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Abstract

The stability and convergence properties of the mimetic finite difference methodfor
diffusion-type problems on polyhedral meshes are analyzed. The optimalconvergence rates
for the scalar and vector variables in the mixed formulation of the problem areproved.

1 Introduction

The main goal of this paper is to establish the convergence ofmimetic discretizationsof the first-
order system that describes linear stationary diffusion ongeneral polyhedral meshes. The main
idea of the mimetic finite difference (MFD) method is to mimicthe underlying properties of the
original continuum differential operators, e.g. conservation laws, solution symmetries, and the
fundamental identities and theorems of vector and tensor calculus. For the linear diffusion prob-
lem, this means that the mimetic discretizations mimic the Gauss divergence theorem needed
for the local mass conservation, the symmetry between the continuous gradient and divergence
operators needed for proving symmetry and positivity of theresulting discrete operator, and the
null spaces of the involved operators needed for stability of the discretizations.

The MFD method has been successfully employed for solving problems of continuum me-
chanics [18], electromagnetics [13], gas dynamics [7], andlinear diffusion on simplicial and
quadrilateral meshes in both the Cartesian and polar coordinates [14, 12, 19, 16]. Recent ad-
vances in extending the mimetic discretizations to generalpolygonal meshes [15] have inspired
us for developing the rigorous convergence theory for general polygonal and polyhedral meshes.

The polyhedral element appear naturally in reservoir models simulating thinning or tapering
out (”pinching out”) of geological layers. The pinch-outs are modelled with mixed types of mesh
elements, pentahedrons, prisms and tetrahedrons which arefrequently obtained by collapsing
some of the elements in a structured hexahedral or prismaticmesh.

Other sources of polyhedral meshes are the adaptive mesh refinement methods. A necessity
to have a conformal mesh results in an abundant mesh refinement, e.g. in the methods using
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the red-green refinement strategy. However, the locally refined mesh may be considered as the
conformal polyhedral mesh with degenerate elements (for instance, when the angle between two
faces is zero). If we know how to discretize a problem on a general polyhedral mesh, the su-
perfluous mesh refinements can be avoided. A similar argumentcan be applied to non-matching
meshes which frequently may be treated as conformal polyhedral meshes with degenerate ele-
ments. This is the way followed for instance in [15] for 2D meshes.

Allowing arbitrary shape for a mesh element provides greater flexibility in the mesh gener-
ation process, especially in the regions where the geometryis extremely complex. Even in the
case of an unstructured hexahedral mesh, it may be beneficialto split the curvilinear faces into
triangles in order to use more accurate discretization methods and to get a smaller number of
unknowns relative to a tetrahedral partition. It is obviousthat by splitting each face of a hexagon
into 4 triangles we get a 24-face polyhedron which is frequently non-convex.

Some of the simulations in the fluid dynamics indicate that the polyhedral meshes may lead
to superior convergence rates and accuracy relative to tetrahedral meshes. We refer readers to the
CD adapco Group webcite [www.cd-adapco.com/news/18/newsdev.htm] for more detail. The
polyhedral meshes are also used in a number of radiation-hydrodynamics applications [20, 21,
6]. For instance, one of the approaches to increase robustness of arbitrary Lagrangian-Eulerian
simulations is to allow a change of the mesh connectivity which obviously leads to general
polyhedral meshes.

The diffusion-type (elliptic) problems appear in many applications, for instance the tempera-
ture equation in heat diffusion or the pressure equation in flow problems. The necessity to solve
such problems arises in numerical methods for radiation transport coupled with hydrodynamics,
mesh smoothing algorithms, etc. In this paper we consider a diffusion problem formulated as a
system of two first order equations, which is suitable for deriving locally conservative discretiza-
tions.

The mimetic discretizations have demonstrated excellent robustness and accuracy in simu-
lations; however, a rigorous convergence proof has been always lacking. The original approach
to prove the convergence of these discretizations has been based on establishing the relation-
ship between the MFD and mixed finite element methods [2, 3] which is certainly not enough
for many interesting applications. In this paper, we developed a novel technique for proving
convergence estimates which may be applied to the case of meshes consisting of arbitrary types
of elements e.g., tetrahedrons, pyramids, hexahedrons, degenerate polyhedrons, etc. The re-
strictions imposed in Section 2 on the polyhedron shape allow still extremely complex elements
which cover certainly the majority of meshes used in applications.

The paper contents is as follows. In Section 2, we describe the problem under consideration
and the class of polyhedral meshes used in the convergence analysis. In Section 3, we formulate
the mimetic finite difference method. In Section 4, we prove the stability result. In Section
5, we prove the convergence of mimetic discretizations. Oneof the key elements used in our
technique, the lift property, is discussed in detail in Appendix A.
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2 The assumptions on the problem and on the mesh

Let us consider a model elliptic boundary value problem:

div F = b (2.1)

F = −K grad p. (2.2)

Herep denotes a scalar function that we refer to as the pressure,F denotes a vector function that
we refer to as the velocity,K denotes a full symmetric tensor, andb denotes a source function.
The problem is posed in a bounded polyhedral domainΩ ⊂ IR3, and is subject to appropriate
boundary conditions on∂Ω. For simplicity, we assume that the homogeneous Dirichlet boundary
conditions are imposed on∂Ω. We assume also thatK satisfies the following regularity and
ellipticity property.

P1 (Regularity and ellipticity ofK). Every component ofK is in W 1
∞(Ω) andK is strongly

elliptic, implying that there exist two constantsκ∗ andκ∗ such that

κ∗‖v‖
2 ≤ vTK(x)v ≤ κ∗‖v‖ ∀v ∈ IR3 ∀x ∈ Ω. (2.3)

Let Th be a non-overlapping conformal partition ofΩ into polyhedral elementsE. For every
elementE we denote by|E| its volume and byhE its diameter. Similarly, for each facee we
denote by|e| its area and for every edgeℓ we denote by|ℓ| its length. We shall use∂E either for
the boundary ofE or the union of element faces, according with convenience ofthe presentation.
We also set as usual

h = sup
E

hE.

The elementsE are assumed to be closed simply-connected polyhedrons, rather general in
shape (see for instance Figure 2). We need however some basicassumptions of shape regularity.
As we shall see, the assumptions are sometimes formally complicated, but they will hold for
practically all partitions which is not totally unreasonable.

M1 (Assumptions on the domainΩ). We assume thatΩ is a polyhedron with a Lipschitz
continuous boundary.

M2 (Number of faces and edges). We assume that we have two positive integersNe andNℓ

such that every elementE has at mostNe faces, and each facee has at mostNℓ edges.

M3 (Volumes, areas, and lengths). We assume that there exist three positive constantsv∗, a∗

andl∗ (for volume, area and length, respectively) such that for every elementE we have

v∗ h3
E ≤ |E|, a∗ h2

E ≤ |e|, l∗ hE ≤ |ℓ| (2.4)

for all facese and edgesℓ of E.

M4 (Star-shaped faces). We assume that the mesh faces are flat and that there exists apositive
numberγ∗ such that: For each elementE and for each facee ∈ ∂E there exists a point
Me ∈ e such thate is star-shaped with respect to every point in the disk of centerMe and
radiusγ∗hE.
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We recall thate is star-shaped with respect to a pointP ∈ e if every straight ray exiting
from P (in the plane ofe) intersects∂e only once. In what follows we shall often use the
notation

ρ∗ = γ∗hE (2.5)

which is illustrated in Fig. 1.

