indeed to redu
e the proof of (5.10) to a

property (the existen
e of a suitable �

h

) that depends only on M

h

and W

h

.



STABILITY OF FINITE ELEMENT MIXED INTERPOLATIONS FOR CONTACT PROBLEMS 13

In what follows we will keep V

h

= V

k

h

�xed, and we 
onsider three possible 
hoi
es for

the 
orresponding M

h

. We noti
e that, with the above 
hoi
e for V

h

, the spa
e of tra
es

W

h

will also be �xed, equal to

(5.18) W

h

= fw

h

2 C

0

([0; 1℄; su
h that w

h

jI

2 P

k

8I 2 G

h

; and w

h

(0) = w

h

(1) = 0g:

The �rst 
hoi
e 
orresponds to having as spa
e of multipliers the same spa
e that is spanned

by the tra
es of V

h

(in
luding the zero boundary 
onditions at the endpoints of �).

Theorem 3 Assume that V

h

:= V

k

h

and M

h

:= M

1

0;k

. Then an operator �

h

satisfying

(5.16) and (5.17) exists (and hen
e the inf-sup 
ondition is satis�ed.) �

Proof. We note that, in this 
ase, we have W

h

= M

h

. Then we 
an de�ne �

h

w as the

L

2

(�)-proje
tion of w on W

h

= M

h

. Property (5.16) is 
learly veri�ed. It is also obvious

that

(5.19) jj�

h

wjj

L

2

(�)

� jjwjj

L

2

(�)

8w 2 L

2

(�):

By usual approximation properties we also have

(5.20) jj�

h

w � wjj

L

2

(�)

� C h jjwjj

H

1

0

(�)

8w 2 H

1

0

(�):

From the inverse inequality, the triangle inequality, and usual interpolation estimates we

then have

(5.21)

jj�

h

w � w

I

jj

H

1

0

(�)

� C h

�1

jj�

h

w � w

I

jj

L

2

(�)

� C h

�1

(jj�

h

w � wjj

L

2

(�)

+ jjw � w

I

jj

L

2

(�)

)

� C jjwjj

H

1

0

(�)

8w 2 H

1

0

(�);

where w

I

is the usual interpolant of w.

From (5.21) we immediately obtain

(5.22) jj�

h

wjj

H

1

0

(�)

� jj�

h

w � w

I

jj

H

1

0

(�)

+ jjw

I

jj

H

1

0

(�)

� C jjwjj

H

1

0

(�)

8w 2 H

1

0

(�):

Interpolating between (5.19) and (5.22) we obtain (5.17). �

Remark 5.2. It is very easy to see that, taking a spa
e of multipliers made of 
ontinuous

pie
ewise P

k

fun
tions that do not vanish at the endpoints, the inf-sup 
ondition will not

hold. Indeed, the number of degrees of freedom for the spa
e M

h

of multipliers would be, in

the 
ase of N intervals, equal to N � k+ 1, whi
h is bigger than N � k� 1, the dimension

of W

h

. Hen
e the inf-sup 
ondition 
annot hold.

Before pro
eeding, we sele
t a useful property that 
omes out immediately from the

proof of Theorem 3.

Lemma 2 If G

h

is quasi-uniform, then there exists a linear operator �

1

h

from H

1=2

00

(�) into

the spa
e of pie
ewise linear fun
tions on G

h

, and two 
onstants C

1

and C

1

, independent

of h, su
h that

(5.23) jj�

1

h

wjj

r;�

� C

1

kjwjj

r;�

r = 0; 1;

and

(5.24) jj�

1

h

w � wjj

0;�

� C

1

h jjwjj

1;�

8w 2 H

1

0

(�): �
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The proof, as we said, is a byprodu
t of the proof of Theorem 3, by taking k = 1. �

We shall 
onsider in a while two other possible 
hoi
es of �nite element spa
es. For

them, the 
onstru
tion of the operator �

h

is made in two steps (see for instan
e [9℄). The

strategy is to use the operator �

1

h

of Lemma 2, and look for another operator �

2

h

with the

properties

(5.25)

