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Abstrat. We onsider the formulation of ontat problems using a Lagrange multiplier

to enfore the ontat no-penetration onstraint. The �nite element disretization of

the formulation must satisfy stability onditions whih inlude an inf-sup ondition. To

identify whih �nite element interpolations in the ontat onstraint lead to stable ( and

optimal ) numerial solutions we fous on the �nite element disretization and solution of

a " simple" model problem. While a simple problem to avoid the need for tehnialities,

the analysis of the �nite element disretizations to solve the problem gives valuable insight

and allows quite general onlusions on the use of di�erent interpolation shemes.

1. Introdution

While ontat problems are already being solved for some time, and many �nite element

programs o�er ontat analysis apabilities that are being used daily in prodution and

researh appliations, e�orts to reah more e�etive solution shemes are still intense [6℄.

One reason is the multitude of di�erent kind of ontat problems that are enountered,

whih an involve large relative motions, fritional fores, and stati or dynami ondi-

tions. Problems involving ontat between bodies are, for example, analysed in mehanial

designs of seals, in soil-struture interations, in the analyses of bridges, in metal forming

simulations, and in automobile rash and rush analyses [6℄.

Another reason for the ontinued researh on ontat solution proedures is simply the

fat that a generally appliable, always e�etive, optimal and in pratie easy-to-use �nite

element ontat solution sheme is still not available.

To reah suh a solution sheme, a number of requirements need to be ful�lled [4℄. These

inlude that the ontat onstraints an be satis�ed for arbitrary geometries of the ontat-

ing bodies and for arbitrary analyis onditions, that a Jaobian of the ontat onstraints

should be available, that an e�etive use without user to-be-adjusted fators should be pos-

sible, and most importantly, that ertain fundamental mathematial onditions be satis�ed

by the ontat solution algorithm.

In this paper we fous on the fundamental mathematial onditions that must be ful�lled

by an e�etive ontat solution proedure. We assume that a Lagrange multiplier mixed

formulation for the solution of the ontat problems is used and we study the stability of

various �nite element ontat disretizations that an be employed.
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In an earlier ontribution, we proposed a new ontat solution proedure that satis�es the

path ondition and the mixed formulation stability onditions [1℄. This ontat solution

algorithm shows optimal onvergene in the solution, whih means that as the mesh is

re�ned the errors at the ontat interfae diminish with the optimal rate. The ontat

algorithm was proposed and analysed for stability using the numerial inf-sup test, whih

is an appropriate test to perform when an analytial evaluation of the inf-sup ondition

is not available. The objetive of the present paper is to present an analytial study of

the stability of various ontat disretizations onsidered in ref. [1℄. The study gives very

valuable insight in the solution sheme and on�rms the numerial results published earlier.

While we are interested in ontat solution algorithms that are general in appliations,

see setion 2, for the purpose of the mathematial analysis arried out here we an on-

sider a \simple model problem". We present this problem in setion 3. The solution of

the problem enompasses the fundamental mathematial diÆulties enountered in the

solution of geometrially more omplex ontat problems but avoids ertain tehnialities,

the disussion of whih would not add to the fundamental understanding of the stabil-

ity of the solution sheme. For the same reasons, we do not disuss regularity results for

the solution of our model problem, that in any ase would be diÆult to extend to more

general situations. In setion 4, we then introdue the solution sheme and the �nite ele-

ment disretizations onsidered and disuss abstrat error norms. The importane of the

inf-sup ondition is learly demonstrated. In setion 5, we present stable �nite element

spaes whih an be reommended for general analysis use. Finally, in setion 6 we give

the onlusions of this investigation.

Throughout the paper, the usual notation for Sobolev spaes and for their norms jj � jj

and seminorms j � j is used; see for instane [17℄, [11℄.

2. The generi ontat problem onsidered

Figure 1 shows the generi ontat problem onsidered. We show here two exible bodies,

�xed on the boundary �

D

, and subjeted to fores that bring the bodies into ontat over

the area �

C

. Only two bodies and only one ontat area are shown, but the same priniples

disussed below are appliable when there are more bodies in ontat with many ontat

areas. Of ourse, in general, the area(s) of ontat are unknown and must be solved for as

part of the overall solution of the problem.

Sine we are foussing on the fundamental requirements for stability of the ontat

solution proedure we assume onditions of zero frition and small displaements. The

results that we will derive will of ourse also be used when these onditions no longer hold.