.
Me

Figure 1: A star-shaped face, with the circle of radiusρ∗ centered atMe.

M5 (The pyramid property). With the notation of assumptionM4, we further assume that for
everyE ∈ Th, and for everye ∈ ∂E, there exists a pyramidP e

E contained inE such that
its base equals toe, its height equals toγ∗ hE and the projection of its vertex ontoe is Me.

M6 (Star-shaped elements). We assume that there exists a positive numberτ∗ such that: For
each elementE there exists a pointME ∈ E such thatE is star-shaped with respect to
every point in the sphere of centerME and radiusτ∗ hE.

As before, we say thatE is star-shaped with respect to a pointP ∈ E if every straight ray
exiting fromP intersects∂E only once.

3 Mimetic finite difference method

Let us introduce an operatorG , G p = −Kgrad p, which we refer to as the flux operator. Fur-
thermore, we introduce the following scalar products:

(F, G)X =

∫

Ω

F · K−1G dV (3.1)

and

(p, q)Q =

∫

Ω

pq dV (3.2)
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in the spaceX of velocities and in the spaceQ of pressures, respectively. Using the above
notation, we may rewrite the Green formula

∫

Ω

F · (K−1G p) dV =

∫

Ω

p divF dV (3.3)

in the equivalent form:
(F, G p)X = (p, div F)Q.

The last expression clearly states that the flux and divergence operators are adjoint to each other:

G = div∗.

The mimetic finite difference (MFD) method produces discretizations of these operators which
are adjoint to each other with respect to scalar products in the discrete velocity and pressure
spaces.

Thefirst step of the MFD method is to specify the degrees of freedom forphysical variables
p andF and their location.

We consider the spaceQd of discrete pressures that are constant on each polyhedronE. For
q ∈ Qd we shall denote byqE (or by (q)E) its (constant) value onE. The dimensionNQ of
Qd will obviously equal the number of polyhedrons inTh. In what follows, we shall denote by
Qd either the vector spaceIRNQ or the space of piecewise constant functions, according with
convenience. The identification is obvious and no confusionshould arise.

The definition of the space of discrete velocities will require some additional considerations.
To every elementE in Th and to every facee of E we associate a numberF e

E and the vector field
F e

E ne
E wherene

E is the unit normal toe that points outside ofE. We clearly make thecontinuity
assumption that for each facee shared by two polyhedraE1 andE2, we have

F e
E1

= −F e
E2

. (3.4)

We denote the vector space of face-based velocity unknowns by Xd. The numberNX of our
discrete velocity unknowns will then, in our theory, be equal to the number of boundary faces
plus twice the number of internal faces. In our theoretical discussion, we shall considerXd as
the subspace ofIRNX which verifies (3.4).

For a discrete velocity fieldG we will denote byGE its restriction to the boundary ofE,
and byGe

E (or by (GE)e) the restriction ofGE · nE to a facee belonging to the boundary ofE.
It will sometimes be convenient to use the notation

Xd
E := { restrictions ofXd to the elementE }. (3.5)

It is clear that, in practice, condition (3.4) will make the number oftrue independent un-
knownsequal the total number of mesh faces. This means that, in a computer program, we shall
prescribe one direction for the normal to each internal facee, and assign a single unknownGe to
each face, assuming that each of the twoGe

E coincides either withGe (when the outward normal
nE on e coincides with the prescribed direction) or with−Ge (otherwise).

To summarize, one pressure unknown is defined on each polyhedron and the discrete veloc-
ities are defined as face-based normal components. Once we got the degrees of freedom inQd

and inXd, we can define interpolation operators from the spaces of smooth enough scalar and
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Figure 2: Two possible elements and the normal to their faces.

vector-valued functions to the discrete spacesQd andXd, respectively. To every function q in
L1(Ω) we associate the elementqI ∈ Qd defined by

(qI)E :=
1

|E|

∫

E

q dV ∀E ∈ Th. (3.6)

Similarly, for every vector-valued functionG ∈ (Ls(Ω))3, s > 2, with div G ∈ L2(Ω), we
defineGI ∈ Xd by

(GI
E)e :=

1

|e|

∫

e

G · nE dS ∀E ∈ Th ∀ e ∈ ∂E. (3.7)

In the next section, we shall prove that this interpolation operator is well defined and uni-
formly bounded. In what follows, we shall use bold capital letters either for vectors fromXd or
for continuous vector functions, according with convenience of the presentation and leaving no
room for confusion.

Thesecondstep of the MFD method is to equip the spaces of discrete pressures and velocities
with scalar products. The scalar product on the vector spaceQd is given by

[p, q]Qd =
∑

E∈Th

pE qE|E| ∀p, q ∈ Qd. (3.8)

In order to define the scalar product inXd, we first define a scalar product[F, G]E for every
elementE ∈ Th in the following way. Lete1, e2, ..., ekE

be a numbering of the faces ofE (where
kE is clearly the total number of faces). We assume that we are given (for eachE) a symmetric
positive definitekE × kE matrixME ≡ {ME,i,j}, and we set

[F, G]E =

kE∑

i,j=1

ME,i,j (FE)ei (GE)ej ∀F, G ∈ Xd ∀E ∈ Th. (3.9)

Some minimal approximation properties for the scalar product (3.9) are required. We shall
see in a while how a suitable matrixME can be constructed. For the time being, we justassume
that the scalar product (3.9) has the following property.

S1 (Stability of[·, ·]E). We assume that there exist two constantss∗ andS∗ independent ofh
such that, for everyG ∈ Xd and for everyE ∈ Th, one has

s∗
∑

e∈∂E

(Ge
E)2 |E| ≤ [G, G]E ≤ S∗

∑

e∈∂E

(Ge
E)2 |E|. (3.10)
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From (3.9) we can then easily construct the scalar product inXd by setting

[F, G]Xd =
∑

E∈Th

[F, G]E ∀F, G ∈ Xd. (3.11)

The third step of the MFD method is to derive an approximation to the divergence operator.
The discrete divergence operator,DIVd : Xd → Qd, naturally arises from the Gauss divergence
theorem as

(DIVd F)E
def
=

1

|E|

∑

e∈∂E

F e
E |e|. (3.12)

We point out that our interpolation operators, in some sense, commutewith the divergence op-
erator. Indeed, for every vector fieldG smooth enough, we can use (3.12), (3.7), the Gauss
divergence theorem, and (3.6) to obtain

(DIVd GI)E =
1

|E|

∑

e∈∂E

(GI
E)e |e| =

1

|E|

∫

∂E

G · nE dS =
1

|E|

∫

E

div G dV = (div G)I
E

(3.13)
for every elementE in Th.

Thefourthstep of the MFD method is to define the discrete flux operator,Gd : Qd → Xd, as
the adjoint to the discrete divergence operator,DIVd , with respect to scalar products (3.8) and
(3.11), i.e.

[F, Gd p]Xd = [p, DIVd F]Qd ∀p ∈ Qd ∀F ∈ Xd. (3.14)

Using the discrete flux and divergence operators, the continuous problem (2.1), (2.2) is dis-
cretized as follows:

DIVd Fd = b (3.15)

Fd = Gd pd. (3.16)

whereb ≡ bI is the vector of mean values of the source functionb.

