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Abstract

The stability and convergence properties of the mimetic finite difference médtnod
diffusion-type problems on polyhedral meshes are analyzed. The ogiimetrgence rates
for the scalar and vector variables in the mixed formulation of the problepraved.

1 Introduction

The main goal of this paper is to establish the convergenoeroktic discretizationsf the first-
order system that describes linear stationary diffusiogemeral polyhedral meshes. The main
idea of the mimetic finite difference (MFD) method is to mirthe underlying properties of the
original continuum differential operators, e.g. conséoralaws, solution symmetries, and the
fundamental identities and theorems of vector and tendoulcs. For the linear diffusion prob-
lem, this means that the mimetic discretizations mimic tlai€3 divergence theorem needed
for the local mass conservation, the symmetry between thenzmus gradient and divergence
operators needed for proving symmetry and positivity ofrésilting discrete operator, and the
null spaces of the involved operators needed for stabifith@ discretizations.

The MFD method has been successfully employed for solvinglpms of continuum me-
chanics [18], electromagnetics [13], gas dynamics [7], lmehr diffusion on simplicial and
guadrilateral meshes in both the Cartesian and polar caaetirj14, 12, 19, 16]. Recent ad-
vances in extending the mimetic discretizations to genmbigonal meshes [15] have inspired
us for developing the rigorous convergence theory for gdipeygonal and polyhedral meshes.

The polyhedral element appear naturally in reservoir meosiehulating thinning or tapering
out ("pinching out”) of geological layers. The pinch-outs anodelled with mixed types of mesh
elements, pentahedrons, prisms and tetrahedrons whidnegreently obtained by collapsing
some of the elements in a structured hexahedral or prismmeztst.

Other sources of polyhedral meshes are the adaptive mesamafnt methods. A necessity
to have a conformal mesh results in an abundant mesh refitemgn in the methods using
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the red-green refinement strategy. However, the locallpedfimesh may be considered as the
conformal polyhedral mesh with degenerate elements (&tainte, when the angle between two
faces is zero). If we know how to discretize a problem on a germolyhedral mesh, the su-
perfluous mesh refinements can be avoided. A similar argucaerbe applied to non-matching
meshes which frequently may be treated as conformal potgheteshes with degenerate ele-
ments. This is the way followed for instance in [15] for 2D ines.

Allowing arbitrary shape for a mesh element provides grefiggibility in the mesh gener-
ation process, especially in the regions where the geonseéytremely complex. Even in the
case of an unstructured hexahedral mesh, it may be benafigplit the curvilinear faces into
triangles in order to use more accurate discretization austfand to get a smaller number of
unknowns relative to a tetrahedral partition. It is obvithes by splitting each face of a hexagon
into 4 triangles we get a 24-face polyhedron which is frediyaron-convex.

Some of the simulations in the fluid dynamics indicate thatgblyhedral meshes may lead
to superior convergence rates and accuracy relative ahtedral meshes. We refer readers to the
CD adapco Group webcite [www.cd-adapco.com/news/18/newisin] for more detail. The
polyhedral meshes are also used in a number of radiatioretlydamics applications [20, 21,
6]. For instance, one of the approaches to increase rolasstii@rbitrary Lagrangian-Eulerian
simulations is to allow a change of the mesh connectivityclwlobviously leads to general
polyhedral meshes.

The diffusion-type (elliptic) problems appear in many agggions, for instance the tempera-
ture equation in heat diffusion or the pressure equatiorom firoblems. The necessity to solve
such problems arises in numerical methods for radiatiorsfrart coupled with hydrodynamics,
mesh smoothing algorithms, etc. In this paper we considéfusibn problem formulated as a
system of two first order equations, which is suitable forieg locally conservative discretiza-
tions.

The mimetic discretizations have demonstrated excelt@mnistness and accuracy in simu-
lations; however, a rigorous convergence proof has beeayalVacking. The original approach
to prove the convergence of these discretizations has besadlon establishing the relation-
ship between the MFD and mixed finite element methods [2, 3¢hvis certainly not enough
for many interesting applications. In this paper, we dgvetba novel technique for proving
convergence estimates which may be applied to the case tiesesnsisting of arbitrary types
of elements e.g., tetrahedrons, pyramids, hexahedrogendeate polyhedrons, etc. The re-
strictions imposed in Section 2 on the polyhedron shapevaitdl extremely complex elements
which cover certainly the majority of meshes used in appbos.

The paper contents is as follows. In Section 2, we describeitbblem under consideration
and the class of polyhedral meshes used in the convergeabysian In Section 3, we formulate
the mimetic finite difference method. In Section 4, we prdve stability result. In Section
5, we prove the convergence of mimetic discretizations. @frtbe key elements used in our
technique, the lift property, is discussed in detail in Apgie A.



2 The assumptions on the problem and on the mesh
Let us consider a model elliptic boundary value problem:

divF =b (2.1)
F = —K grad p. (2.2)

Herep denotes a scalar function that we refer to as the presButenotes a vector function that
we refer to as the velocity denotes a full symmetric tensor, ahdenotes a source function.
The problem is posed in a bounded polyhedral donfaia IR?, and is subject to appropriate
boundary conditions o). For simplicity, we assume that the homogeneous Dirictdanidary
conditions are imposed o). We assume also th& satisfies the following regularity and
ellipticity property.

P1 (Regularity and ellipticity ofK). Every component oK is in W' (Q) andK is strongly
elliptic, implying that there exist two constants andx* such that

e[V < VIK(x) v < 5|V VveR® VxeQ. (2.3)

Let 7;, be a non-overlapping conformal partitionffinto polyhedral elements. For every
elementE we denote by E| its volume and by: its diameter. Similarly, for each facewe
denote byje| its area and for every eddeve denote by/| its length. We shall us@F either for
the boundary of or the union of element faces, according with convenientleepresentation.
We also set as usual

h =sup hg.
E

The elementd” are assumed to be closed simply-connected polyhedrohgr rgéneral in
shape (see for instance Figure 2). We need however somedsasimptions of shape regularity.
As we shall see, the assumptions are sometimes formally lazatgr, but they will hold for
practically all partitions which is not totally unreasotab

M1 (Assumptions on the domain). We assume tha® is a polyhedron with a Lipschitz
continuous boundary.

