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Abstract. Virtual Element Methods (VEM) are the latest evolution of the Mimetic
Finite Difference Method, and can be considered to be more close to the Finite Element
approach. They combine the ductility of mimetic finite differences for dealing with
rather weird element geometries with the simplicity of implementation of Finite Ele-
ments. Moreover, they make it possible to construct quite easily high-order and high-
regularity approximations (and in this respect they represent a significant improvement
with respect to both FE and MFD methods). In the present paper we show that, on
the other hand, they can also be used to construct DG-type approximations, although
numerical tests should be done to compare the behavior of DG-VEM versus DG-FEM.
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1. Introduction. The aim of this paper is to present a possible way
to introduce the Virtual Element Method (VEM) in the Discontinuous
Galerkin (DG) framework. From several points of view VEM can be con-
sidered as the natural extension of Finite Element Methods to more general
geometries and continuity requirements. Apparently, their extension to the
Discontinuous Galerkin world could be seen as useless, as DG methods can
already deal with rather general geometries. However, in a certain number
of their applications there is some need of a conforming interpolant, that
for general geometries or for higher order continuity (as for plate problems,
among others) will not be easily available within the usual DG framework.
Here, however, to start with, we will deal with the simplest possible case,
that is the discretization of the Poisson problem in two dimensions. The
idea is to start understanding what are the most convenient ways to deal
with Discontinuous Virtual Elements. We shall see that a direct application
of the DG technology cannot be done, but some simple variants are avail-
able that still ensure uniqueness, stability, and convergence with optimal
error bounds.

As a first step we will recall the basic concepts of Virtual Element
Methods. This will be done with some details, taking into account that the
introduction of VEM is quite recent, and we cannot expect many readers
to be familiar with them. In the next section we will present the basic
assumptions (on the element geometry, on the discrete spaces) and recall
an abstract convergence result. Then we will recall the general way to
construct the discrete bilinear form, in Section 3, and the discrete right-

∗IUSS-Pavia (Italy) & King Abdulaziz University, Jeddah (Saudi Arabia),
brezzi@imati.cnr.it.
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hand side, in Section 4. In Section 5 we will recall the classical instruments
and concepts of DG formulations (in a much less detailed way, this time).
The novelty of the paper will appear in Section 6, where VEM will be
adapted to DG formulations, and in Section 7 where optimal error bounds
will be proved.

Throughout the paper, we will follow the usual notation for Sobolev
spaces and norms (see e.g. [6]). In particular, for an open bounded domain
D, we will use | · |s,D and ‖ · ‖s,D to denote seminorm and norm, respec-
tively, in the Sobolev space Hs(D), while (·, ·)0,D will denote the L2(D)
inner product. Often the subscript will be omitted when D is the compu-
tational domain Ω. For a nonnegative integer k, the space of polynomials of
degree less than or equal to k will be denoted by Pk. Following a common
convention, we will also use P−1 := {0}.

Finally, C will be a generic constant independent of the decomposition
that could change from an occurrence to the other.

2. Basic Assumptions and an abstract convergence result. We
first recall the general idea of continuous Virtual Element Methods, under-
lying the similarities with classical Finite Element Methods (we refer to [3]
for a more detailed presentation).

For this we consider, as usual, the simplest possible problem: find
u ∈ V ≡ H1

0 (Ω) such that −∆u = f . Written in variational form, the
problem becomes

find u ∈ V ≡ H1
0 (Ω) such that a(u, v) = (f, v) ∀v ∈ V, (2.1)

where (as usual):

a(u, v) :=

∫

Ω

∇u · ∇v dx, (f, v) =

∫

Ω

f v dx. (2.2)

Let Th be a decomposition of Ω into polygons of almost arbitrary shape
(see, as an example, Fig. 1). On Th we make the following assumptions

H1 - There exists an integer N and a positive real number ζ such that for
every h and for every K ∈ Th:

• the number of edges of K is ≤ N ,
• the ratio between the shortest edge and the diameter hK of K is

bigger than ζ, and
• K is star-shaped with respect to every point of a ball of radius
ζhK .