4 Stability analysis

In this section we analyze the stability of mimetic finite difference discretization (3.15)-(3.16)
using the well-established methodology [5]. More precisely, we prove the coercivity condition
(4.4) and the inf-sup condition (4.5).

Using the discrete Green formula (3.14), we rewrite equations (3.15), (3.16) in a form more
suitable for the analysis:

[Fd, G]Xd − [pd, DIVd G]Qd = 0 ∀G ∈ Xd (4.1)

[DIVd Fd, q]Qd = [b, q]Qd ∀q ∈ Qd. (4.2)

Let us introduce the following mesh norms on discrete spacesXd andQd:

|||p|||2Qd := [p, p]Qd , |||F|||2Xd := [F, F]Xd
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and
|||F|||2div := |||F|||2Xd +

∑

E∈Th

h2
E ‖DIVd F‖2

L2(E). (4.3)

Let V d be the space of divergence-free discrete fluxes:

V d = {F ∈ Xd : DIVd F = 0}.

We begin the stability analysis by noticing that the scalar product (3.11) is continuous. It is
also obvious that the scalar product satisfies theV d-ellipticity condition:

[F, F]Xd ≥ |||F|||2div ∀F ∈ V d. (4.4)

The analysis of the inf-sup condition is more involved. Following [5], for everyq ∈ Qd, we
have to find a vectorG ∈ Xd such that

[DIVd G, q]Qd ≥ β∗|||G|||div |||q|||Qd (4.5)

whereβ∗ is a constant independent ofq, G, andTh. Let us denote byqh ∈ L2(Ω) the piecewise
constant function onTh with values given by the entries of the vectorq (so that(qh)I ≡ q). It is
obvious that‖qh‖L2(Ω) = |||q|||Qd. Let us consider the homogeneous Dirichlet boundary value
problem

∆ψ = qh in Ω.

SinceΩ has a Lipschitz-continuous boundary, there exist ans > 2 and a constantC∗
Ω such that

‖ψ‖W 1
s (Ω) ≤ C∗

Ω ‖qh‖L2(Ω). (4.6)

Let H = ∇ψ, so that we have immediately

div H = qh, (4.7)

and from (4.6)

‖H‖(Ls(Ω))3 +

(
∑

E∈Th

h2
E ‖div H‖2

L2(E)

)1/2

≤ (C∗

Ω + h)‖qh‖L2(Ω). (4.8)

We set now
G := HI ≡ (∇ψ)I (4.9)

where the interpolation operator is still the one defined in (3.7). Thanks to the commutative
property (3.13) and to (4.7), we have

DIVd G = (qh)I ≡ q. (4.10)

Thus, inequality (4.5) is reduced to

|||q|||Qd ≥ β∗|||G|||div. (4.11)

At this point we need the technical lemma announced in the previous section.
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Lemma 4.1 Under the assumptionsM1–M6 and S1, for everys > 2 there exists a constant
β∗

s > 0 such that

|||GI |||div ≤ β∗

s

{
‖G‖(Ls(Ω))3 +

( ∑

E∈Th

h2
E ‖div G‖2

L2(E)

)1/2
}

(4.12)

for everyG ∈ (Ls(Ω))3 with div G ∈ L2(Ω), and whereGI is defined in (3.7).

Proof. From (3.13) we immediately have

|||DIVd GI |||Qd = |||(div G)I |||Qd = ‖div G‖L2(Ω). (4.13)

Therefore, in view of (4.3), it is sufficient to prove that there exists a constant̃β∗
s such that

|||GI |||Xd ≤ β̃∗
s

{
‖G‖(Ls(Ω))3 +

( ∑

E∈Th

h2
E‖div G‖2

L2(E)

)1/2
}

. (4.14)

The desired result (4.12) follows from (4.14) withβ∗
s = β̃∗

s + 1. In the following discussion we
shall make a wide use of the conjugate exponentt, depending ons through the usual formula

1

s
+

1

t
= 1. (4.15)

Assumption (3.10) implies clearly that

[GI , GI ]Xd ≤ S∗
∑

E∈Th

|E|
∑

e∈∂E

(Ge
E)2, (4.16)

so that we have to estimate the(Ge
E)’s in terms ofG, or, rather, in terms of the norm ofG

appearing in (4.12). Our basic instrument for that is calledthe lift property. The main difficulty,
in the various cases, will be to prove that the lift property holds true.

LP (Lift Property). For everyt < 2 there exists a constantλ∗ = λ∗(t) such that: For every
E ∈ Th and for everye ∈ ∂E there exists a functionϕe

E fromE to IR that verifies

ϕe
E = 1 on e, ϕe

E = 0 on ∂E \ e, (4.17)

and
‖ϕe

E‖L2(E) ≤ λ∗h
3/2
E , ‖∇ϕe

E‖(Lt(E))3 ≤ λ∗h
3/t−1
E . (4.18)

The lift propertyLP is proved in Appendix A.
Up to an approximation ofG by smooth functions, and passage to the limit, we have, using

(3.7), (4.17), and the Green formula:

Ge
E =

1

|e|

∫

e

G · nE dS =
1

|e|

∫

∂E

ϕe
EG · nE dS

=
1

|e|

∫

E

G · ∇ϕe
E dV +

1

|e|

∫

E

ϕe
E div G dV.

(4.19)
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Using the Ḧolder inequality and (4.18) in (4.19), we have then

|e|Ge
E ≤ ‖G‖Ls(E) ‖∇ϕe

E‖Lt(E) + ‖div G‖L2(E) ‖ϕ
e
E‖L2(E)

≤ λ∗
{
(hE)3/t−1||G||Ls(E) + (hE)3/2 ||div G||L2(E)

}
.

Taking the squares and remembering that(a + b)2 ≤ 2(a2 + b2), we have

|e|2 (Ge
E)2 ≤ 2 (λ∗)2{(hE)6/t−2||G||2Ls(E) + (hE)3 ||div G||2L2(E)}. (4.20)

On the other hand, using conditions (2.4), we easily obtain

|E| ≤ h3
E = h−1

E (h2
E)2 ≤ h−1

E (a∗)−2|e|2. (4.21)

We can now join (4.21) with (4.20) and deduce that

|E| (Ge
E)2 ≤ h−1

E (a∗)−2|e|2 (Ge
E)2

≤ σ∗

{
(hE)6/t−3||G||2Ls(E) + (hE)2 ||div G||2L2(E)

} (4.22)

whereσ∗ = 2 (λ∗)2 (a∗)−2. Now we can sum (4.22) over all facese of E and then over all
elementsE of Th. We use (4.16) and AssumptionM2 on the number of faces per element to get

|||GI |||2
Xd ≤ Nℓ S∗ σ∗

{
∑

E∈Th

(hE)6/t−3||G||2Ls(E) +
∑

E∈Th

h2
E ||divG||2L2(E)

}

≤ Nℓ S∗ σ∗

{( ∑

E∈Th

{(hE)6/t−3}r
)1/r( ∑

E∈Th

||G||sLs(E)

)2/s

+
∑

E∈Th

h2
E||divG||2L2(E)

}
(4.23)

where in the last step we applied the Hölder inequality withr, the conjugate exponent ofs/2,

1

r
+

2

s
= 1. (4.24)

A simple algebraic manipulation using (4.15) and (4.24) gives then
∑

E∈Th

{(hE)6/t−3}r =
∑

E∈Th

h3
E ≤ v−1

∗ |Ω| (4.25)

where we have also used (2.4) in the last step. Inserting (4.25) into (4.23), we finally get

‖GI‖Xd ≤ β̃∗
s

{
‖G‖(Ls(Ω))3 +

( ∑

E∈Th

h2
E‖divG‖2

L2(E)

)1/2
}

, (4.26)

whereβ̃∗
s depends only onλ∗(t), v∗, a∗ andNℓ. This proves the assertion of the lemma. ⋄

Collecting (4.9) and (4.12), we get

|||G|||div = |||HI |||div ≤ β∗

s

{
‖H‖(Ls(Ω))3 +

( ∑

E∈Th

h2
E ‖div H‖2

L2(E)

)1/2
}

.