M2 (Number of faces and edges)Ve assume that we have two positive integ&rsand NV,
such that every elemefit has at mostV, faces, and each faeehas at mostV, edges.

M3 (Volumes, areas, and lengthd)/e assume that there exist three positive constantis,
and/, (for volume, area and length, respectively) such that ferygelement we have

Vs h% < |E|, a. h2E < le|, lLhg<|{ (2.4)
for all facese and edgesg of £.

M4  (Star-shaped facgsWe assume that the mesh faces are flat and that there epist#tise
number~, such that: For each elemehtand for each face € OF there exists a point
M, € e such thatk is star-shaped with respect to every point in the disk oferel, and
radiusy,hg.



M5

M6

3

We recall that is star-shaped with respect to a poidte ¢ if every straight ray exiting
from P (in the plane ok) intersect)e only once. In what follows we shall often use the
notation

which is illustrated in Fig. 1.

Figure 1: A star-shaped face, with the circle of ragiugentered af//..

(The pyramid property)With the notation of assumptidi4, we further assume that for
everyE € 7, and for every € JF, there exists a pyramiff’s, contained inF such that
its base equals te its height equals to, hr and the projection of its vertex ontas M..

(Star-shaped elementsjVe assume that there exists a positive numbesuch that: For
each element’ there exists a point/r € FE such thatF is star-shaped with respect to
every point in the sphere of centéf; and radiusr, hg.

As before, we say that is star-shaped with respect to a palhe F if every straight ray
exiting from P intersect$)E only once.

Mimetic finite difference method

Let us introduce an operatgr, G p = —Kgrad p, which we refer to as the flux operator. Fur-
thermore, we introduce the following scalar products:

and

(F, G)x :/QF-KlGdV (3.1)

(p, 9)q = /qudV (3.2)
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in the spaceX of velocities and in the spad@ of pressures, respectively. Using the above
notation, we may rewrite the Green formula

/F-(Klgp) dV:/pdideV (3.3)
Q Q

in the equivalent form:
(F, Gp)x = (p, divF)g.
The last expression clearly states that the flux and divesyeperators are adjoint to each other:

g =div".

The mimetic finite difference (MFD) method produces diseegions of these operators which
are adjoint to each other with respect to scalar productbendiscrete velocity and pressure
spaces.

Thefirst step of the MFD method is to specify the degrees of freedomligsical variables
p andF and their location.

We consider the spacg’ of discrete pressures that are constant on each polyhétirbor
q € Q¢ we shall denote by (or by (q)g) its (constant) value or. The dimensionV, of
Q? will obviously equal the number of polyhedronsdp. In what follows, we shall denote by
Q? either the vector spad®”e or the space of piecewise constant functions, accordinly wit
convenience. The identification is obvious and no confustoould arise.

The definition of the space of discrete velocities will regisome additional considerations.
To every elemenk in 7;, and to every face of £ we associate a numbeék, and the vector field
F§ n% wheren$, is the unit normal te that points outside of. We clearly make theontinuity
assumption that for each faeeshared by two polyhedra; and E,, we have

Fgl = _Fl%z' (34)

We denote the vector space of face-based velocity unknown$? The numberVy of our
discrete velocity unknowns will then, in our theory, be dgoahe number of boundary faces
plustwice the number of internal faces. In our theoretical discussisshall consideX ¢ as
the subspace dRx which verifies (3.4).

For a discrete velocity fieldx we will denote byG its restriction to the boundary df,
and byGS$ (or by (Gg)¢) the restriction ofG - ng to a facee belonging to the boundary df.
It will sometimes be convenient to use the notation

X¢ .= {restrictions ofX ¢ to the elemenf’ }. (3.5)

It is clear that, in practice, condition (3.4) will make thember oftrue independent un-
knownsequal the total number of mesh faces. This means that, in au@mprogram, we shall
prescribe one direction for the normal to each internal fa@ad assign a single unknow#f to
each face, assuming that each of the @#jpcoincides either witltz* (when the outward normal
ng one coincides with the prescribed direction) or wittG¢ (otherwise).

To summarize, one pressure unknown is defined on each paotyhadd the discrete veloc-
ities are defined as face-based normal components. Oncetwleegiegrees of freedom @<
and inX“, we can define interpolation operators from the spaces obtmenough scalar and
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Figure 2: Two possible elements and the normal to their faces

vector-valued functions to the discrete spa@ésand X ¢, respectively. To every function q in
L'(92) we associate the elemedt € Q¢ defined by

1
@) = / ¢dV  VEET. (3.6)
F

Similarly, for every vector-valued functio@ € (L,(2))3, s > 2, with div G € L*(Q), we
defineG’! € X4 by

1
(Gg)ezzm/G-nEdS VEcT, VecE. (3.7)

In the next section, we shall prove that this interpolatiperator is well defined and uni-
formly bounded. In what follows, we shall use bold capitétides either for vectors fronX < or
for continuous vector functions, according with conveognf the presentation and leaving no
room for confusion.

Thesecondstep of the MFD method is to equip the spaces of discreteymesand velocities
with scalar products. The scalar product on the vector s@dds given by

[, dlg:= Y _ peqelE|  Vp,qe@” (3.8)

EeTy,

In order to define the scalar productiif, we first define a scalar produ®, G] for every
elementt’ € 7, in the following way. Letk;, es, ..., e;,, be a numbering of the faces Bf(where
kg is clearly the total number of faces). We assume that we asndior each”) a symmetric
positive definiteky x kg matrix My = {Mg, ;}, and we set

kg
[F, Glp = > Mg,;(Fp)*(Gg)¥ VF,GeX! VE€T, (3.9)
ij=1

Some minimal approximation properties for the scalar pco@8.9) are required. We shall
see in a while how a suitable matri{z can be constructed. For the time being, we asgume
that the scalar product (3.9) has the following property.