Z

�

(�

2

h

w � w)�

h

dx

1

= 0 8�

h

2M

h

;

and

(5.26) jj�

2

h

wjj

t;�

� C

2

h

�t

jjwjj

0;�

t = 0; 1;

and then to de�ne �

h

as

(5.27) �

h

:= �

1

h

� �

2

h

(�

1

h

� I):

It is then 
lear that from (5.27) and (5.25) we have

(5.28)

R

�

(�

h

w � w)�

h

dx

1

=

R

�

(�

1

h

w � �

2

h

(�

1

h

� I)w � w)�

h

dx

1

=

R

�

((�

1

h

w � w)� �

2

h

(�

1

h

w � w))�

h

dx

1

= 0;

for all �

h

2 M

h

, that is (5.16); moreover, using (5.27), then (5.23) with r = 0, and �nally

(5.26) with t = 0 we have, for all w 2 L

2

(�):

(5.29) jj�

h

wjj

0;�

� C

1

jjwjj

0;�

+ C

2

jj�

1

h

w � wjj

0;�

� (C

1

+ C

2

(1 + C

1

)) jjwjj

0;�

:

On the other hand, using (5.27), then (5.23) with r = 1, then (5.26) with t = 1, and �nally

(5.24) we obtain, for all w 2 H

1

0

(�):

(5.30) jj�

h

wjj

1;�

� C

1

jjwjj

1;�

+ C

2

h

�1

jj�

1

h

w � wjj

0;�

� (C

1

+ C

2

C

1

) jjwjj

1;�

:

Equations (5.29) and (5.30) then easily imply, by interpolation,

(5.31) jj�

h

wjj

H

1=2

00

(�)

� C jjwjj

H

1=2

00

(�)

that is (5.17).

We summarize the above results in the following lemma.

Lemma 3 Let W

h

be the spa
e of tra
es of V

2

h

, and let the de
omposition T

2

h

be quasi-

uniform. Assume that we 
an 
onstru
t an operator �

2

h

, from H

1=2

00

(�) into W

h

, with the

properties (5.25) and (5.26); then the inf-sup 
ondition (5.10) is satis�ed (and hen
e (4.5)

also holds). �

Proof. The proof follows from the above 
onstru
tion of �

h

and Theorem 2. �

Remark 5.3. The role of Lemma 3, as we shall see, is to redu
e the veri�
ation of the

assumptions of Theorem 2 (and hen
e the proof of the inf-sup 
ondition) to the 
onstru
tion

of a lo
al operator �

2

h

. This was not possible for the �rst 
hoi
e of multipliers (
onsidered

in Theorem 3), but will be possible for the next two 
hoi
es.
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We now 
ontinue with our study of the di�erent 
hoi
es of spa
es. The se
ond 
ase that

we 
onsider 
orresponds to using a spa
e of multipliers whi
h are dis
ontinuous and have

lo
al degree k � 2, with k � 2, if k is the lo
al degree of V

h

. This is dis
ussed in the

following theorem.

Theorem 4 Assume that V

h

:= V

k

h

with k � 2, and M

h

:= M

0

k�2

. Then an operator

�

2

h

satisfying (5.25) and (5.26) exists (and hen
e the inf-sup 
ondition holds by Lemma 3).

�

Proof. To 
onstru
t �

2

h

we 
an easily pro
eed with an element by element (a
tually,

interval by interval) argument. For ea
h I 2 G

h

and for ea
h w in, say, L

2

(�) we de�ne

�

2

h

w as the polynomial of degree k (in I), vanishing at the endpoints of I, and satisfying

(5.32)

Z

I

(�

2

h

w � w)p

k�2

dx

1

= 0 8p

k�2

2 P

k�2

:

It is rather easy to 
he
k that properties (5.25) and (5.26) hold true. �

Remark 5.4. It is easy to see that, by taking M

h

to be the spa
e of dis
ontinuous pie
e-

wise P

k�1

fun
tions, the inf-sup 
ondition will not hold. Indeed, as in Remark 5.2, the

dimensional 
ount gives N � k as dimension of M

h

, while W

h

has dimension N � k � 1.