Remark 2.1. We point out that from assumption H1 we can easily
deduce that there exists an s∗ > 3/2, depending on ζ, such that for every
smooth g on ∂K and for every smooth f in K the solution ϕ of the problem
∆ϕ = f in K with ϕ = g on ∂K belongs to Hs∗(K).
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Fig. 1. Example of a Voronoi tessellation

Next, we fix an integer k ≥ 1 (that will be our order of accuracy) and
define for each K ∈ Th

V Kk := {v : v|e ∈ Pk(e) ∀ edge e of K,∆v ∈ Pk−2(K)}, (2.3)

where we recall that Pk denotes the space of polynomials of degree ≤ k,
and P−1 := {0}.

Denoting by NV the number of vertices of K (obviously equal, as well,
to the number of edges), the dimension of V Kk will clearly be

NK := NV +NV ∗ (k − 1) +
k(k − 1)

2
= NV ∗ k +

k(k − 1)

2

An element v of V Kk can be identified by

• a) the values of v at the vertices;

• b) the moments

∫

e

v pk−2 ds on each edge e, k ≥ 2;

• c) the moments

∫

K

v pk−2 dx, k ≥ 2.

Theorem 2.1. For every k ≥ 1 the set of degrees of freedom a), b),
c) are unisolvent for the space V Kk .

Proof. The number of degrees of freedom a), b), c) equals the dimen-
sion of V Kk . Hence we have only to check that every v ∈ V Kk having the



4 FRANCO BREZZI AND L. DONATELLA MARINI

•

•

•

•

•

•

•

•

•

•

⇠

⇠

⇠⇠

⇠ ⇥

• value of v

⇠ R
e
v ds/|e|

⇥
R

K
v dK/|K|

1

Fig. 2. Example of d.o.f. for k = 1 (left), and k = 2 (right)

d.o.f.’s equal to zero is identically zero. For this we first observe that if
the degrees of freedom a) and b) are equal to zero, then v = 0 on ∂K.
Remember that v, being in V Kk , has ∆v in Pk−2. Hence, if the d.o.f. c) are
equal to 0, we have

0 =

∫

K

(−∆v)v dx = |v|21,K

implying that v ≡ 0.
For later use, it will be however more convenient to define the degrees of

freedom in a more precise way. For this, for a geometric object O ⊂ Rd (as
an edge, a face, a d-dimensional domain, etc.) we define first its barycenter
xO and its diameter dO. Then we consider, for every integer r ≥ 0, the set
Mr(O) of all monomials, in Rd, of the type

Mr(O) :=
{ (x− xO)α

d
|α|
O

}
for |α| ≤ r (2.4)

where for the multi-integer α ∈ Nd we followed the usual notation

(x1, ..., xd)
α ≡ xα1

1 · xα2
2 · · · xαd

d and |α| =
d∑

i=1

αi.

Now we can make precise the actual degrees of freedom that we want to
use in V Kk :

• the values of v at the vertices;

and for k ≥ 2

• the moments

∫

e

vmk−2 ds/|e|, mk−2 ∈Mk−2(e), on each edge e,

• the moments

∫

K

vmk−2 dx/|K|, mk−2 ∈Mk−2(K).

Fig. 2 shows an example of d.o.f for the cases k = 1 and k = 2.
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For each h and for each k we then define the VEM space as

Vh := {v ∈ V : v|K ∈ V Kk ∀K ∈ Th}. (2.5)

Following [3], we need now to define an element fh ∈ V ′h, and a bilinear
form ah(·, ·) from Vh × Vh to R satisfying the following assumptions:

H2 • k-consistency: for all h, and for all K in Th

∀p ∈ Pk, ∀vh ∈ Vh aKh (p, vh) = aK(p, vh). (2.6)

• Stability: ∃ two positive constants α∗ and α∗, independent of h
and of K, such that

∀vh ∈ Vh α∗ a
K(vh, vh) ≤ aKh (vh, vh) ≤ α∗ aK(vh, vh). (2.7)

In (2.6)–(2.7) aK(·, ·) denotes the restriction of the bilinear form a(·, ·)
defined in (2.2) to the element K. We point out that, due to the symmetry
of a(·, ·), (2.7) implies as well continuity:

aKh (vh, wh) ≤
(
aKh (vh, vh)

)1/2(
aKh (wh, wh)

)1/2

≤ α∗ (aK(vh, vh))1/2(aK(wh, wh))1/2 ≤ α∗ |vh|1,K |wh|1,K . (2.8)