S1 (Stability of[-, -]g). We assume that there exist two constantand.S* independent of
such that, for evergs € X< and for everyE € 7, one has

s. ) (Gp)’|BI< [G, Glp <57 ) (G)*|El. (3.10)

ecOE ecOE



From (3.9) we can then easily construct the scalar produgtiiby setting

[F, Glxa= > [F,G]z VF GeX" (3.11)
EeTy,

Thethird step of the MFD method is to derive an approximation to thermjgnce operator.
The discrete divergence operatb V¢ : X4 — ¢, naturally arises from the Gauss divergence
theorem as

(DIV F), % S Flel (3.12)
ecOFE
We point out that our interpolation operators, in some sec@@mutewith the divergence op-
erator. Indeed, for every vector field smooth enough, we can use (3.12), (3.7), the Gauss
divergence theorem, and (3.6) to obtain

(DIVIGh), = L > (GE) e = L/G ‘npdS = i/div(;dv = (divG),
2] 5 5]/ 2 )

(3.13)
for every element in 7,.

Thefourth step of the MFD method is to define the discrete flux opergtor,Q? — X9, as
the adjoint to the discrete divergence operal£)? , with respect to scalar products (3.8) and
(3.11), i.e.

[F, G plxe = [p, DIV* Flpe  VpeQ? VFe X (3.14)
Using the discrete flux and divergence operators, the aootis problem (2.1), (2.2) is dis-
cretized as follows:

DIVIF,=b (3.15)
Fy=G"pa. (3.16)

whereb = b’ is the vector of mean values of the source function

4 Stability analysis

In this section we analyze the stability of mimetic finitefelience discretization (3.15)-(3.16)
using the well-established methodology [5]. More pregisek prove the coercivity condition
(4.4) and the inf-sup condition (4.5).

Using the discrete Green formula (3.14), we rewrite equat(®@.15), (3.16) in a form more
suitable for the analysis:

[Fa, Glx¢ — [pa, DIV Gl =0 VG e X4 (4.1)
[DIVFy4, dlgs = [b, dlge Vqe Qs (4.2)

Let us introduce the following mesh norms on discrete spaceandQ?:

1Ipllgs == [P, Ploa,  [[[FIl%s := [F, Flxa



and
1E (15, = [Flxe + Y b IDIVIF|Z, . (4.3)
EeT,

Let V¢ be the space of divergence-free discrete fluxes:
Vi={Fe X?: DIV'F=0}.

We begin the stability analysis by noticing that the scafadpct (3.11) is continuous. Itis
also obvious that the scalar product satisfiesltheellipticity condition:

[F, Flxa > [[|F|llG,  VFeV™ (4.4)

The analysis of the inf-sup condition is more involved. Baiing [5], for everyq € Q?, we
have to find a vecto& € X< such that

DIV G dlgs = A1l llal s (4.5)

wheref, is a constant independent@f G, and7,,. Let us denote by" € L,(Q) the piecewise
constant function off;, with values given by the entries of the vectp(so that(¢")! = q). Itis

obvious that|q"||1,«) = ||/|al||o«. Let us consider the homogeneous Dirichlet boundary value
problem
AYp=4¢" in Q.
Sincef2 has a Lipschitz-continuous boundary, there exist an2 and a constant’;, such that
I llwie < C4lld" | ra@- (4.6)

LetH = V7, so that we have immediately

divH = ¢", (4.7)
and from (4.6)
1/2
IH| (.02 + (Z h HdivHH%Q(E>> < (G + Wl¢" | Lo (4.8)
EET,
We set now
G:=H' = (W) (4.9)

where the interpolation operator is still the one defined3uT), Thanks to the commutative
property (3.13) and to (4.7), we have

DIV G = (") = q. (4.10)
Thus, inequality (4.5) is reduced to
lalllge > BllIGI|aiv- (4.11)

At this point we need the technical lemma announced in theque section.
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Lemma 4.1 Under the assumptiongl1-M6 and S1, for everys > 2 there exists a constant
B% > 0 such that

16l < B {HGH(Ls(m)S H(m Hdiveuim)m} @12)
E€T;,
for everyG € (L,(9))? with div G € Ly(92), and whereG! is defined in (3.7).
Proof. From (3.13) we immediately have

IDZV G| g = [I|(div Gl gs = [|div G|z, 0)- (4.13)

Therefore, in view of (4.3), it is sufficient to prove that teexists a constaufﬁ;: such that

— ) 1/2
G |lxe < 52 {HGH(LSm))S + (X2 hElldiv Gl ) } . (4.14)
E€Ty

The desired result (4.12) follows from (4.14) withi = BE + 1. In the following discussion we
shall make a wide use of the conjugate exponedépending on through the usual formula

-+ -=1 (4.15)
Assumption (3.10) implies clearly that

[G' Gy <8 Y |E] D (GR)% (4.16)

EETh ecOE

so that we have to estimate tK€%)’s in terms of G, or, rather, in terms of the norm &k
appearing in (4.12). Our basic instrument for that is catlhedift property. The main difficulty,
in the various cases, will be to prove that the lift propemyds true.

LP (Lift Property). For everyt < 2 there exists a constalt® = A\*(¢) such that: For every
E € T, and for every € JF there exists a functiop?, from £ to IR that verifies

0y =1 on e, 0y =0 on OF\e, (4.17)

and
leSlram < NS IVEs | mamys < AR (4.18)

The lift propertyLP is proved in Appendix A.
Up to an approximation o&x by smooth functions, and passage to the limit, we have, using
(3.7), (4.17), and the Green formula:

1

el Jor
1 1 .