The basi ontat onditions are that

(2.1)

� � 0; g � 0; g � � = 0

where � is the ontat normal tration between the bodies (positive for ompression), and

g is the gap between the bodies. The gap is measured based on the original geometries

and the displaements of the bodies.
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Figure 1. Two bodies in ontat

Let x

I

and x

J

be the position vetors of material partiles on the surfaes S

I

and S

J

respetively, see Fig. 2. For a given x

I

2 S

I

let x

�

J

on S

J

be de�ned by

(2.2) jjx

I

� x

�

J

jj

2

= min

x

J

2S

J

jjx

I

� x

J

jj

2

:

Then the gap (or gap funtion) between the bodies at x

I

is given by

(2.3) g(x

I

) = (x

I

� x

�

J

) � n

�

where n

�

is the unit normal vetor on S

J

(outward from body J) at the material partile

with position vetor x

�

J

.

The third ondition in (2.1) is the omplementary ondition whih stipulates that the

ontat fore is zero if the gap is larger than zero, and vie versa.

The solution of the problem therefore requires that the onditions of equilibrium and

ompatibility, and the onstitutive relations be ful�lled for eah di�erential element of

the bodies, subjet to the boundary onditions, and that the ontat onditions in (2.1)

be satis�ed. For a omplex problem, in �nite element analysis, the priniple of virtual

displaements is generally used with the ontat onditions imposed as a onstraint.

Figure 3 shows generi �nite element disretizations of the bodies (shown here in two-

dimensional ations). We note that as long as there is no ontat the solution is obtained

as in usual linear elasti �nite element analysis, using for example the displaement-based

�nite element proedures. However, when ontat is established, that is, the gap is losed

anywhere along the surfaes of the bodies, an additional normal ontat tration is devel-

oped along the ontat area and the magnitude of the tration depends on the loading, the

geometry, boundary onditions and elasti onstants of the bodies.
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Figure 2. Geometry used to alulate the gap

Various �nite element approahes an be used to solve the ontat problem. To develop

the basi priniple of virtual displaements (weak formulation) subjet to the ontat

onstraints (2.1) we an proeed as follows.

Let V be the Hilbert spae of displaements v of the bodies, and K

V

� V be the non-

empty losed subset satisfying g(v) � 0; under reasonable geometri assumptions, K

V

turns out to be onvex. Let �nally f be an element of V

0

; then the funtional J(v) is given

by [13, 6, 4, 1, 3, 12, 16℄

(2.4) J(v) :=

1

2

a(v; v)� (f; v)

where a : V � V ! R is the bilinear form of the elastiity problem onsidered and the

solution u is given as the minimizing argument of J over K

V

, that is

(2.5) J(u) = inf

v2K

V

J(v):

The solution of (2.5) an also be obtained as the solution u of the variational inequality

[3, 12, 16℄

(2.6)

�

�nd u 2 K

V

suh that :

a(u; u� v) � (f; u� v) 8v 2 K

V

:

This is the basi priniple of virtual displaements, where we note that in this inequality

the only variables are the displaements of the bodies. However, in pratie, to reah an

e�etive solution algorithm for omplex problems, it is expedient to introdue the ontat

tration � as an additional unknown for the solution of the problem. The resulting solu-

tion proedure is then a mixed �nite element method based on the unknown displaements

and ontat tration (a Lagrange multiplier), whih is losely related to penalty methods,

perturbed Lagrangian and augmented Lagrangian tehniques [6, 4℄. The basi step in this
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Figure 3. Disretizations of bodies in ontat region; nodal-point displae-

ments (and nodal Lagrange multiplier if used) are shown.

mixed �nite element method is to assume the appropriate interpolation for the ontat

tration/Lagrange multiplier � for a given displaement interpolation. The pair of interpo-

lations must satisfy the stability onditions and ideally orrespond to an optimal solution

sheme.

The ruial stability ondition to be satis�ed in the seletion of the interpolations is the

inf-sup ondition for the problem formulation [9, 8, 5℄, and we address the diÆulties to

satisfy this ondition in the next setion. We do not wish to laim that the results obtained

below are all new, but present this exposition also in order to show how the mathematial

analysis an be performed in a rather simple and eluidating manner.

3. The model mathematial problem

To simplify the notation and to avoid tehnialities, we onsider now a \simple model"

problem. The disussion of this problem is, in our opinion, very valuable to larify the

diÆulties related to the satisfation of the inf-sup ondition, and to obtain very useful

results (that have quite general appliability).

Figure 4 shows the problem onsidered. Two adjaent pretensioned membranes are �xed

on three of their edges and are free to displae into the x

3

-diretion (only) on the adjoin-

ing edge. The membranes are transversely loaded. Clearly, unless only a spei� loading

is allowed, a gap will tend to open along the ommon boundary � of the membranes.

The physial requirement for the problem is that along the ommon boundary the trans-

verse displaement of the top membrane must be greater than or equal to the transverse

displaement of the bottom membrane. Hene, we have a ontat problem.
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Figure 4. Model problem onsidered: two pretensioned membranes with

displaement into the x

3

-diretion, tranverse loading into x

3

-diretion is

f(x

1

; x

2

).