Then, the approximate problem is, as usual,

find uh ∈ Vh such that ah(uh, vh) =< fh, vh > ∀vh ∈ Vh. (2.9)

The following convergence result is proved in [3].
Theorem 2.2. Under Assumptions H2, the discrete problem (2.9)

has a unique solution uh. Moreover, for every approximation uI of u in
Vh, and for every approximation uπ of u that is piecewise in Pk, we have

‖u− uh‖V ≤ C
(
‖u− uI‖V + ‖u− uπ‖h,V + ‖f − fh‖V ′

h

)

where C is a constant independent of h and

‖f − fh‖V ′
h

:= sup
vh∈Vh

< f − fh, vh >
‖vh‖V

.

3. Construction of the bilinear form ah(uh, vh). First of all, we
observe that the local degrees of freedom allow us to compute exactly
aK(p, v) for any p ∈ Pk(K) and for any v ∈ V Kk . Indeed, observe first
that the value of each function v ∈ Vh at the boundary of each element is
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known (it is a polynomial!), even when the value inside the element is not.
Then consider the following integration by parts

aK(p, v) =

∫

K

∇p · ∇vdx = −
∫

K

∆p vdx+

∫

∂K

∂p

∂n
vds, (3.1)

and observe that since ∆p ∈ Pk−2(K) and ∂p/∂n ∈ Pk−1(e) for all e ⊂ ∂K,
the last two integrals can be computed exactly knowing only the degrees
of freedom associated with v (and without necessarily knowing v in the
interior of K).

This allows us to define (and compute!) the (projection) operator
ΠK
k : V Kk −→ Pk(K) ⊂ V Kk as follows: for all v ∈ V Kk we define ΠK

k v as
the solution of





(∇ΠK
k v,∇q)0,K = (∇v,∇q)0,K ∀q ∈ Pk(K)

∫

∂K

ΠK
k v ds =

∫

∂K

v ds.
(3.2)

We note that (3.2) clearly implies

ΠK
k q = q, ∀q ∈ Pk(K), (3.3)

since the first equation in (3.2) tells us that q and ΠK
k q have the same

gradient, and the second equation takes care of the constant part.
At this point, we observe that choosing aKh (u, v) = aK(ΠK

k u,Π
K
k v)

would easily ensure property (2.6). However this choice would not, in
general, satisfy (2.7). Therefore we need to add a term able to ensure
(2.7). Let then SK(u, v) be a symmetric positive definite bilinear form (to
be chosen) that verifies

c∗a
K(v, v) ≤ SK(v, v) ≤ c∗aK(v, v) ∀v ∈ V Kk with ΠK

k v = 0 (3.4)

for some positive constants c∗, c
∗ independent of K and hK . Then we set

aKh (u, v) = aK(ΠK
k u,Π

K
k v) + SK(u−ΠK

k u, v −ΠK
k v) ∀u, v ∈ V Kk . (3.5)

Theorem 3.1. The bilinear form (3.5) satisfies the consistency prop-
erty (2.6) and the stability property (2.7).

Proof. Property (2.6) follows immediately from (3.3) and (3.2): for
p ∈ Pk(K) (3.3) implies SK(p−ΠK

k p, v−ΠK
k v) = 0. Hence, for all v ∈ V Kk ,

using (3.5) and (3.2), we have

aKh (p, v) = aK(ΠK
k p,Π

K
k v) = aK(p, v). (3.6)

Then we observe first that, since aKh (v−ΠK
k v,Π

K
k v) ≡ 0 for all v, we easily

have

aKh (v, v) = aKh (ΠK
k v,Π

K
k v) + aKh (v −ΠK

k v, v −ΠK
k v) ∀v ∈ V Kk . (3.7)
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Property (2.7) now follows from (3.4) and (3.7) with α∗ := max{1, c∗} and
α∗ := min{1, c∗}: indeed for all v ∈ V Kk

aKh (v, v) ≤ aK(ΠK
k v,Π

K
k v) + c∗aK(v −ΠK

k v, v −ΠK
k v)

≤ max{1, c∗}
(
aK(ΠK

k v,Π
K
k v) + aK(v −ΠK

k v, v −ΠK
k v)

)

= α∗aK(v, v),

and similarly

aKh (v, v) ≥ min{1, c∗}
(
aK(ΠK

k v,Π
K
k v) + aK(v −ΠK

k v, v −ΠK
k v)

)

= α∗a
K(v, v).