= —/G-Vgp%dV—i——/cp%dldeV.
el /& lel J

9

1
G%:H/GnEdS gOeEGI’lEdS

(4.19)



Using the Hblder inequality and (4.18) in (4.19), we have then

€] G < NGllrum Vel rap) + |div Gl ) (|05 2k
< AN H{(e) MGy + (he)*? [|div G| r2s) } -

Taking the squares and remembering flaat- b)? < 2(a® + b*), we have

e (G%)* < 2N {(he) |GI2 ) + (he)? [|div Gl[F2s) }- (4.20)
On the other hand, using conditions (2.4), we easily obtain
|E| < hip = hg' (hg)* < hg' (@) ?lel”. (4.21)

We can now join (4.21) with (4.20) and deduce that
[E|(GR)? < hg' (@) 2le* (GR)?
s 6/t—3 2 21143 2 (4'22)
< o { () YIGIR ) + (h)? lldiv Gl B}

wheres* = 2(\*)?(a*)"2 Now we can sum (4.22) over all facesf £ and then over all
elementsy of 7;,. We use (4.16) and Assumptidh2 on the number of faces per element to get

NG5 < NeS*o {Z(hE)ﬁ/t‘gHGH%S(E) + > Hdileliz(E)}

EeTy, EeT;,
v 1/r s 2/s
< NS0t {( > 1) =) (D G (4.23)
EeTy, EeTy,
+> h%HdivGH%z(E)}
EeT,
where in the last step we applied thélHer inequality withr, the conjugate exponent ef2,
1 2
-+ -=1 (4.24)
T S
A simple algebraic manipulation using (4.15) and (4.24ggithen
D Ahe) Yy =3 g <ot (4.25)
EeTy, EeTy,

where we have also used (2.4) in the last step. Inserting§)o (4.23), we finally get
— ) 1/2
IG lxe < B {HGH(LSW + (3 mldivGIE, ) } 7 (4.26)
EeT,
Where@; depends only on*(¢), v, a, and N,. This proves the assertion of the lemma. ¢
Collecting (4.9) and (4.12), we get

. 1/2
Gt = 1o < 5 {HHH(W (X0 nh v H, ) } ~
EeTy,

This, together with (4.8), implies (4.11) with, = (3* (C5 + h)) ™.
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5 Convergence analysis

5.1 Consistency assumption

In order to prove error estimates, we need some assumptiotieecscalar product (3.11), and
more precisely on the relationships between the continsoalsr product (3.1) and its discrete
counterpart (3.11). Our basic assumption will be the follmpone.

S2 (Consistency of, |g). For every element, every linear function;' on E and every
G € X4, we have

(KVq"), Glp = / ¢ GponpdS — / ¢ (DIV'G)pdV (5.1)
oF E

where(-)! is the interpolation operator (3.7) aidlis a constant tensor afi such that

supsup [{K(x)}i; — {K}i,| < Cx he (5.2)

z€E i,j

whereC'}; is a constant independent bt

Note thatK may be any reasonable piecewise constant approximatikh tf practice, we
use either the value & at the polyhedron mass center or its mean value.

Condition (5.1) is rather new and requires some commentst, e point out that we shall
need it to hold only for vector&: € V<. For divergence-free vectors (5.1) reads

[(KVq')', Glp = / ¢' Gg -ngdS, (5.3)
O

showing the remarkable property of using oblgundary integrals However, asDZV? G is
constant in eacly and¢' is supposed to be linear, the volume integral appearing.in) (5
not difficult to compute. Takingx = (f{ Va')! (with ¢ another polynomial of degre€ 1) in
(5.3), we conclude that assumpti8&implies thatthe scalar product (3.11) is exact for constant
velocities and constant tensors

In the context of the local mimetic finite difference methd@], condition (5.1) means that
the discrete gradient operator is exact for linear fundidrhis property has been used in [17] to
build a one-parameter family of symmetric positive definit&trices)M g for a triangle. As a par-
ticular case, the family includes the mass matrix appearirge finite element discretizations
with the Raviart-Thomas finite elements.

What is still remarkable in (5.1) is thé@tdoes not require the construction of a lifting oper-
ator from the valueg=$, on OF to the interior ofE. It is not difficult to show, however, that
we have any reasonable lifting operaf®g, then the choice

[F, Glp = /EK1RE(FE) - Rp(Gg)dV

will automatically satisfy (5.1) as well as (3.10). We handeed the following proposition.
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Theorem 5.1 Assume that for every elemefitc 7, we have a lifting operatoRz acting on
X4 (the restriction ofX? to £) and with values ifL,(F))? such that

RE(GE)I’IE = Gpg-ng on OF (5 4)
div Rp(Gg) = (DIV'G)p in E '
forall G € X?, and
Ry(GL) =G (5.5)
for all G constant onZ. Then the choices
_ 1
1E] JE
and
FE

will automatically satisfy (5.2) and (5.1). If moreover thegxist two constants;, and C7,,
independent of/, such that

1/2 1/2
ch (|E| Z(G%)Q) < | Re(G)l(Ly(mye < Ch <|E| Z(G%)Z) (5.8)
eCOF ecOFE

for all G € X4, then (3.10) will also hold with constants and S* depending only on%, C%
and on the constants,, ~* from (2.3).

Proof. The validity of (5.2) is immediate. The validity of (5.1) itsa easily checked:

(KV¢), Gl :/K‘lRE((KVql){E)-RE(GE) % (use (5.5) and/q'=cons}
E
= / K 'K V¢ - Rg(Gp)dV (useK'K = Id)
E
= / V¢ - Rp(Gg)dV (integrate by parts
E

= / ql RE(GE) ‘ngdS — / ql leRE(GE) dVv (Use (54)
OF E

= / ¢ Gg -ngdS — / ¢" (DIV'G)gdV.
[2) ) E
Finally, (3.10) follows immediately from (5.7), (2.3) ansl ) after noting that (2.3) is equivalent
to
() VI? < VIKT (x)v < (k)7 YV VvelR? vxeQ. (5.9)

This ends the proof of the theorem. o

A possible way of getting (5.1) is therefore to constructtanly operatorR? i satisfying (5.4),
(5.5), and (5.8), and then defidé following (5.7). For instance, the way followed in [15] for
polygonal domains can be interpreted as the constructi@lifing operator satisfying (5.4)
and (5.5).