This, together with (4.8), implies (4.11) withβ∗ = (β∗
s (C∗

Ω + h))−1.
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5 Convergence analysis

5.1 Consistency assumption

In order to prove error estimates, we need some assumptions on the scalar product (3.11), and
more precisely on the relationships between the continuousscalar product (3.1) and its discrete
counterpart (3.11). Our basic assumption will be the following one.

S2 (Consistency of[ , ]E). For every elementE, every linear functionq1 on E and every
G ∈ Xd, we have

[(K̃∇q1)I , G]E =

∫

∂E

q1 GE · nE dS −

∫

E

q1 (DIVd G)E dV (5.1)

where(·)I is the interpolation operator (3.7) and̃K is a constant tensor onE such that

sup
x∈E

sup
i,j

|{K(x)}i,j − {K̃}i,j| ≤ C∗

K hE (5.2)

whereC∗
K is a constant independent ofE.

Note thatK̃ may be any reasonable piecewise constant approximation ofK. In practice, we
use either the value ofK at the polyhedron mass center or its mean value.

Condition (5.1) is rather new and requires some comments. First, we point out that we shall
need it to hold only for vectorsG ∈ V d. For divergence-free vectors (5.1) reads

[(K̃∇q1)I , G]E =

∫

∂E

q1 GE · nE dS, (5.3)

showing the remarkable property of using onlyboundary integrals. However, asDIVd G is
constant in eachE andq1 is supposed to be linear, the volume integral appearing in (5.1) is
not difficult to compute. TakingG = (K̃∇q̃1)I (with q̃1 another polynomial of degree≤ 1) in
(5.3), we conclude that assumptionS2implies thatthe scalar product (3.11) is exact for constant
velocities and constant tensors.

In the context of the local mimetic finite difference method [12], condition (5.1) means that
the discrete gradient operator is exact for linear functions. This property has been used in [17] to
build a one-parameter family of symmetric positive definitematricesME for a triangle. As a par-
ticular case, the family includes the mass matrix appearingin the finite element discretizations
with the Raviart-Thomas finite elements.

What is still remarkable in (5.1) is thatit does not require the construction of a lifting oper-
ator from the valuesGe

E on ∂E to the interior ofE. It is not difficult to show, however, thatif
we have any reasonable lifting operatorRE, then the choice

[F, G]E :=

∫

E

K̃−1RE(FE) · RE(GE) dV

will automatically satisfy (5.1) as well as (3.10). We have indeed the following proposition.
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Theorem 5.1 Assume that for every elementE ∈ Th we have a lifting operatorRE acting on
Xd

E (the restriction ofXd to E) and with values in(L2(E))3 such that

RE(GE) · nE ≡ GE · nE on ∂E

div RE(GE) ≡ (DIVd G)E in E
(5.4)

for all G ∈ Xd, and
RE(GI

E) = G (5.5)

for all G constant onE. Then the choices

{K̃}i,j :=
1

|E|

∫

E

{K}i,j dV (5.6)

and

[F, G]E :=

∫

E

K̃−1RE(FE) · RE(GE) dV (5.7)

will automatically satisfy (5.2) and (5.1). If moreover there exist two constantsc∗R and C∗
R,

independent ofE, such that

c∗R

(
|E|

∑

e∈∂E

(Ge
E)2

)1/2

≤ ‖RE(G)‖(L2(E))3 ≤ C∗

R

(
|E|

∑

e∈∂E

(Ge
E)2

)1/2

(5.8)

for all G ∈ Xd, then (3.10) will also hold with constantss∗ andS∗ depending only onc∗R, C∗
R

and on the constantsκ∗, κ∗ from (2.3).

Proof. The validity of (5.2) is immediate. The validity of (5.1) is also easily checked:

[(K̃∇q1)I , G]E =

∫

E

K̃−1RE((K̃∇q1)I
E) · RE(GE) dV (use (5.5) and∇q1=const)

=

∫

E

K̃−1K̃∇q1 · RE(GE) dV (useK̃−1K̃ = Id)

=

∫

E

∇q1 · RE(GE) dV (integrate by parts)

=

∫

∂E

q1 RE(GE) · nEdS −

∫

E

q1 divRE(GE) dV (use (5.4))

=

∫

∂E

q1 GE · nEdS −

∫

E

q1 (DIVd G)E dV.

Finally, (3.10) follows immediately from (5.7), (2.3) and (5.8) after noting that (2.3) is equivalent
to

(κ∗)−1‖v‖2 ≤ vTK−1(x)v ≤ (κ∗)
−1‖v‖ ∀v ∈ IR3 ∀x ∈ Ω. (5.9)

This ends the proof of the theorem. ⋄

A possible way of getting (5.1) is therefore to construct a lifting operatorRE satisfying (5.4),
(5.5), and (5.8), and then defineME following (5.7). For instance, the way followed in [15] for
polygonal domains can be interpreted as the construction ofa lifting operator satisfying (5.4)
and (5.5).
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In general, we may consider assumption (5.1) as a system of linear equations where the
unknowns are the coefficients ofME, and use it, in each elementE, to construct the matrixME.
Since the matrixME should be symmetric and positive definite, this is a problem with nonlinear
constraints. An analytical solution has been found only fortriangular elements [17].

Let us see this in more detail. We consider an elementE havingkE faces. Equation (5.1)
should then hold forkE different possible choices ofGE and three possible choices ofq1 corre-
sponding toq1 = x, q1 = y andq1 = z. Note that forq1 = 1 the equation (5.1) is automatically
satisfied as it reduces to our definition of the operatorDIVd . We have therefore3kE equa-
tions. SinceK̃, and henceME, are symmetric, the number of unknown coefficients ofME is
(kE + 1)(kE + 2)/2, that is bigger than3kE as soon askE ≥ 3. The system will always be com-
patible, since we could always define a liftingRE first by solving, for eachGE, the Neumann
problem,

∆χ = DIVd GE in E

∂χ/∂nE = GE · nE on ∂E,

then by takingRE(GE) := ∇χ, and finally by definingME through (5.7). This will be totally
impractical, but shows that at least a solutionME of (5.1), symmetric and positive definite, exists
(although, in general, the solution will not be unique.)

Particular structures could be imposed toME in order to reduce the number of unknowns.
For instance, we can require that each face interacts only with two neighboring faces, reducing
the number of unknowns to3kE, that equals the number of equations and makes the linear
system much easier to solve on the computer.