3.1. Choice of SK . In general, the choice of the bilinear form SK

would depend on the problem and on the degrees of freedom. From (3.4)
it is clear that SK must scale like aK(·, ·) on the kernel of ΠK

k . Denoting
by χi, i = 1, ..., NK the ith d.o.f. in V Kk , and choosing then the canonical
basis ϕ1, ..., ϕNK as

χi(ϕj) = δij , i, j = 1, 2, . . . ,NK , (3.8)

the local stiffness matrix is given by

aKh (ϕi, ϕj) = aK(ΠK
k ϕi,Π

K
k ϕj) + SK(ϕi −ΠK

k ϕi, ϕj −ΠK
k ϕj). (3.9)

In the present case it is easy to check that, on a “reasonable” polygon (like,
for instance, the ones that satisfy assumptions H1) we have aK(ϕi, ϕi) ' 1.
Hence, a possible choice for SK is simply

SK(ϕi −ΠK
k ϕi, ϕj −ΠK

k ϕj) =

NK∑

r=1

χr(ϕi −ΠK
k ϕi)χr(ϕj −ΠK

k ϕj). (3.10)

Remark 3.1. This explains why, in defining the d.o.f. in V Kk , we
used, instead of the more usual Pk, the set Mk. With the latter choice all
the d.o.f. scale like 1, and this allows to choose SK as simple as in (3.10).

4. Construction of the right-hand side. We consider first the case
k ≥ 2, and define fh on each element K as the L2(K)−projection of f onto
the space Pk−2, that is,

fh = PKk−2f on each K ∈ Th.
Consequently, the associated right-hand side

< fh, vh > =
∑

K∈Th

∫

K

fh vh dx ≡
∑

K∈Th

∫

K

(PKk−2f) vh dx

=
∑

K∈Th

∫

K

f (PKk−2vh) dx
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can be exactly computed using the degrees of freedom for Vh that represent
the internal moments. Then, standard L2-orthogonality and approximation
estimates on star-shaped domains yield

< fh, vh > −(f, vh) =
∑

K∈Th

∫

K

(PKk−2f − f) vh dx

=
∑

K∈Th

∫

K

(PKk−2f − f)(vh − PK0 vh) dx

≤ C
∑

K∈Th

hk−1
K |f |k−1,K hK |vh|1,K

≤ C hk(
∑

K∈Th

|f |2k−1,K)1/2 |vh|1,

(4.1)

and thus,

‖f − fh‖V ′ ≤ Chk
( ∑

K∈Th

|f |2k−1,K

)1/2

. (4.2)

For the case k = 1 we can first, on each element K, define vh as

vh :=
1

|∂K|

∫

∂K

vh ds

and then define

< fh, vh >:=
∑

K∈Th

∫

K

f vh dx

to obtain

< fh, vh > − (f, vh) =
∑

K∈Th

(f, vh − vh)0,K ≤ C h‖f‖0,Ω |vh|1,Ω.

5. Basic concepts of DG methods. The extension of what we have
presented in the previous sections to DG is almost straightforward. The
first difference is, obviously, in the definition of the space Vh, which is now
made of discontinuous functions. Let VDG be such a space:

VDG := {v ∈ L2(Ω) : v|K ∈ V Kk ∀K ∈ Th}, (5.1)

where the local spaces V Kk are still defined as in (2.3). We recall the
definition of jumps and averages for scalar and vector-valued functions
(v, τ , respectively) on an edge e common to two elements K1, K2 (see [2]):

{v} =
v1 + v2

2
, [[ v ]] = v1n1 + v2n2

{τ} =
τ 1 + τ 2

2
, [[ τ ]] = τ 1 · n1 + τ 2 · n2
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where n1, n2 are the outward normal unit vectors to K1, K2. On a bound-
ary edge we only need [[ v ]] = vn and {τ} = τ .

We also define, for every t ≥ 0, the space Ht(Th) :=
∏
K H

t(K) of
piecewise regular functions. We recall from Remark 2.1 that

VDG ⊂ Hs∗(Th) (5.2)

for some s∗ > 3/2 depending on the value of ζ. Then for v, w ∈ Hs∗(Th)
we set

(∇v,∇w)h =
∑

K

∫

K

∇v · ∇w dx, <{∇v}, [[w ]]>=
∑

e

∫

e

{∇v} · [[w ]] ds

< [[ v ]], [[w ]]>=
∑

e

1

he

∫

e

[[ v ]] · [[w ]] ds, ‖[[ v ]]‖20,∂K =
∑

e⊂∂K

1

he

∫

e

|[[ v ]]|2 ds.