Let us now mathematially formulate the problem onsidered. In Fig. 4 we onsider two

retangular domains, 


1

and 


2

, with 


1

=℄0; 1[�℄0; 1[ and 


2

=℄0; 1[�℄1; 2[ and denote

by � the ommon part of the two boundaries, that is � :=℄0; 1[�f1g. For the analysis we

set, for i = 1; 2,

(3.1) V

i

:= fv 2 H

1

(


i

); v = 0 on �


i

n �g

and, for u

i

; v

i

in V

i

,

(3.2) a

i

(u

i

; v

i

) :=

Z




i



i

ru

i

� rv

i

dx

where learly x = (x

1

; x

2

) and 

1

; 

2

are positive onstants (representing the prestress in

the two membranes). We also set

(3.3) V := V

1

� V

2


 :=℄0; 1[�℄0; 2[:

Elements of V will be denoted by u = (u

1

; u

2

) and v = (v

1

; v

2

). For u and v in V we set

(3.4) a(u; v) := a

1

(u

1

; v

1

) + a

2

(u

2

; v

2

)
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and

(3.5) g(v) := (v

2

)

j�

� (v

1

)

j�

:

and we onsider the losed onvex subset of V de�ned by

(3.6) K

V

:= fv 2 V; g(v) � 0g:

It is lear that on � our funtions v 2 K

V

behave like the normal omponents of the

displaements on the ontat surfae of the previous setion.

Our problem is now to �nd the minimizing argument u in K

V

of (see (2.4) to (2.6))

(3.7) J(v) :=

1

2

a(v; v)� (f; v)

where f is a given (load) funtion in L

2

(
) and ( : ; : ) denotes as usual the L

2

(
)-inner

produt. The solution is obtained by solving

(3.8)

�

�nd u 2 K

V

suh that :

a(u; u� v) � (f; u� v) 8v 2 K

V

:

As mentioned in the previous setion, our aim is to impose the ondition v 2 K

V

by means

of a suitable Lagrange multiplier on �. For this we de�ne the spae

(3.9) M := (H

1=2

00

(�))

0

and the onvex one

(3.10) K

�

:= f� 2M; � � 0g:

We also de�ne the ontinuous bilinear form b on V �M

(3.11) b(v; �) :=< g(v); � >

where < : ; : > denotes the duality pairing between H

1=2

00

(�) and its dual spae M , and

we onsider the mixed variational inequality

(3.12)

8

<

:

�nd (u; �) 2 V �K

�

suh that :

a(u; v)� b(v; �) = (f; v) 8v 2 V

b(u; �� �) � 0 8� 2 K

�

:

It is easy to hek that (3.12) also has a unique solution (u; �), where u oinides with the

solution of (3.8) and

(3.13) � = 

1

�

�u

1

�n

1

�

j�

= �

2

�

�u

2

�n

2

�

j�

= 

1

�

�u

1

�x

2

�

j�

= 

2

�

�u

2

�x

2

�

j�

:

The existene and uniquenes of the solution of (3.12) an be dedued, for instane, as an

appliation of [10℄, or as a partiular ase of the more general result in [2℄. We note that,

in partiular, by taking � = 0 and then � = 2� in the seond equation of (3.12) we get

(3.14) b(u; �) = 0;

whih will be used later on.
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Remark 3.1. We expliitly point out that the hoie (3.9) for the spae M of Lagrange

multipliers is essential in order to have the well-posedness of (3.12). Indeed this is the

hoie whih ensures that the ontinuous inf-sup ondition holds: there exists a �



> 0

suh that

(3.15) sup

v2V nf0g

b(v; �)

jjvjj

V

� �



jj�jj

M

8� 2M:

Other hoies for M , as for instane M = L

2

(�) used in [15℄, will not satisfy (3.15) and

an result in nonoptimal estimates for the disretized problems.

4. Disretization and abstrat error estimates

If V

h

andM

h

are �nite dimensional subspaes of V and M , respetively, and K

h

a losed

onvex one in M

h

, we an onsider the disrete ounterpart of (3.12):

(4.1)

8

<

:

�nd (u

h

; �

h

) 2 V

h

�K

h

suh that :

a(u

h

; v

h

)� b(v

h

; �

h

) = (f; v

h

) 8v

h

2 V

h

b(u

h

; �

h

� �

h

) � 0 8�

h

2 K

h

:

Existene and uniqueness of the solution of (4.1) follow rather easily, by the arguments in

[10℄, provided we have, for all �

h

2M

h

with �

h

6= 0:

(4.2) sup

v

h

2V

h

nf0g

b(v

h

; �

h

)

jjv

h

jj

V

> 0:

With lassial arguments, assuming that

(4.3) K

h

� K

�

we have then, for u

I

2 V

h

and �

I

2 K

h

:

(4.4)

jju

h

� ujj

2

V

= a(u

h

� u; u

h

� u)

= a(u

h

� u; u

I

� u) + a(u

h

� u; u

h

� u

I

)

= I + b(u

h

� u

I

; �

h

� �)

= I + b(u

h

� u

I

; �

I

� �) + b(u

h

� u

I

; �

h

� �

I

)

= I + II + b(u

h

� u

I

; �

h

� �

I

)

� I + II � b(u

I

; �

h

� �

I

)

= I + II + b(u� u

I

; �

h

� �

I

)� b(u; �

h

� �

I

)

= I + II + III + b(u; �

I

� �

h

)

� I + II + III + b(u; �

I

� �);

where we used the elliptiity of a, additions and subtrations, the �rst equation of (3.12)

ombined with the �rst equation of (4.1), and, in the �fth-to-sixth line, we used the seond

equation of (4.1); �nally, in the last line, we used the (positive) sign of b(u; �

h

), and (3.14).

The piees I and II in (4.4) are then easily estimated by the Cauhy-Shwarz inequality,

trae theorems, and usual interpolation estimates. However, in order to estimate III we
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need an estimate for �

h

� �

I

. For this we need a stronger form of (4.2), that is the usual

inf-sup ondition: there exists a � > 0, independent of h, suh that

(4.5) sup

v

h

2V

h

nf0g

b(v

h

; �

h

)

jjv

h

jj

V

� � jj�

h

jj

M

8�

h

2M

h

:

Using (4.5) we immediately obtain the existene of a w

h

2 V

h

, with jjw

h

jj

V

= 1, suh that

(4.6)

�

2

jj�

I

� �

h

jj � b(w

h

; �

I

� �

h

) = b(w

h

; �

I

� �) + b(w

h

; �� �

h

)

� Cjj�

I

� �jj

M

+ a(u� u

h

; w

h

) � C(jj�

I

� �jj

M

+ jju� u

h

jj

V

);

where, here and in what follows, C is a onstant independent of u and h, possibly having

di�erent values at di�erent ourrenes. From (4.4) and (4.6) we have then easily

(4.7)

jju� u

h

jj

2

V

� Cfjju� u

h

jj

V

jju� u

I

jj

V

+ jju

h

� u

I

jj

V

jj�� �

I

jj

M

+jju� u

I

jj

V

(jj�� �

I

jj

M

+ jju� u

h

jj

V

)g+ b(u; �

I

� �):

Using the triangle inequality jju

I

�u

h

jj

V

� jju

I

�ujj

V

+ jju�u

h

jj

V

we then have from (4.7)

(4.8)

jju� u

h

jj

2

V

� Cfjju� u

h

jj

V

(jju� u

I

jj

V

+ jj�� �

I

jj

M

)

+jju� u

I

jj

V

jj�� �

I

jj

M

g+ b(u; �

I

� �):

As usual, (4.8) an then be ombined with (4.6) in order to have an estimate on jj���

h

jj

M

.

For eah partiular hoie of V

h

, M

h

, and K

h

, the �rst term of (4.8) will then be estimated

by usual interpolation errors, while the last term will be estimated, on a ase by ase

basis, using the available regularity and possibly (3.14). Just to give an idea we point out

that, if �

I

is hosen as the L

2

(�)- projetion of � onto M

h

, then we an de�ne g

M

I

as the

L

2

(�)-projetion of g(u) onto M

h

and obtain

(4.9) b(u; �

I

� �) =

Z

�

(g(u)� g

M

I

)(�

I

� �) dx

1

whih redues the whole estimate (4.8) to a lassial interpolation error.

It is interesting to note that a di�erent estimate an also be derived, assuming that we

an easily obtain a good approximation u

I

of u in K

V

. In this ase, we an use, for u

I

in

K

V

\ V

h

and �

I

2 K

h

, the following estimate

(4.10)

jju

h

� ujj

2

V

= a(u

h

� u; u

h

� u)

= a(u

h

� u; u

I

� u) + a(u

h

� u; u

h

� u

I

)

= I + b(u

h

� u

I

; �

h

� �)

= I + b(u

h

� u

I

; �

I

� �) + b(u

h

� u

I

; �

h

� �

I

)

= I + II + b(u

h

� u

I

; �

h

� �

I

)

� I + II � b(u

I

; �

h

� �

I

)

� I + II + b(u

I

; �

I

)

= I + II + b(u

I

� u; �

I

) + b(u; �

I

� �);
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(having used, to obtain the last line, the positive sign of b(u

I

; �

h

) that was not used in

(4.4)). The estimate (4.10) immediately gives (using again the triangle inequality)

(4.11)

jju� u

h

jj

2

V

� Cfjju� u

h

jj

V

(jju� u

I

jj

V

+ jj�� �

I

jj

M

)

+jju� u

I

jj

V

jj�� �

I

jj

M

g+ b(u

I

� u; �

I

) + b(u; �

I

� �):

It is lear however that (4.11) an only provide an estimate for the error jju�u

h

jj

V

(although

the estimate for jju � u

I

jj

V

is more diÆult now) but the error jj� � �

h

jj

M

annot be

estimated without the inf-sup ondition (4.5). Most importantly, without having at least

(4.2) we annot even ensure the uniqueness of the solution of the disrete problem (4.1).