The third 
ase that we 
onsider 
orresponds to using a spa
e of multipliers whi
h are


ontinuous, do not ne
essarily vanish at the endpoints of �, and have lo
ally one degree less

than the degree used in V

h

. Comparing with our �rst 
ase, we see that here (for the same

V

h

) the spa
e for Lagrange multipliers has, in general, a mu
h smaller dimension. Indeed,

with the same notation of Remarks 5.2 and 5.4, the dimension of M

h

is N � k � 1 for the

�rst 
ase, and N � (k � 1) + 1 for this last 
ase. In view of the previous result (that the

inf-sup 
ondition holds for 
ase 1) we expe
t 
ase 3, reasonably, to work as well. However,

the new spa
e of multipliers is not a subspa
e of the previous one, and an independent

proof is therefore ne
essary. Consider the following theorem.

Theorem 5 Assume that V

h

:= V

k

h

with k � 2, and M

h

:= M

1

k�1

. Then an operator �

2

h

satisfying (5.25) and (5.26) exists (and hen
e the inf-sup 
ondition holds by Lemma 3).

�

Proof. To de�ne �

2

h

we shall use a ma
ro-element te
hnique. In order to avoid the

te
hni
alities related with the use of ma
ro-elements, we shall detail the proof only in the


ase when the mesh on � has an even number of intervals. It should be 
lear however

that the result holds in general. Having an even number of elements, we 
an take non-

overlapping ma
ro-elements J made of pairs of adja
ent elements. In the usual appli
ation

of the ma
ro-element te
hnique (see [9℄ or [18℄) the ma
ro-elements overlap. Our 
ase is

simpler. In ea
h ma
roelement J , and for ea
h w, say, in L

2

(�), we 
ontru
t �

2

h

as the

element of W

h

having support in J and su
h that

(5.33)

Z

J

(w � �

2

h

w)p

k�1

dx

1

= 0;

for all p

k�1


ontinuous on J and polynomial of degree � k�1 in ea
h of the two elements I

of G

h


ontained in J . The system (5.33) has 2k�1 unknowns (the dimension of 
ontinuous
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lo
ally P

k

fun
tions, on a mesh of two elements, vanishing at the endpoints) and 2k � 1

equations (the dimension of 
ontinuos lo
ally P

k�1

fun
tions, on a mesh of two elements,

with no 
onditions at the endpoints). It is easy to 
he
k that (5.33) has a unique solution,

and that (5.25) and (5.26) hold true. �

Remark 5.5. The analysis of the previous three 
ases, together with Remarks 5.2 and 5.4,


an often help in de
iding whether other possible 
hoi
es are viable or not. For instan
e,

it is obvious that if we start from a 
ase where the inf-sup 
ondition holds and we in
rease

W

h

or de
rease M

h

, then the inf-sup 
ondition will still hold. On the other hand, if we start

from a 
ase where the inf-sup 
ondition does not hold, and we de
rease W

h

or we in
rease

M

h

then the inf-sup 
ondition will still fail to hold.

6. Con
lusions

We have 
onsidered the solution of general 
onta
t problems for whi
h a mixed �nite

element interpolation is used. The solution approa
h involves a Lagrange multiplier to

interpolate the unknown normal 
onta
t tra
tions ( in addition to the usual interpolations

of the displa
ements for the bodies ). The mixed formulation needs to satisfy stability

requirements and the obje
tive of this paper was to give insight into these requirements

and give spe
i�
 results as to what Lagrange multiplier interpolation is appropriate, and

e�fe
tive, with a spe
i�
 displa
ement interpolation.

While these results were derived by 
onsidering a simple model problem ( in order to

avoid 
ertain te
hni
alities ), valuable insight was gained and there is no reason why the

results should not be generally appli
able. The analyti
al results reported in the paper


on�rm also earlier obtained 
on
lusions based on numeri
al tests [1℄.
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