For v ∈ H2(Th) we define

‖v‖22,DG =
∑

K∈Th

(
‖∇v‖20,K + h2

K |∇v|21,K
)

+ < [[ v ]], [[ v ]] > . (5.3)

We remark that, for functions vh that are piecewise polynomials, by the
usual inverse inequality we have

‖vh‖22,DG ' ‖vh‖21,DG :=
∑

K∈Th

‖∇vh‖20,K+ < [[ vh ]], [[ vh ]] > . (5.4)

We also set, for functions v, w ∈ H1(Th)

ã(v, w) :=
∑

K∈Th

aK(v, w) =
∑

K∈Th

∫

K

∇v · ∇w dx.

We observe that the solution u of (2.1) verifies [[∇u ]] = 0 so that,
integrating by parts on each element and recalling that f = −∆u, we have

ã(u, v)− < {∇u}, [[ v ]] >= (f, v) ∀v ∈ VDG. (5.5)

On the other hand, the solution u of (2.1) obviously verifies [[u ]] = 0
as well, so that adding terms that are identically zero for [[u ]] = 0 we also
have, for every v ∈ VDG and for every real numbers δ and γ:

ã(u, v)−<{∇u}, [[ v ]]>−δ<{∇v}, [[u ]]>+γ< [[u ]], [[ v ]]>= (f, v). (5.6)

In what follows (as usual for DG methods) we will actually consider
only the values δ = 1, δ = −1 and δ = 0, while γ will be assumed to be
positive, and represents the usual penalty parameter.
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6. Discontinuous VEM. All this will help us in constructing the
discrete problem. To start with, for every K ∈ Th we consider again
the operator ΠK

k defined in (3.2), and assume that SK is a bilinear form
satisfying the stability property (3.4), that we recall here to avoid confusion
with the new notation:

c∗(∇v,∇v)0,K ≤ SK(v, v) ≤ c∗(∇v,∇v)0,K ∀v ∈ V Kk with ΠK
k v = 0

(6.1)
We set, for v, w ∈ Hs∗(Th),

ãh(v, w) :=
∑

K∈Th

ãKh (v, w)

ãKh (v, w) = (∇ΠK
k v,∇ΠK

k w)0,K + SK(v −ΠK
k v, w −ΠK

k w).

(6.2)

Theorem 6.1. The bilinear form (6.2) satisfies the consistency prop-
erty (2.6) and the stability property (2.7).

Proof. The proof is exactly the same of Theorem 3.1, and gives (in the
new notation)

ãKh (p, v) = aK(p, v) ∀p ∈ Pk(K), ∀v ∈ (VDG)|K , (6.3)

α∗a
K(v, v) ≤ ãKh (v, v) ≤ α∗aK(v, v) ∀v ∈ (VDG)|K . (6.4)

Finally, for w, v ∈ H1(Th) we define the discrete bilinear form as

Bh(w, v) :=

ãh(w, v)−<{∇Πkw}, [[ v ]]>−δ<{∇Πkv}, [[w ]]>+γ< [[w ]], [[ v ]]> . (6.5)

In (6.5) δ is, as already said, a parameter to include different DG-schemes.
Precisely, for δ = 1 we have the Virtual Element analogue of the SIPG
(see [1, 10]), for δ = −1 the analogue of the NIPG (see [8]), and for δ = 0
the analogue of the IIPG ([7, 9]). On the other hand, as we already said, γ
is a stabilization parameter that will be assumed to be big enough, as usual
for DG methods. We also point out that, with an abuse of notation, in
(6.5) we denoted by Πk the operator which, on each element K, coincides
with ΠK

k .
Theorem 6.2. There exist positive constants Ms and C, independent

of h, such that:

Bh(v, v) ≥Ms‖v‖21,DG v ∈ VDG, (6.6)

ãh(v, w)+ < [[ v ]], [[w ]] >≤ C‖v‖1,DG‖w‖1,DG v, w ∈ VDG, (6.7)