Considering our next steps of analysis, it is not within the sope of this paper to study

the error estimates, in terms of powers of h and of the regularity of u, that an be obtained

from (4.8) or (4.11). Indeed, the results obtained would also not be appliable for the

solution of the pratial problems we have in mind, whih are muh more ompliated

than our model problem, see setions 1 and 2. Instead, we will fous on the stability of

various possible approximations, and in partiular on the inf-sup ondition (4.5). It is

quite reasonable to expet that the stability results obtained for our simple model problem

will in fat hold for muh more omplex problems, and in partiular the ontat problems

onsidered in setions 1 and 2 .

Hene in the next setion we onsider several possible hoies for V

h

and M

h

, and hek

whether the inf-sup ondition is satis�ed.

5. Examples of stable finite element spaes

Assume now that we are given, for eah i = 1; 2, a deomposition T

i

h

of 


i

. The two

deompositions are not supposed to be idential on �. For eah i = 1; 2 and for eah integer

k � 1 we onsider the spaes

(5.1) V

k

hi

:= fv 2 V

i

; v

jT

2 P

k

(T ) 8T 2 T

hi

g

and then the spae

(5.2) V

k

h

:= V

k

h1

� V

k

h2

where if the supersript k is not given, any k � 1 is onsidered. Finally, we assume that

we are given a deomposition G

h

of �. For any integer s � 0 and r = 0; 1 we onsider the

spae

(5.3) M

r

s

:= f�

h

2 H

r

(�); �

h

jI

2 P

s

8I 2 G

h

g

and the losed onvex one

(5.4) K

r

s

:= f�

h

2 M

r

s

; �

h

� 0 on �g:

In general, we use s = 0 or s = 1. For a larger s, the ondition �

h

� 0 is diÆult to enfore

in a �nite element ode. In these ases, we might just require that �

h

� 0 at the nodes,

but the abstrat estimates of the previous setion must then be adjusted sine ondition

(4.3) will not hold. We also onsider the spae M

r

0;s

and the one K

r

0;s

de�ned as

(5.5) M

r

0;s

= f�

h

2 M

r

s

; �

h

(0) = �

h

(1) = 0g;
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(5.6) K

r

0;s

= f�

h

2 K

r

s

; �

h

(0) = �

h

(1) = 0g:

As we have seen in the last setion, two inequalities are at the basis of the error estimate

(4.8): the elliptiity of the bilinear form a(u; v) { that for our problem is always satis�ed for

every hoie of the disrete spae V

h

{ and the inf-sup ondition { that, on the ontrary, will

heavily depend on the hoies of the spaes V

h

and M

h

. We are going to identify, in what

follows, three families of hoies for whih the inf-sup ondition is satis�ed. The proof,

for eah family, will be based on the so-alled Fortin trik [14℄ realled in the following

theorem.

Theorem 1 Let V and M be Hilbert spaes, and let b be a bilinear ontinuous form on

V �M suh that the ontinuous inf-sup ondition (3.15) is satis�ed. Assume that we are

given a family of subspaes V

h

� V and M

h

� M , where h is a parameter spanning the

interval ℄0; h

0

℄. We assume that, for eah h, we are given a linear operator �

h

from V to

V

h

with the following properties:

(5.7) b(v � �

h

v; �

h

) = 0 8�

h

2M

h

and there exists a onstant C

F

, independent of h, suh that

(5.8) jj�

h

vjj

V

� C

F

jjvjj

V

8v 2 V:

Then the disrete inf-sup ondition

(5.9) sup

v

h

2V

h

nf0g

b(v

h

; �

h

)

jjv

h

jj

V

� �jj�

h

jj

M

8�

h

2M

h

:

holds with � = �



=C

F

. �

The proof an be found in [9, 8, 14℄.