An advantage of this approach is that it can rather easily be extended to faces that are not
flat. This is a case in which the construction of an explicit lifting operator might prove to be very
difficult. We shall address this problem in the future publications.

5.2 Error estimate for the vector variable

Using AssumptionS2, we are going to prove error estimates for our discretization. Let(p, F) be
the exact solution of (2.1) and (2.2), let(pd,Fd) be the discrete solution (see (3.15) and (3.16)),
and letpI andFI be the interpolants of the exact solution. Finally, for every elementE, we
denote byp1

E a suitable polynomial of degree≤ 1 that approximatesp, and that will be decided
later on. We notice first that from (2.1), (3.13) and (3.15), we easily have:

DIVd (FI − Fd) = b − b = 0. (5.10)

Using (2.2) and (3.16), then (3.14), and finally (5.10), we get

[FI − Fd, FI − Fd]Xd = [(−K∇p)I , FI − Fd]Xd − [G dpd,F
I − Fd]Xd

= [(−K∇p)I , FI − Fd]Xd − [pd, DIVd (FI − Fd)]Qd

= [(−K∇p)I , FI − Fd]Xd . (5.11)
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Then, adding and subtracting terms we have

|||FI − Fd|||
2
Xd = [(−K∇p)I + (K∇p1)I , FI − Fd]Xd + [(−K∇p1)I , FI − Fd]Xd

= I1 + [(−K∇p1 + K̃∇p1)I , FI − Fd]Xd + [(−K̃∇p1)I ,FI − Fd]Xd

= I1 + I2 + [(−K̃∇p1)I , FI − Fd]Xd

= I1 + I2 + I3. (5.12)

Using (5.1) and (5.10), the third term reads:

I3 =
∑

E∈Th

{∫

∂E

p1
E (FI − Fd)E · nE dS −

∫

E

p1
E (DIVd (FI − Fd))E dV

}

=
∑

E∈Th

∫

∂E

p1
E (FI − Fd)E · nE dS (5.13)

We are therefore left with the problem of estimatingI1, I2, andI3. A first estimate ofI2 is
trivial. From (5.2) we immediately have

I2 ≡ [(−K∇p1 + K̃∇p1)I , FI − Fd]Xd ≤ C∗

Kh |||(∇p1)I |||Xd |||FI − Fd|||Xd (5.14)

wherep1 still has to be defined.
Let us recall some known properties on the approximation errors. For the sake of simplicity,

we assume that our solutionp is in H2(Ω). Note that with a little additional effort we could use
a weaker regularity, and get a lower order of convergence.

We first recall that, under AssumptionM6 (Star-shaped elements), it is possible to find a
constantC∗

app, depending only onτ∗, such that for every elementE and for everyp ∈ H2(E)
there exist a constantp0

E and a polynomialp1
E of degree≤ 1 such that

‖p − p0
E‖L2(E) ≤ C∗

app hE ‖p‖H1(E), (5.15)

‖p − p1
E‖L2(E) ≤ C∗

app h2
E ‖p‖H2(E), ‖p − p1

E‖H1(E) ≤ C∗

app hE ‖p‖H2(E) (5.16)

(see [4, Lemma 4.3.8]). Concerning the error on faces, we can use a result due to Agmon
and made popular in the numerical analysis community by D.N.Arnold [1]. Applied to our
case, it says that there exists a constantC∗

agm, depending only on the constantγ∗ of Assumption
M4, such that for every pyramidP e

E (as described in AssumptionM5), and for every function
χ ∈ H1(P e

E), we have

‖χ‖2
L2(e) ≤ C∗

agm

(
h−1

E ‖χ‖2
L2(P e

E
) + hE ‖χ‖2

H1(P e
E

)

)
. (5.17)

It is then immediate to derive from (5.17) that

‖∇χ‖2
L2(e) ≤ C∗

agm

(
h−1

E ‖χ‖2
H1(P e

E
) + hE ‖χ‖2

H2(P e
E

)

)
(5.18)

for everyχ ∈ H2(E). Applying this to the differencep − p1
E, and using (5.16), we get:

‖p − p1
E‖

2
L2(e) + h2

E‖∇(p − p1
E)‖2

L2(e) ≤ C∗

face h3
E ‖p‖2

H2(E) (5.19)
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whereC∗
face depends only onτ∗ andγ∗.

Now, we can finish the estimate ofI2. Note that∇p1 is a constant vector. Then, (5.16) and
the triangle inequality give:

|||(∇p1
E)I |||Xd = ‖∇p1

E‖L2(E) ≤ ‖∇p‖L2(E) + ‖∇(p − p1
E)‖L2(E) ≤ (1 + hE C∗

app)‖p‖H2(E).

Thus, we obtain immediately from (5.14) that

I2 ≤ C∗

I2
h ‖p‖H2(Ω) |||F

I − Fd|||Xd (5.20)

whereC∗
I2

equals to(1 + hE C∗
app)C

∗
K with C∗

K given in (5.2).
The estimate ofI1 is obtained in the following lemma.

Lemma 5.1 Let p ∈ H2(Ω) and let, in eachE ∈ Th, p1 be such that (5.16) holds. Let(·)I be
the interpolation operator defined in (3.7), and let finallyG ∈ Xd. Then

[(−K∇p)I + (K∇p1)I , G]Xd ≤ C∗

I1
h ‖p‖H2(Ω) |||G|||Xd (5.21)

where the constantC∗
I1

is independent ofp, G andh.

Proof. The proof follows immediately from (3.10), the definition ofthe interpolation operator
(3.7), the Cauchy-Schwartz inequality, and the approximation results quoted above. Indeed, we
have

|||(−K∇p)I + (K∇p1)I |||2Xd ≤ S∗
∑

E∈Th

∑

e∈∂E

(
((−K∇p)I + (K∇p1)I)e

E

)2
|E|

≤ S∗
∑

E∈Th

∑

e∈∂E

(
1

|e|

∫

e

K∇(p − p1
E) · nE dS

)2

|E|

≤ S∗
∑

E∈Th

∑

e∈∂E

1

|e|
‖K∇(p − p1

E)‖2
L2(e)|E|

≤ C∗

I1
h2 ‖p‖2

H2(Ω)

whereC∗
I1

depends only ona∗ given in (2.4),S∗ given in (3.10),κ∗ given in (2.3), andC∗
face

obtained in (5.19). ⋄

The following Lemma gives an estimate forI3.

Lemma 5.2 Letp ∈ H2(Ω) and let, in eachE ∈ Th, p1 be such that (5.16) holds. Moreover let
G ∈ Xd. Then ∑

E∈Th

∫

∂E

p1 GE · nE dS ≤ C∗

I3
h ‖p‖H2(Ω) |||G|||Xd (5.22)

where the constantC∗
I3

is independent ofp, G andh.
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Proof. The first (crucial) step of the proof uses the continuity ofp and the fact thatGE · nE

takes opposite values for the two elements sharing each internal face; then the result follows with
usual instruments, like the Cauchy-Schwartz inequality andthe approximation results (5.16):

∑

E∈Th

∫

∂E

p1
E GE · nE dS =

∑

E∈Th

∫

∂E

(p1
E − p)GE · nE dS

≤
∑

E∈Th

∑

e∈∂E

‖p − p1
E‖L2(e) ‖G

e
E‖L2(e)

=
∑

E∈Th

∑

e∈∂E

‖p − p1
E‖L2(e) |G

e
E| |e|

1/2

≤ v−1/2
∗ (C∗

face)
1/2

∑

E∈Th

hE‖p‖H2(E)

∑

e∈∂E

|Ge
E| |E|1/2

≤ C∗

I3
h‖p‖H2(Ω) |||G|||Xd .

whereC∗
I3

= (v−1
∗ s−1

∗ C∗
face)

1/2Nℓ. This proves the assertion of the lemma. ⋄

Combining (5.12) with (5.20), (5.21) and (5.22), we finally get the main convergence result.