12



In general, we may consider assumption (5.1) as a systenmedrliequations where the
unknowns are the coefficients df;, and use it, in each elemeht to construct the matriX/z.
Since the matrix{/x should be symmetric and positive definite, this is a probleth monlinear
constraints. An analytical solution has been found onlytriangular elements [17].

Let us see this in more detail. We consider an elenteéhavingkz faces. Equation (5.1)
should then hold fok; different possible choices @ 5 and three possible choicesgfcorre-
sponding to;! = z, ¢! = y andq¢' = 2. Note that forg' = 1 the equation (5.1) is automatically
satisfied as it reduces to our definition of the operd®@n?. We have therefor8k, equa-
tions. SinceK, and hencéll;, are symmetric, the number of unknown coefficients\bf is
(kg +1)(kg +2)/2, thatis bigger thaBk as soon agz > 3. The system will always be com-
patible, since we could always define a liftift); first by solving, for eachG , the Neumann
problem,

Ay =DIV'Gy in E

ax/ﬁnE:GE-nE on aE,

then by takingRz(Gr) := Vy, and finally by defining\/; through (5.7). This will be totally
impractical, but shows that at least a solutigip of (5.1), symmetric and positive definite, exists
(although, in general, the solution will not be unique.)

Particular structures could be imposedM&; in order to reduce the number of unknowns.
For instance, we can require that each face interacts onytwo neighboring faces, reducing
the number of unknowns t8kg, that equals the number of equations and makes the linear
system much easier to solve on the computer.

An advantage of this approach is that it can rather easilyxbended to faces that are not
flat. This is a case in which the construction of an explidiitlg operator might prove to be very
difficult. We shall address this problem in the future pudtions.

5.2 Error estimate for the vector variable

Using Assumptiors2, we are going to prove error estimates for our discretipati@t (p, F) be

the exact solution of (2.1) and (2.2), lgi,, F;) be the discrete solution (see (3.15) and (3.16)),
and letp! andF! be the interpolants of the exact solution. Finally, for gvelementE, we
denote bypl, a suitable polynomial of degree 1 that approximates, and that will be decided
later on. We notice first that from (2.1), (3.13) and (3.15¢, easily have:

DIV (F! —~F;)=b—-b=0. (5.10)
Using (2.2) and (3.16), then (3.14), and finally (5.10), we ge
[F! —Fy, F' = Fylxe = [(-KVp)!, F' = Fylxa — [G pa, F' — Fy] x
= [(-KVp)!, F' = Fylxa — [pa, DIV* (F' — Fy)]qu

= [(-KVp)!, F! = Fyxa. (5.11)
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Then, adding and subtracting terms we have
E" — Falll%ea = [(-K Vp)! + (K VP, B! — Fylya + [(-KVp"), B! — Fylya
=1, + [(-KVp' + KVP1)17 F' — Fylxe + [(‘KVpl)Ia F! — Fyxa
=1, + L+ [(-KVp"), F! — Fylxu
=1, 4+ I, + 1. (5.12)
Using (5.1) and (5.10), the third term reads:

L=y {/@E#E (F’—Fd>E~nEds—/Ep%E (DT (F’—Fd>>EdV}

EeTy,

=3 | pb® —Fipongas (5.13)

EeT,

We are therefore left with the problem of estimatihgl,, andI;. A first estimate ofl, is
trivial. From (5.2) we immediately have

L = [(-KVp' + KVp')', F' = Falxa < Cich|[|(Vp!) ||| xa |[[F' — Fall[xa  (5.14)

wherep! still has to be defined.

Let us recall some known properties on the approximatiooreri-or the sake of simplicity,
we assume that our solutignis in F%(€2). Note that with a little additional effort we could use
a weaker regularity, and get a lower order of convergence.

We first recall that, under Assumptidvié (Star-shaped elemenist is possible to find a
constantC* . depending only o, such that for every elemeiit and for everyp € H?*(E)

app’
there exist a constapf, and a polynomiap?, of degree< 1 such that

1P = PEll Loy < Ciy b |19) 11 (5) (5.15)

Ip = PEllLoe) < Coapp b 1P| H2(2), Ip — pEllae) < Cophe llpln2e) (5.16)

(see [4, Lemma 4.3.8]). Concerning the error on faces, we sanauresult due to Agmon
and made popular in the numerical analysis community by Buold [1]. Applied to our
case, it says that there exists a constgpt,, depending only on the constantof Assumption
M4, such that for every pyramié’, (as described in Assumptidvi5), and for every function
x € H'(P§), we have

I < Cign (B2 XU sco) + P Il g)) - (5.17)
It is then immediate to derive from (5.17) that

I9X02s00) < Cram (B8 X 3racrg) + B X 2o (5.18)
for everyy € H?(E). Applying this to the difference — pk, and using (5.16), we get:

10 = PEl,@ + PEIVE = )70 < Chace PE 10l F2(p) (5.19)
14



whereC?,.. depends only om, and~...
Now, we can finish the estimate bf. Note thatVp! is a constant vector. Then, (5.16) and
the triangle inequality give:

11(VeR) llxe = 1VPplam < VPl + 1V = pp)llam) < 1+ he Co) 1Pl r2es)
Thus, we obtain immediately from (5.14) that
L < Cf h|pllaz@) [[F = Fall| xa (5.20)

whereC7, equals to(1 + hp C,)C with C% givenin (5.2).
The estimate of, is obtained in the following lemma.

Lemmab5.1 Letp € H%(Q2) and let, in eachE € 7, p' be such that (5.16) holds. L&Y’ be
the interpolation operator defined in (3.7), and let finallyc X<. Then

(~K Vp) + (K Vp!)", Glxa < G, hpll oy |Gl [xo (5.21)
where the constart?, is independent gf, G andh.