Of ourse, (3.15) holds for our problem. We are now going to onsider partiular hoies

of spaes V

h

and M

h

. It is intuitively lear that, for a given deomposition G

h

of �, the

worst possible senario is obtained when the two deompositions T

h1

and T

h2

, restrited

to �, oinide. This indeed minimizes the dimension of the spae spanned by all possible

di�erenes between v

h1

and v

h2

on �. If our aim is to prove the inf-sup ondition, it is

lear that a suÆient ondition would be to have it satis�ed when the supremum in (5.9)

is just taken only on the pairs v

h

= (0; v

h2

). On the other hand, if the two spaes (V

h1

)

j�

and (V

h2

)

j�

oinide, there is no gain in taking the supremum on all v

h

's rather than just

on the ones of the type (0; v

h2

). Hene the ondition

(5.10) sup

v

h

2V

h2

nf0g

R

�

v

h

�

h

dx

1

jjv

h

jj

V

2

� �jj�

h

jj

M

8�

h

2M

h

:

is always suÆient for having (5.9), and beomes neessary when (V

h1

)

j�

and (V

h2

)

j�

oin-

ide. In what follows, we are therefore going to see whether a given hoie of the spaes

V

h

and M

h

satis�es (5.10). The following lemma is an immediate onsequene of Theorem

1 and of the above disussion.
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Lemma 1 Assume that the ontinuous version of (5.10) holds, namely, there exists a

�



> 0 suh that

(5.11) sup

v2V

2

nf0g

R

�

v �dx

1

jjvjj

V

2

� �



jj�jj

M

8� 2M:

Assume moreover that for eah h 2℄0; h

0

℄ there exists a linear operator �

h

from V

2

into

V

k

h2

satisfying

(5.12)

Z

�

(v � �

h

v)�

h

dx

1

= 0 8�

h

2M

h

;

and there exists a onstant C

F

, independent of h suh that

(5.13) jj�

h

vjj

V

2

� C

F

jjvjj

V

2

8v 2 V

2

:

Then (5.10) holds, and therefore (4.5) also holds. �

To avoid tehnialities, we assume that the deomposition ast on � by T

h2

oinides

with G

h

. This is a rather partiular ase, but not unrealisti. Finally, always in order to

simplify the exposition, we assume that the deomposition T

h2

is quasi-uniform. Under

this assumption it is rather easy to hek (see e.g. [19℄) that for every v

h

2 V

k

h2

we an �nd

a ~v

h

2 V

k

h2

suh that

(5.14) ~v

h

= v

h

on �;

and

(5.15) jj~v

h

jj

V

2

� C jjv

h

jj

H

1=2

00

(�)

:

Under the above assumptions on the deompositions we have therefore the following

theorem.

Theorem 2 Let W

h

be the spae of the traes of V

k

h2

on �, and assume that we are given,

for eah h, an operator �

h

from H

1=2

00

(�) into W

h

with the following properties:

(5.16)

Z

�

(w � �

h

w)�

h

dx

1

= 0 8�

h

2M

h

;

(5.17) jj�

h

wjj

H

1=2

00

(�)

� C

�

jjwjj

H

1=2

00

(�)

8w 2 H

1=2

00

(�);

where C

�

is a onstant independent of h and v. Then an operator �

h

satisfying (5.12) and

(5.13) exists (and hene the inf-sup ondition (5.10) holds.) �

Proof. Given v 2 V

2

we onsider w := v

j�

and w

h

:= �

h

w. We then lift w

h

, in an arbitrary

way, to an element v

h

2 V

k

h2

suh that v

h

= w

h

on �. Then we de�ne �

h

v as ev

h

. Using

properties (5.14) and (5.16) we immediately get (5.12). Then (5.17) and (5.15) easily give

(5.13). �

Remark 5.1. It is quite intuitive that the disrete inf-sup ondition (5.10) should depend

only on the spae M

h

and on the spae W

h

of the traes of funtions in V

h2

, even if norms

over 


2

are involved. The role of Theorem 2 is indeed to redue the proof of (5.10) to a

property (the existene of a suitable �

h

) that depends only on M

h

and W

h

.
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In what follows we will keep V

h

= V

k

h

�xed, and we onsider three possible hoies for

the orresponding M

h

. We notie that, with the above hoie for V

h

, the spae of traes

W

h

will also be �xed, equal to

(5.18) W

h

= fw

h

2 C

0

([0; 1℄; suh that w

h

jI

2 P

k

8I 2 G

h

; and w

h

(0) = w

h

(1) = 0g:

The �rst hoie orresponds to having as spae of multipliers the same spae that is spanned

by the traes of V

h

(inluding the zero boundary onditions at the endpoints of �).

Theorem 3 Assume that V

h

:= V

k

h

and M

h

:= M

1

0;k

. Then an operator �

h

satisfying

(5.16) and (5.17) exists (and hene the inf-sup ondition is satis�ed.) �

Proof. We note that, in this ase, we have W

h

= M

h

. Then we an de�ne �

h

w as the

L

2

(�)-projetion of w on W

h

= M

h

. Property (5.16) is learly veri�ed. It is also obvious

that

(5.19) jj�

h

wjj

L

2

(�)

� jjwjj

L

2

(�)

8w 2 L

2

(�):

By usual approximation properties we also have

(5.20) jj�

h

w � wjj

L

2

(�)

� C h jjwjj

H

1

0

(�)

8w 2 H

1

0

(�):

From the inverse inequality, the triangle inequality, and usual interpolation estimates we

then have

(5.21)

jj�

h

w � w

I

jj

H

1

0

(�)

� C h

�1

jj�

h

w � w

I

jj

L

2

(�)

� C h

�1

(jj�

h

w � wjj

L

2

(�)

+ jjw � w

I

jj

L

2

(�)

)

� C jjwjj

H

1

0

(�)

8w 2 H

1

0

(�);

where w

I

is the usual interpolant of w.