Theorem 5.2 Under assumptionsP1, M1–M6 andS1–S2, let (p, F) be the solution of (2.1)-
(2.2), and let(pd, Fd) be the discrete solution, given by (3.15)-(3.16). Let moreover FI be the
interpolant ofF, introduced in (3.7). Then we have

|||FI − Fd|||Xd ≤ C∗ h ‖p‖H2(Ω), (5.23)

whereC∗ depends only upon the various constants appearing in AssumptionsP1, M1–M6 and
S1–S2.

5.3 Error estimates for the scalar variable

For the estimate on the scalar variablepd, we shall go back to the inf-sup condition (4.5). For
the sake of simplicity, we assume thatΩ is convex. Letψ be the solution of

−div(K∇ψ) = pI − pd in Ω

ψ = 0 on∂Ω

where, for simplicity, we identifiedpd−pI with the corresponding piecewise constant function.
The convexity ofΩ implies that there exists a constantC∗

Ω, depending only onΩ, such that

‖ψ‖H2(Ω) ≤ C∗

Ω |||pd − pI |||Qd . (5.24)

We set now
H = K∇ψ (5.25)

and defineG ∈ Xd asG = HI , so that

DIVd G = pd − pI . (5.26)
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Finally, we denote byψ1 a piecewise linear approximation ofψ that satisfy (5.16) for each
E ∈ Th. Using (5.26), then (4.1), then (3.6) and (3.13), then integrating by parts, and finally
integrating once more by parts and using (2.1) and (2.2) we get

|||pd − pI |||2Qd = [DIVd G, pd − pI ]Qd

= [Fd, G]Xd − [DIVd G, pI ]Qd = [Fd, G]Xd −

∫

Ω

p div(K∇ψ) dV

= [Fd, G]Xd +

∫

Ω

K∇ p · ∇ψ dV

= [Fd, G]Xd +

∫

Ω

b ψ dV.

Now, using the definition ofG and adding and subtracting terms, we have

|||pd − pI |||2Qd = [Fd, (K∇ψ)I − (K∇ψ1)I ]Xd + [Fd, (K∇ψ1)I ]Xd +

∫

Ω

b ψ dV

= J1 + [Fd, ((K − K̃)∇ψ1)I ]Xd + [Fd, (K̃∇ψ1)I ]Xd +

∫

Ω

b ψ dV

= J1 + J2 + [Fd, (K̃∇ψ1)I ]Xd +

∫

Ω

b ψ dV (5.27)

Using (5.21), the termJ1 can be easily bounded by

J1 ≡ [Fd, (K∇ψ)I − (K∇ψ1)I ]Xd ≤ C∗

I1
h |||Fd|||Xd ‖ψ‖H2(Ω). (5.28)

The termJ2 is bounded as in (5.14), (5.20) by

J2 ≡ [Fd, ((K − K̃)∇ψ1)I ]Xd ≤ C∗

I2
h |||Fd|||Xd ‖ψ‖H2(Ω). (5.29)

For the third term in the last line of (5.27) we can use (5.1) toobtain

[Fd, (K∇ψ1)I ]Xd =
∑

E∈Th

∫

∂E

ψ1(Fd)E · nE dS −

∫

Ω

bψ1 dV. (5.30)

With the help of (5.22), we get then
∣∣∣∣[Fd, (K̃∇ψ1)I ]Xd +

∫

Ω

b ψ dV

∣∣∣∣ ≤ C∗

I3
h |||Fd|||Xd ‖ψ‖H2(Ω) +

∣∣∣∣
∫

Ω

(b ψ − bψ1) dV

∣∣∣∣ (5.31)

where the last term is easily bounded by2 C∗
app h ‖b‖H1(Ω) ‖ψ‖H1(Ω). Collecting the above in-

equalities (5.27) - (5.31), we easily obtain

|||pd − pI |||2Qd ≤ C∗ h
{
|||Fd|||Xd + ‖b‖H1(Ω)

}
‖ψ‖H2(Ω) (5.32)

that combined with the estimates (5.24), Theorem 5.2 and Lemma 4.1 gives the proof of the
second convergence result.
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Theorem 5.3 Under assumptions of Theorem 5.2, plus the convexity ofΩ, we have

|||pd − pI |||Qd ≤ C∗ h
(
‖p‖H2(Ω) + ‖b‖H1(Ω)

)
(5.33)

where the constantC∗ depends only on the constants appearing in AssumptionsP1, M1–M6
andS1–S2, onC∗

Ω appearing in (5.24) and onβ∗
s appearing in (4.12).

It is interesting to note that, assuming that in each elementE we had a suitable liftingRE, a
better estimate for the scalar variable could be obtained. We have indeed the following theorem

Theorem 5.4 Together with the assumptions of Theorem 5.3, assume moreover that for each
elementE we have a lifting operatorRE with the properties (5.4), (5.5) and (5.8) such that

‖RE(GI) − G‖L2(E) ≤ C∗

Ra hE ‖G‖(H1(E))3 ∀G ∈ (H1(E))3 ∀E ∈ Th (5.34)

whereC∗
Ra is a constant independent ofG andhE. Then, we have

|||pd − pI |||Qd ≤ C∗ h2
(
‖p‖H2(Ω) + ‖b‖H1(Ω)

)
(5.35)

where the constantC∗ depends only on the constants appearing in AssumptionsP1, M1–M6
and S1–S2, on C∗

Ω appearing in (5.24), onβ∗
s appearing in (4.12), and onC∗

Ra appearing in
(5.34).

Proof. Let R(G) be such thatR(G)|E = RE(GE). Following essentially [10] and using (5.26),
then (4.1), (3.6) and (3.13) (as in the previous proof) with (5.4), then integrating by parts and
finally using (2.2) and (5.7), we get

|||pd − pI |||2Qd = [DIVd G, pd − pI ]Qd

= [Fd, G]Xd −

∫

Ω

p div R(G) dV

= [Fd, G]Xd +

∫

Ω

∇ p · R(G) dV = [Fd, G]Xd +

∫

Ω

K−1K∇ p · R(G) dV

=

∫

Ω

K−1(R(Fd) − F) R(G) dV.