Proof. The proof follows immediately from (3.10), the definition tbie interpolation operator
(3.7), the Cauchy-Schwartz inequality, and the approxiomatesults quoted above. Indeed, we
have

K V) + (KVp)[[Z <5 3 Y (FKVp) + (K Vph))e)? |E|

Ee€Ty, ecOF
1 2
<5y N (W/Kv(p—p};)-nEdS) |E|
E€T;, ecOE €l Je
<53 Y LUKVl
EcT), ecOF

< G, B2 Ipllie o

whereC; depends only o, given in (2.4),5* given in (3.10),x* given in (2.3), and’7,,.,
obtained in (5.19). o

The following Lemma gives an estimate fir

Lemma5.2 Letp € H*(Q2) and let, in each® € 7;, p' be such that (5.16) holds. Moreover let
G € X% Then

> [ 9'GenpdS <Gl Gl (5.22)
BeT,, Y OF

where the constarty, is independent gf, G andh.
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Proof. The first (crucial) step of the proof uses the continuitypand the fact thaGy - ng
takes opposite values for the two elements sharing eaaimaiteace; then the result follows with
usual instruments, like the Cauchy-Schwartz inequalitythedapproximation results (5.16):

Z/ p}EGE-nEdS:Z/ (pk —p) Gg-ngdS
oF oF

EeTy, EeT;,
<D e = Polliae 1G5 e
EcT, ecOF
=Y p = plliae 1G5 e
E€T;, ecOFE
<07 (Chae) Y hplplme) Y 1G] 1B
E€T), e€OF

< O, hlipllo) 1G] xa-

whereC;, = (v 57! Cfope)/? N, This proves the assertion of the lemma. o

Combining (5.12) with (5.20), (5.21) and (5.22), we finallyt fee main convergence result.

Theorem 5.2 Under assumptionB1, M1-M6 and S1-S2 let (p, F) be the solution of (2.1)-
(2.2), and let(py, F,) be the discrete solution, given by (3.15)-(3.16). Let meged’ be the
interpolant ofF, introduced in (3.7). Then we have

IIF" = Falllxe < C* A Iplli2o, (5.23)
whereC* depends only upon the various constants appearing in Agsums|1, M1-M6 and
S1-S2

5.3 Error estimates for the scalar variable

For the estimate on the scalar variaplg we shall go back to the inf-sup condition (4.5). For
the sake of simplicity, we assume thais convex. Let) be the solution of

—div(KVy) = p/—ps inQ
v = 0 on o)

where, for simplicity, we identifiegh, — p’ with the corresponding piecewise constant function.
The convexity of2 implies that there exists a constalf, depending only ofi, such that

1]l 2y < CollIPa = P llga. (5.24)

We set now
H =KV (5.25)

and defineG € X4 asG = H/, so that
DIV'G =py —p’. (5.26)
16



Finally, we denote by)! a piecewise linear approximation gf that satisfy (5.16) for each
E € 7,. Using (5.26), then (4.1), then (3.6) and (3.13), then irgteigg by parts, and finally
integrating once more by parts and using (2.1) and (2.2) we ge

llpa — Pl = [DIV? G, pa — p']qe

— [Fy, Gy — [DIV' G, p'lgs = [Fa, Gy — / pdiv(KVe) dV
Q
= [F., G]Xd—l—/KVp-Vl/JdV
Q

= [Fy, G]ya +/wadv.
Now, using the definition o€z and adding and subtracting terms, we have
IIPa — P[50 = [Fa, (KVY)' — (KVY) | xa + [Fa, (KVY') ] xa + /wadV
= i+ [Pa (K= K)V0) o+ [P, (R0 o+ [ by
= Jy + Jo + [Fg, (KVYH) ] xa + /Q bep dV (5.27)
Using (5.21), the ternd; can be easily bounded by
Ty = [Fa, (KVY)' — (KVY) |xa < OF h|[Falllxa 9] 520 (5.28)
The term.J, is bounded as in (5.14), (5.20) by

Ty = [Fa, (K= K)VY")]xa < OF, b|l[Falllxa €]l 52(0). (5.29)

For the third term in the last line of (5.27) we can use (5.19Qltain

[Fy, (KVy)! Z ¢ (Fy)p -ngdS — / byt dV. (5.30)

EeTy,

With the help of (5.22), we get then
[Fa, (KV9')]xa +/b¢dV‘ < Cp h|[[Falllxa 19l 2@ + ‘/(bz/z—bwl)dv' (5.31)
Q Q

where the last term is easily bounded b§; 1 |[b]|g1(o) [|[¢ #1). Collecting the above in-
equalities (5.27) - (5.31), we easily obtain

1pa = P'[l[Ge < C* 1 {Il[Falllxa + [Bll 10y } 1 2o (5.32)

that combined with the estimates (5.24), Theorem 5.2 andnh&mh.1 gives the proof of the
second convergence result.
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Theorem 5.3 Under assumptions of Theorem 5.2, plus the convexiy, afe have

11Pa = P'lllge < C* e (Ipllrr2e) + 18l () (5.33)

where the constant™ depends only on the constants appearing in Assumpi®dn$11-M6
andS1-S2on (¢, appearing in (5.24) and of! appearing in (4.12).

It is interesting to note that, assuming that in each elemhene had a suitable liftind?z, a
better estimate for the scalar variable could be obtainezih&Ve indeed the following theorem

Theorem 5.4 Together with the assumptions of Theorem 5.3, assume morbagdor each
elementE we have a lifting operatoR: ; with the properties (5.4), (5.5) and (5.8) such that

| Re(G) = Glliym) < CrobellGluney VG e (HY(E))® VEeT, (5.34)
whereC?,, is a constant independent 6f and /. Then, we have

11Pa = P'lllge < C*1* (Ipllr2e) + 1Bl (5.35)

where the constanf™ depends only on the constants appearing in Assumpidns11-M6
and S1-S2 on C¢ appearing in (5.24), o} appearing in (4.12), and on'},, appearing in
(5.34).