From (5.21) we immediately obtain

(5.22) jj�

h

wjj

H

1

0

(�)

� jj�

h

w � w

I

jj

H

1

0

(�)

+ jjw

I

jj

H

1

0

(�)

� C jjwjj

H

1

0

(�)

8w 2 H

1

0

(�):

Interpolating between (5.19) and (5.22) we obtain (5.17). �

Remark 5.2. It is very easy to see that, taking a spae of multipliers made of ontinuous

pieewise P

k

funtions that do not vanish at the endpoints, the inf-sup ondition will not

hold. Indeed, the number of degrees of freedom for the spae M

h

of multipliers would be, in

the ase of N intervals, equal to N � k+ 1, whih is bigger than N � k� 1, the dimension

of W

h

. Hene the inf-sup ondition annot hold.

Before proeeding, we selet a useful property that omes out immediately from the

proof of Theorem 3.

Lemma 2 If G

h

is quasi-uniform, then there exists a linear operator �

1

h

from H

1=2

00

(�) into

the spae of pieewise linear funtions on G

h

, and two onstants C

1

and C

1

, independent

of h, suh that

(5.23) jj�

1

h

wjj

r;�

� C

1

kjwjj

r;�

r = 0; 1;

and

(5.24) jj�

1

h

w � wjj

0;�

� C

1

h jjwjj

1;�

8w 2 H

1

0

(�): �
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The proof, as we said, is a byprodut of the proof of Theorem 3, by taking k = 1. �

We shall onsider in a while two other possible hoies of �nite element spaes. For

them, the onstrution of the operator �

h

is made in two steps (see for instane [9℄). The

strategy is to use the operator �

1

h

of Lemma 2, and look for another operator �

2

h

with the

properties

(5.25)

Z

�

(�

2

h

w � w)�

h

dx

1

= 0 8�

h

2M

h

;

and

(5.26) jj�

2

h

wjj

t;�

� C

2

h

�t

jjwjj

0;�

t = 0; 1;

and then to de�ne �

h

as

(5.27) �

h

:= �

1

h

� �

2

h

(�

1

h

� I):

It is then lear that from (5.27) and (5.25) we have

(5.28)

R

�

(�

h

w � w)�

h

dx

1

=

R

�

(�

1

h

w � �

2

h

(�

1

h

� I)w � w)�

h

dx

1

=

R

�

((�

1

h

w � w)� �

2

h

(�

1

h

w � w))�

h

dx

1

= 0;

for all �

h

2 M

h

, that is (5.16); moreover, using (5.27), then (5.23) with r = 0, and �nally

(5.26) with t = 0 we have, for all w 2 L

2

(�):

(5.29) jj�

h

wjj

0;�

� C

1

jjwjj

0;�

+ C

2

jj�

1

h

w � wjj

0;�

� (C

1

+ C

2

(1 + C

1

)) jjwjj

0;�

:

On the other hand, using (5.27), then (5.23) with r = 1, then (5.26) with t = 1, and �nally

(5.24) we obtain, for all w 2 H

1

0

(�):

(5.30) jj�

h

wjj

1;�

� C

1

jjwjj

1;�

+ C

2

h

�1

jj�

1

h

w � wjj

0;�

� (C

1

+ C

2

C

1

) jjwjj

1;�

:

Equations (5.29) and (5.30) then easily imply, by interpolation,

(5.31) jj�

h

wjj

H

1=2

00

(�)

� C jjwjj

H

1=2

00

(�)

that is (5.17).

We summarize the above results in the following lemma.

Lemma 3 Let W

h

be the spae of traes of V

2

h

, and let the deomposition T

2

h

be quasi-

uniform. Assume that we an onstrut an operator �

2

h

, from H

1=2

00

(�) into W

h

, with the

properties (5.25) and (5.26); then the inf-sup ondition (5.10) is satis�ed (and hene (4.5)

also holds). �

Proof. The proof follows from the above onstrution of �

h

and Theorem 2. �

Remark 5.3. The role of Lemma 3, as we shall see, is to redue the veri�ation of the

assumptions of Theorem 2 (and hene the proof of the inf-sup ondition) to the onstrution

of a loal operator �

2

h

. This was not possible for the �rst hoie of multipliers (onsidered

in Theorem 3), but will be possible for the next two hoies.
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We now ontinue with our study of the di�erent hoies of spaes. The seond ase that

we onsider orresponds to using a spae of multipliers whih are disontinuous and have

loal degree k � 2, with k � 2, if k is the loal degree of V

h

. This is disussed in the

following theorem.