Adding and subtractingH defined in (5.25), we get

|||pd − pI |||2Qd =

∫

Ω

K−1(R(Fd) − F) (R(G) − H) dV +

∫

Ω

K−1(R(Fd) − F)H dV

= J3 +

∫

Ω

(R(Fd) − F)∇ψ dV = J3 −

∫

Ω

ψ div(R(Fd) − F) dV

= J3 −

∫

Ω

(bI − b)ψ dV

= J3 −

∫

Ω

(bI − b)(ψ − ψI) dV = J3 + J4. (5.36)
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In their turn,J3 andJ4 can be easily bounded using the previous estimates and usualargu-
ments. Indeed, the triangle inequality, then (3.10) and (5.8), and finally (5.23) and (5.34) imply
that

‖R(Fd) − F‖(L2(Ω))3 ≤ ‖R(Fd − FI)‖(L2(Ω))3 + ‖R(FI) − F‖(L2(Ω))3

≤ C∗

Rs−1/2
∗ |||Fd − FI |||Xd + ‖R(FI) − F‖(L2(Ω))3

≤ C h ‖p‖H2(Ω). (5.37)

Using the theorem assumption (5.34) and (5.24), we get

‖R(G)−H‖(L2(Ω))3 = ‖R(HI)−H‖(L2(Ω))3 ≤ C∗

Rah‖H‖(H1(Ω))3 ≤ Ch|||pd−pI |||Qd . (5.38)

The approximation property (5.15) gives the following estimates:

|‖bI − b‖L2(Ω) ≤ C∗

app h‖b‖H1(Ω) (5.39)

and
‖ψ − ψI‖L2(Ω) ≤ C∗

app h‖ψ‖H1(Ω) ≤ C∗

appC
∗

Ω h |||pd − pI |||Qd . (5.40)

Inserting estimates (5.37)-(5.40) into (5.36), we get immediately the result. ⋄

Remark 5.1 It is very likely that our additional assumption (5.34) is not needed, as it should
be possible to deduce it from (5.4), (5.5), possibly with minor additional assumptions on the
geometry. However, in essentially all cases in whichRE can be explicitly built, it is easy to
prove directly that (5.34) holds true. We decided thereforethat it would have been more simple
to just assume it.

6 Conclusion

In this paper, we have considered the mimetic finite difference method for the mixed formulation
of the diffusion problem on polyhedral meshes. We have proved the stability of the mimetic
discretizations and the optimal convergence rates for the scalar and vector variables. The key
elements of our methodology are the consistency assumptionS2and the lift propertyLP.

In the future work, we plan to extend the convergence resultsto polyhedral meshes with
curvilinear faces.
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Appendix A

The purpose of this appendix is to prove the lift property (4.17)-(4.18), that we recall for conve-
nience of the reader.

LP (Lift Property). For everyt < 2 there exists a constantλ∗ = λ∗(t) such that: For every
E ∈ Th and for everye ∈ ∂E there exists a functionϕe

E fromE to IR that verifies

ϕe
E = 1 on e, ϕe

E = 0 on ∂E \ e, (A.1)

and
‖ϕe

E‖L2(E) ≤ λ∗h
3/2
E , ‖∇ϕe

E‖(Lt(E))3 ≤ λ∗h
3/t−1
E . (A.2)

A traditional way would be to assume that there exist a finite number of reference elements
Ê1, ...,Ê1 and a positive constantL∗ such that: For eachE ∈ Th there is anÊk and a bi-Lipschitz
mapΦE

k from Êk to E such that

|ΦE
k |W 1

∞
(Êk) ≤ L∗, ||ΦE

k ||L∞(Êk) ≤ L∗ hE (A.3)

and
|(ΦE

k )−1|W 1
∞

(E) ≤ L∗, ||(ΦE
k )−1||L∞(E) ≤ L∗ h−1

E . (A.4)

Then, for each reference elementÊk and for each facêe of Êk we could construct the harmonic
function ϕ̂ê

Êk
with boundary value1 on ê and zero on the other faces, and verify that it belongs

to W 1
t (Êk) for everyt < 2. Finally each functionϕe

E could be constructed by combining one of
the reference functionŝϕê

Êk
with the correspondingΦE

k . This is surely feasible, but will become
rather cumbersome if we want to consider a big variety of possible shapes for our elements.

We decided here to follow a different path, that requires only the fact that the faces are star-
shaped (M4) and the Pyramid property (M5) which are possibly more difficult to explain, but
much easier to check and to enforce. The general idea is first to build a functionϕ̂1 on the unit
coneC1, then, for everyh, to build a functionϕh on a coneCh obtained by scaling the unit cone,
and finally, for each elementE and for each facee, to map the coneCγ∗hE

(whereγ∗ is given in
AssumptionM4) into the pyramidP e

E described in AssumptionM5 with a Lipschitz continuous
mapping. This will give us a functionϕ = ϕe

E on the pyramid, having the right norms. This
function will finally be extended by zero to the whole elementE, and it still will have the right
norms. But let us see the procedure in more detail.

For each elementE and for each facee of E we want to build a functionϕ = ϕe
E with the

following properties:

• The support ofϕ is contained in the pyramidP = P e
E satisfying AssumptionM5.

• ϕ ≡ 1 on e andϕ ≡ 0 on the other faces ofP e
E.

• ϕ satisfies the following estimates:

||ϕ||L2(P ) ≤ λ∗ h
3/2
E and ||∇ϕ||(Lt(P ))3 ≤ λ∗ h

3/t−1
E (A.5)

where constantλ∗ is independent ofE ande.
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As we said before, we start our work on cones: forρ1 > 0 we shall refer to the solid

{
(x, y, z) : 0 ≤ z ≤ ρ1 and x2 + y2 ≤ (ρ1 − z)2

}

as thecircular cone of radiusρ1.

Lemma A.1 Let C1 be the circular cone of radius1, and letϕ̂1 be the harmonic function that
takes value1 on the basis and0 on the lateral boundary. Then̂ϕ1 belongs toL∞(C1) and∇ϕ̂1

belongs to(Lt(C1))
3 for all t < 2.

Proof. The first part of the statement follows from the maximum principle, that gives0 ≤ ϕ̂1 ≤
1. The second part of the statement follows immediately from the known results concerning
domains with corners (see e.g. [11], or [9]). ⋄

In view of the previous lemma, we set

Ĉt := ‖∇ϕ1‖(Lt(C1))3 . (A.6)

It is clear thatĈt depends ont and hence ons through (4.15).

Lemma A.2 For every positive real numberh, letCh be a circular cone of radiush. Then, there
exists a functionϕh taking value1 on the basis, value zero on the lateral surface, and satisfying

||ϕh||L2(Ch) ≤ |Ch|
1/2 and ||∇ϕh||(Lt(Ch))3 ≤ h3/t−1Ĉt (A.7)

where|Ch| is the volume ofCh.

The proof follows with the usual scaling arguments (see e.g.[8, Theorem 3.1.2]). ⋄

Consider now a facee of E. For convenience, we assume that (a) the facee lies in the plane
z = 0, (b) Me, defined in AssumptionM4 (Star-shaped faces), is the origin of the axes and
(c) the polyhedronE is locally in the half-spacez > 0. By AssumptionM4 there exists aγ∗

such that: The circular coneCh having the basis on the facee (with center inMe), and radius
h = ρ∗ = γ∗ hE, is strictly contained in the pyramidP e

E having the same vertex and basis equal
to e. Hence, by AssumptionM5 (The pyramid property), Ch is contained inE.

Let us see first that AssumptionM4 implies the existence of a radial mapping in the plane
z = 0 which maps the diskDρ∗ with center inMe and radiusρ∗ into the facee, is one-to-one,
Lipschitz-continuous together with its inverse, and withW 1

∞ norms bounded in terms ofγ∗ and
the number of edges ofe.