Proof. Let R(G) be such thaR(G)|r = Rr(Gg). Following essentially [10] and using (5.26),
then (4.1), (3.6) and (3.13) (as in the previous proof) wil], then integrating by parts and
finally using (2.2) and (5.7), we get

lIpa = p'lll3e = [DIV' G, pa — '

[Py, Gl — / pdiv R(G)dV
Q
— [Fg, G]ya + / Vp-R(G)dV = [Fy, G]ya + / K 'KVp-R(G)dV
Q Q
~ [ K U(R(E) - F) RG) Qv
Q
Adding and subtractingl defined in (5.25), we get
lIpa = 'l = [ K(R(FS) ~ F) (R(G) - H)QV + | K '(R(FS) ~ F)HAV
Q Q
= Js+ / (R(Fy) —F) V¢ dV = J; — / Y div(R(Fy) — F)dV
Q Q
=Js;— [ (bl —b)ypdV
o= [ b

= J3 — /(bf — ) — YAV = J5 + J,. (5.36)
Q
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In their turn, J; and.J; can be easily bounded using the previous estimates and argual
ments. Indeed, the triangle inequality, then (3.10) ang))(&and finally (5.23) and (5.34) imply
that

IR(Fq) — Fll(zo@)r < |R(Fg—F)|(ry0p2 + |RE) = Flr,00))
< CpsP|[Fg — FM||xa + | RET) — Fll (120
< Chpll@- (5.37)

Using the theorem assumption (5.34) and (5.24), we get
IR(G)=H]|(ryp2 = IRMH") =H| |z, < Crohl|Hllrr ()2 < Chlllpa—p”|lloa. (5.38)

The approximation property (5.15) gives the following esties:

16" = bll o) < Copp PlIbl () (5.39)

and
Hw - ¢IHL2(Q) < C;zkpthwHHI(Q) < C:ppcgl h |de - lele' (540)
Inserting estimates (5.37)-(5.40) into (5.36), we get irdiately the result. o

Remark 5.1 It is very likely that our additional assumption (5.34) istm®eded, as it should

be possible to deduce it from (5.4), (5.5), possibly with mamtditional assumptions on the
geometry. However, in essentially all cases in whith can be explicitly built, it is easy to

prove directly that (5.34) holds true. We decided theretbeg it would have been more simple
to just assume it.

6 Conclusion

In this paper, we have considered the mimetic finite diffeeemethod for the mixed formulation
of the diffusion problem on polyhedral meshes. We have midie stability of the mimetic
discretizations and the optimal convergence rates for¢hasand vector variables. The key
elements of our methodology are the consistency assumpfiand the lift propertyLP.

In the future work, we plan to extend the convergence resal{lyhedral meshes with
curvilinear faces.
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Appendix A

The purpose of this appendix is to prove the lift propertyt (3-(4.18), that we recall for conve-
nience of the reader.

LP (Lift Property). For everyt < 2 there exists a constatt* = \*(¢) such that: For every
E € 7, and for every € JF there exists a functiop?, from £ to IR that verifies

oy =1 on e, ¢y =0 on JF\e, (A.1)

and
o5l Loy < XBY2 1Vl ey < AR (A.2)

~Atraditional way would be to assume that there exist a finiteber of reference elements
£y, ...,E, and a positive constaiit such that: For each € 7, there is anf, and a bi-Lipschitz
map®¥ from E}, to £ such that

D% o gy < L Ny < L he (A.3)

and
(@) woe < LY, (@) e < LFhg'. (A.4)

Then, for each reference elemént and for each face of £, we could construct the harmonic
function @%Ek with boundary valud oné and zero on the other faces, and verify that it belongs

to Wl(Ek) for everyt < 2. Finally each functiorp$, could be constructed by combining one of
the reference functlon,s6 with the correspondin@?Z. This is surely feasible, but will become
rather cumbersome if we want to consider a big variety ofipsshapes for our elements.

We decided here to follow a different path, that requirey oiné¢ fact that the faces are star-
shaped 4) and the Pyramid property5) which are possibly more difficult to explain, but
much easier to check and to enforce. The general idea isditstild a functionp; on the unit
coneCy, then, for everys, to build a functionp,, on a cone’;, obtained by scaling the unit cone,
and finally, for each elemeti and for each face, to map the coné€, ;. (where~, is given in
AssumptionM4) into the pyramidPy, described in Assumptioll5 with a Lipschitz continuous
mapping. This will give us a functiop = ¢9, on the pyramid, having the right norms. This
function will finally be extended by zero to the whole eleménhtand it still will have the right
norms. But let us see the procedure in more detail.

For each element’ and for each face of £ we want to build a functiop = 9, with the
following properties:

e The support ofp is contained in the pyramiét = P5. satisfying Assumptioi5.
e © = 1oneandy = 0 on the other faces afy,.
e ( satisfies the following estimates:
ol < A A2 and ||Vl < A" (A.5)
where constani* is independent off ande.
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As we said before, we start our work on cones: fpr> 0 we shall refer to the solid
{(z,y,2): 0< 2< p and z”+¢* < (p1 — 2)*}
as thecircular cone of radius; .

Lemma A.1 Let(C; be the circular cone of radius, and letp; be the harmonic function that
takes valud on the basis and on the lateral boundary. Thep, belongs tol..(C;) and V¢,
belongs to L;(C;))? for all ¢ < 2.

Proof. The first part of the statement follows from the maximum piptes that gives) < ¢, <
1. The second part of the statement follows immediately fromknown results concerning
domains with corners (see e.g. [11], or [9]). o

In view of the previous lemma, we set
Cy = |Vl zaens- (A.6)
Itis clear that”;, depends om and hence on through (4.15).

Lemma A.2 For every positive real numbér, letC, be a circular cone of radius. Then, there
exists a functiorp,, taking valuel on the basis, value zero on the lateral surface, and satigfyi

lonllLaen < [ChIY2 and  [[Voullniey: < BP/7C (A7)
where|C,,| is the volume of,.