Theorem 4 Assume that V

h

:= V

k

h

with k � 2, and M

h

:= M

0

k�2

. Then an operator

�

2

h

satisfying (5.25) and (5.26) exists (and hene the inf-sup ondition holds by Lemma 3).

�

Proof. To onstrut �

2

h

we an easily proeed with an element by element (atually,

interval by interval) argument. For eah I 2 G

h

and for eah w in, say, L

2

(�) we de�ne

�

2

h

w as the polynomial of degree k (in I), vanishing at the endpoints of I, and satisfying

(5.32)

Z

I

(�

2

h

w � w)p

k�2

dx

1

= 0 8p

k�2

2 P

k�2

:

It is rather easy to hek that properties (5.25) and (5.26) hold true. �

Remark 5.4. It is easy to see that, by taking M

h

to be the spae of disontinuous piee-

wise P

k�1

funtions, the inf-sup ondition will not hold. Indeed, as in Remark 5.2, the

dimensional ount gives N � k as dimension of M

h

, while W

h

has dimension N � k � 1.

The third ase that we onsider orresponds to using a spae of multipliers whih are

ontinuous, do not neessarily vanish at the endpoints of �, and have loally one degree less

than the degree used in V

h

. Comparing with our �rst ase, we see that here (for the same

V

h

) the spae for Lagrange multipliers has, in general, a muh smaller dimension. Indeed,

with the same notation of Remarks 5.2 and 5.4, the dimension of M

h

is N � k � 1 for the

�rst ase, and N � (k � 1) + 1 for this last ase. In view of the previous result (that the

inf-sup ondition holds for ase 1) we expet ase 3, reasonably, to work as well. However,

the new spae of multipliers is not a subspae of the previous one, and an independent

proof is therefore neessary. Consider the following theorem.

Theorem 5 Assume that V

h

:= V

k

h

with k � 2, and M

h

:= M

1

k�1

. Then an operator �

2

h

satisfying (5.25) and (5.26) exists (and hene the inf-sup ondition holds by Lemma 3).

�

Proof. To de�ne �

2

h

we shall use a maro-element tehnique. In order to avoid the

tehnialities related with the use of maro-elements, we shall detail the proof only in the

ase when the mesh on � has an even number of intervals. It should be lear however

that the result holds in general. Having an even number of elements, we an take non-

overlapping maro-elements J made of pairs of adjaent elements. In the usual appliation

of the maro-element tehnique (see [9℄ or [18℄) the maro-elements overlap. Our ase is

simpler. In eah maroelement J , and for eah w, say, in L

2

(�), we ontrut �

2

h

as the

element of W

h

having support in J and suh that

(5.33)

Z

J

(w � �

2

h

w)p

k�1

dx

1

= 0;

for all p

k�1

ontinuous on J and polynomial of degree � k�1 in eah of the two elements I

of G

h

ontained in J . The system (5.33) has 2k�1 unknowns (the dimension of ontinuous
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loally P

k

funtions, on a mesh of two elements, vanishing at the endpoints) and 2k � 1

equations (the dimension of ontinuos loally P

k�1

funtions, on a mesh of two elements,

with no onditions at the endpoints). It is easy to hek that (5.33) has a unique solution,

and that (5.25) and (5.26) hold true. �

Remark 5.5. The analysis of the previous three ases, together with Remarks 5.2 and 5.4,

an often help in deiding whether other possible hoies are viable or not. For instane,

it is obvious that if we start from a ase where the inf-sup ondition holds and we inrease

W

h

or derease M

h

, then the inf-sup ondition will still hold. On the other hand, if we start

from a ase where the inf-sup ondition does not hold, and we derease W

h

or we inrease

M

h

then the inf-sup ondition will still fail to hold.

6. Conlusions

We have onsidered the solution of general ontat problems for whih a mixed �nite

element interpolation is used. The solution approah involves a Lagrange multiplier to

interpolate the unknown normal ontat trations ( in addition to the usual interpolations

of the displaements for the bodies ). The mixed formulation needs to satisfy stability

requirements and the objetive of this paper was to give insight into these requirements

and give spei� results as to what Lagrange multiplier interpolation is appropriate, and

e�fetive, with a spei� displaement interpolation.

While these results were derived by onsidering a simple model problem ( in order to

avoid ertain tehnialities ), valuable insight was gained and there is no reason why the

results should not be generally appliable. The analytial results reported in the paper

on�rm also earlier obtained onlusions based on numerial tests [1℄.
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