Lemma A.3 Under assumptionM4 there exists a mapΦ2, mapping the diskDρ∗ into the face
e, that is Lipschitz continuous together with the inverse mapΦ−1

2 . Moreover,

‖Φ2‖W 1
∞

(Dρ∗ ) ≤ C∗

e and ‖Φ−1
2 ‖W 1

∞
(e) ≤ C∗

e (A.8)

whereC∗
e depends only on the constantγ∗ of AssumptionM4.
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Figure 3: The splitting ofe in sectors.

Proof. To show this, we note that the planez = 0 can be split in a finite number of sectors by
the vertices ofe. Each sector corresponds to the straight rays coming out of the originMe and
intersecting the edgeℓk (see Fig. 3). For each pointP ∈ Dρ∗, we first consider the ray emanating
from the origin and passing throughP. This ray intersects∂e at pointV(P). Our mapping is
defined as follows:

P̃ ≡ Φ2(P) :=
|V(P)|

ρ∗

P. (A.9)

It is clear thatΦ2 maps every pointP into a pointP̃ on the same ray, so that

V(P) = V(P̃) ∀P ∈ Dρ∗ . (A.10)

It is immediate to check that, on each ray, the map is continuous and monotone, and that it maps
the points of the circumference of radiusρ∗ into the corresponding points of∂e on the same ray.
Hence it mapsDρ∗ into e in a one-to-one way. It is also clear that the map is globally continuous,
invertible, and the inverse map

P ≡ Φ−1
2 (P̃) :=

ρ∗

|V(P)|
P̃ ≡

ρ∗

|V(P̃)|
P̃ (A.11)

is also continuous and mapse into Dρ∗. Note that we used (A.10) in the last step.
In order to show the Lipschitz continuity, we have to bound the distance between the images

|P̃− Q̃| by a constant times the distance|P−Q|. For this, we remark first that AssumptionM4
implies that

1 ≤
|V|

ρ∗

≤
hE

γ∗ hE

=
1

γ∗

for everyV ∈ ∂e. (A.12)

As shown in Figure 4, it also implies that for every pointV on an edgeℓ of ∂e, the angleαV

betweenℓ and the ray passing throughV verifies

| sin αV | =
|Hℓ|

|V|
≥

ρ∗

|V|
≥ γ∗ (A.13)

whereHℓ is the orthogonal projection of the originMe on the line containingℓ, and we used
(A.12) in the last step.
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Figure 4: Lower bound on| sin αV |.

The Lipschitz continuity is obvious whenP andQ are on the same ray:

|P̃ − Q̃| =
|V(P)|

ρ∗

|P − Q| ≤
1

γ∗

|P − Q|. (A.14)

O

V(P)

V(Q)

P

R

Q

KQ

Figure 5: Lipschitz continuity within a sector.

If P andQ are on two different rays in the same sector, we first denote byKQ andR

(respectively) the orthogonal projections ofV(P) (respectively, ofP) on the ray containingQ
(see Figure 5). Applying Thaletes theorem, we get

|V(P) − KQ|

|V(P)|
=

|P − R|

|P|
≤

|P − Q|

|P|
. (A.15)

Collecting (A.15), (A.13) and (A.12), we have

|V(P) − V(Q)| =
|V(P) − KQ|

| sin(αV (Q))|
≤

|P − Q|

γ∗|P|
|V(P)| ≤

|P − Q|

(γ∗)2|P|
ρ∗ (A.16)
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where obviously the role ofP andQ can be interchanged. Finally, the triangle inequality to-
gether with (A.9) and (A.16) give

|P̃ − Q̃| =

∣∣∣∣
|V(P)|P − |V(Q)|Q

ρ∗

∣∣∣∣ ≤
|V(P) − V(Q)|

ρ∗

|P| +
|V(Q)|

ρ∗

|P − Q|

≤
|P − Q|

(γ∗)2
+

1

γ∗

|P − Q| =
1 + γ∗

(γ∗)2
|P − Q|.

(A.17)

The case ofP andQ belonging to different sectors can be easily deduced inserting suitable
intermediate points at the boundaries of the sectors and then using the triangle inequality.

In a similar way, we can show that the inverse mapping is also Lipschitz continuous. For
instance, using (A.11) we get

|P − Q| =

∣∣∣∣
ρ∗

|V(P̃)|
P̃ −

ρ∗

|V(Q̃)|
Q̃

∣∣∣∣ =
ρ∗

|V(P̃)| |V(Q̃)|

∣∣∣|V(Q̃)|P̃ − |V(P̃)|Q̃
∣∣∣ . (A.18)

Then, we have, adding and subtracting|V(P)|P and using the triangle inequality,

||V(Q̃)|P̃ − |V(P̃)|Q̃| ≤ |V(P̃) − V(Q̃)| |P̃| + |V(P̃)| |P̃ − Q̃|. (A.19)

On the other hand, we can apply the argument of (A.16) to obtain

|V(P̃) − V(Q̃)| ≤
|P̃ − Q̃|

(γ∗)2|P̃|
ρ∗. (A.20)

Collecting (A.18), (A.19) and (A.20), and using (A.12) (thistime in the senseρ∗/|V| ≤ 1), we
finally obtain

|P − Q| ≤
1

(γ∗)2
|P̃ − Q̃| + |P̃ − Q̃| =

1 + (γ∗)
2

(γ∗)2
|P̃ − Q̃|. (A.21)

This proves the assertion of the lemma. ⋄

Now, we can construct a mappingΦ3 from the coneCh (havingDρ∗ as basis and with height
equal toρ∗) into to the pyramidP e

E (havinge as basis and with the same vertex asCh), also
Lipschitz-continuous with its inverse, by taking

(x̃, ỹ) = Φ2(x, y), z̃ = z. (A.22)

Again, the Lipschitz norm of the mapΦ3 and of its inverse depend only onγ∗. This proves the
following lemma.

Lemma A.4 Under assumptionM4 there exists a mapΦ3, mapping the coneCh into the pyra-
midP e

E, that is Lipschitz continuous together with the inverse mapΦ−1
3 . Moreover,

‖Φ3‖W 1
∞

(Ch) ≤ C∗

pyr and ‖Φ−1
3 ‖W 1

∞
(P e

E
) ≤ C∗

pyr (A.23)

whereC∗
pyr depends only on the constantγ∗ of AssumptionM4.
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The last step is to construct, for each elementE and for each facee ∈ ∂E, the functionϕe
E

satisfying (A.5) (with the right boundary conditions). Let

ϕe
E(x, y, z) = ϕh(Φ

−1
3 (x, y, z))

whereϕh is the function from Lemma A.2 defined for the circular cone ofradiush = ρ∗ =
γ∗ hE. It is clear thatϕe

E will be in L2(P
e
E), that∇ϕe

E will be in (Lt(P
e
E))3, and that their norms

will be bounded by

‖ϕe
E‖L2(P e

E
) ≤ C∗

pyr h
3/2
E and ‖∇ϕe

E‖(Lt(P e
E

))3 ≤ Ĉt C
∗

pyrh
3/t−1
E (A.24)

whereĈt is given in (A.6) andC∗
pyr depends only onγ∗. Henceϕe

E satisfies (A.5) as required.
Finally, we take the prolongation ofϕe

E (that we call againϕe
E) by zero inE \ P e

E.
This ends the proof of the lift property (A.1)–(A.2).
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