The proof follows with the usual scaling arguments (see[8,gTheorem 3.1.2]). o

Consider now a face of E. For convenience, we assume that (a) the talees in the plane
z = 0, (b) M., defined in AssumptiotM4 (Star-shaped facgsis the origin of the axes and
(c) the polyhedror¥ is locally in the half-space > 0. By AssumptionM4 there exists &,
such that: The circular con®, having the basis on the faeg(with center in)/,.), and radius
h = p. = 7. hg, is strictly contained in the pyramit;, having the same vertex and basis equal
to e. Hence, by Assumptioll5 (The pyramid properiy C,, is contained in¥.

Let us see first that Assumptidvi4 implies the existence of a radial mapping in the plane
z = 0 which maps the dislO,, with center in}, and radiusp. into the facee, is one-to-one,
Lipschitz-continuous together with its inverse, and wit}, norms bounded in terms of and
the number of edges ef

Lemma A.3 Under assumptioM4 there exists a mag,, mapping the dislO,, into the face
e, that is Lipschitz continuous together with the inverse rbap. Moreover,

[P2llwy (p,.) < C; and 195 lwi o) < CF (A.8)

whereC? depends only on the constaptof AssumptioiM4.
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Figure 3: The splitting oé in sectors.

Proof. To show this, we note that the plane= 0 can be split in a finite number of sectors by
the vertices ok. Each sector corresponds to the straight rays coming otieodigin A/, and
intersecting the edgk (see Fig. 3). For each poilt € D, , we first consider the ray emanating
from the origin and passing throudgh This ray intersectde at pointV(P). Our mapping is
defined as follows:

P = &y(P) := |VEP>| P. (A.9)

It is clear thatd, maps every poin into a pointP on the same ray, so that

V(P)=V({P) VPeD,. (A.10)

It is immediate to check that, on each ray, the map is contis@md monotone, and that it maps
the points of the circumference of radiusinto the corresponding points 6t on the same ray.
Hence it mapg),, into e in a one-to-one way. Itis also clear that the map is globaihytinuous,
invertible, and the inverse map

P

T - Px -
P=o,(P):= il P |V(]_5)‘ P (A.11)

is also continuous and mapsnto D, . Note that we used (A.10) in the last step.

In order to show the Lipschitz continuity, we have to boureldistance between the images
|P — Q| by a constant times the distan@— Q|. For this, we remark first that Assumptitv%
implies that
M < U = 1 for everyV € Oe. (A.12)
As shown in Figure 4, it also implies that for every pomiton an edge of e, the anglexy,

betweer? and the ray passing through verifies

1<

H «
|sinay| = [He| > Py o (A.13)

whereH, is the orthogonal projection of the origii/, on the line containing, and we used
(A.12) in the last step.
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A

Figure 4: Lower bound ohsin ay/|.

The Lipschitz continuity is obvious whdd andQ are on the same ray:

V(P

P-q P-Q< %lP —ql (A14)

*

O

Figure 5: Lipschitz continuity within a sector.

If P andQ are on two different rays in the same sector, we first denot&hyand R
(respectively) the orthogonal projections'6f P) (respectively, o) on the ray containing)
(see Figure 5). Applying Thaletes theorem, we get

V(P) - Ko| _[P-R[ _[P—-Q|

A.15
V@) Pl - P (A19)
Collecting (A.15), (A.13) and (A.12), we have
V(P) - Kq| _ [P—Q] P —Q|
V(P)-V = V(P ) A.16
V=V Toitaral = el VI ey (419
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where obviously the role dP andQ can be interchanged. Finally, the triangle inequality to-
gether with (A.9) and (A.16) give

P_qQ - VPP - VQIQ|  [V(P) - ()HH+|()

P — Q| 1+ .
< — _
o e e et

The case oP andQ belonging to different sectors can be easily deduced ingestiitable
intermediate points at the boundaries of the sectors amdusiag the triangle inequality.

In a similar way, we can show that the inverse mapping is alpsdhitz continuous. For
instance, using (A.11) we get

P-q

(A.17)

_ p__"” ¢ P+ \Y% A.18
P-al= |TEP - @ " vy vy V@ - VPIa) a1

Then, we have, adding and subtractjM P)|P and using the triangle inequality,
IV(QIP —[V(P)IQ| < [V(P) - V(Q)| [P| + [V(P)|[P - Q. (A.19)
On the other hand, we can apply the argument of (A.16) to nbtai
P - Q|
s P
(7:)?|P|

Collecting (A.18), (A.19) and (A.20), and using (A.12) (thise in the sense, /| V| < 1), we
finally obtain

IV(P) - V(Q)| < (A.20)

1 ~Nl 1+ (’7*)2 |
= (7.)? o ()?

This proves the assertion of the lemma. o

P-Q| (A.21)

Now, we can construct a mappidg from the cone’;, (havingD,, as basis and with height
equal top.) into to the pyramidPy, (havinge as basis and with the same vertex(a$, also
Lipschitz-continuous with its inverse, by taking

Again, the Lipschitz norm of the map; and of its inverse depend only on. This proves the
following lemma.

Lemma A.4 Under assumptio4 there exists a mags, mapping the coné,, into the pyra-
mid Pg, that is Lipschitz continuous together with the inverse ap. Moreover,

Hq)SHWC}O(Ch) S C;yr and H(I)gll‘wc}o(ly < C;yr

(A.23)

whereC;, . depends only on the constantof AssumptioM4.
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The last step is to construct, for each elemgrand for each face € JF, the functiony$,
satisfying (A.5) (with the right boundary conditions). Let

QOEE(‘,Ev Y, Z) = @h((Pgl(x, Y, Z))

wherey,, is the function from Lemma A.2 defined for the circular congadiush = p, =
7. hg. Itis clear thaty%, will be in Ly(Pg), thatVe$ will be in (L, (Pg))?, and that their norms
will be bounded by

lo5llarg) < Cppe b and [ Villiupgy < GOyl (A.24)

pyr pyr

whereC, is given in (A.6) and”}, . depends only on.. Hencey, satisfies (A.5) as required.
Finally, we take the prolongation af;, (that we call agai$,) by zero inE'\ Pg.

This ends the proof of the lift property (A.1)—(A.2).
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