< {∇v}, [[w ]] >≤ C‖v‖2,DG‖w‖1,DG v ∈ H2(Th), w ∈ H1(Th). (6.8)
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Proof. Following the typical analysis of DG methods (see also [5] in
this book) we recall that, using the trace inequality

‖v‖20,∂K ≤ C
(
`−1‖v‖20,K + `|v|21,K

)
,

(` being a characteristic length of K, for instance its diameter) we imme-
diately deduce (6.8). We also notice that, if v is a piecewise polynomial,
then (6.8) becomes

<{∇v}, [[w ]]>≤ C‖v‖1,DG‖w‖1,DG, v p.w. polynomial, w ∈ H1(Th),
(6.9)

thanks to (5.4). Inequality (6.7) is an immediate consequence of (6.4).
Finally, from (6.4), (6.9) and Cauchy-Scharwz inequality we deduce (6.6)
for γ big enough.

We are now ready to define the discrete problem as follows.

{
Find uh ∈ VDG such that

Bh(uh, vh) =< fh, vh > ∀vh ∈ VDG.
(6.10)

7. Convergence of DG-VEM. We have the following convergence
result.

Theorem 7.1. Under Assumptions H2, for γ big enough and for
δ = 0, 1,−1 the discrete problem (6.10) has a unique solution uh. Moreover,
for every approximation uI of u in VDG and for every approximation uπ of
u that is piecewise in Pk, we have

‖u− uh‖1,DG ≤ C
(
‖u− uI‖1,DG + ‖u− uπ‖2,DG + ‖f − fh‖V ′

1,DG

)
(7.1)

where C is a constant independent of h.

Proof. Stability (6.6) implies that problem (6.10) has a unique solution
uh ∈ VDG, and

‖uh‖1,DG ≤
‖f‖0
Ms

.

In order to prove (7.1), set ηh := uh−uI . From (6.6), and then using (6.10)
and (6.5), we have:

Ms ‖ηh‖21,DG ≤ Bh(ηh, ηh) = Bh(uh, ηh)−Bh(uI , ηh)

=
(
< fh, ηh > −ãh(uI , ηh)+ < {∇ΠkuI}, [[ ηh ]] >

)

+
(
δ <{∇Πkηh}, [[uI ]] > −γ < [[uI ]], [[ ηh ]]

)
=: I + II. (7.2)
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Adding and subtracting uπ, and then using (6.3) we have:

I =< fh, ηh > −
∑

K

(
ãKh (uI − uπ, ηh) + ãKh (uπ, ηh)

)

+ <{∇ΠK
k (uI − uπ)}, [[ ηh ]]> + < {∇ΠK

k uπ}, [[ ηh ]] >

=< fh, ηh > −
∑

K

(
ãKh (uI − uπ, ηh) + aK(uπ, ηh)

)

+ <{∇ΠK
k (uI − uπ)}, [[ ηh ]]> + < {∇ΠK

k uπ}, [[ ηh ]] > .

(7.3)

Then we add the term ã(u, ηh)− < {∇u}, [[ ηh ]] > −(f, ηh) that, thanks to
(5.5)), is equal to zero, and in the last term we remember that, thanks to
(3.3), ΠK

k uπ = uπ. We obtain

I =< fh, ηh > −
∑

K

(
ãKh (uI − uπ, ηh) + aK(uπ, ηh)

)

+ ã(u, ηh)− < {∇u}, [[ ηh ]] > −(f, ηh)

+ <{∇ΠK
k (uI − uπ)}, [[ ηh ]]> + < {∇uπ}[[ ηh ]] >,

(7.4)

that rearranging terms we write as

I =< fh, ηh > −(f, ηh)−
∑

K

(
ãKh (uI − uπ, ηh) + aK(uπ − u, ηh)

)

+ < {∇ΠK
k (uI − uπ)}, [[ ηh ]] > + < {∇(uπ − u)}, [[ ηh ]] > .

(7.5)

Using (6.9) and (6.8) in (7.5) we have then

|I| ≤ C
(
‖f − fh‖V ′

1,DG
+ ‖uI − uπ‖1,DG + ‖uπ − u‖2,DG

)
‖ηh‖1,DG. (7.6)

On the other hand, recalling first that [[u ]] = 0, and then using (5.4) we
have

|II| =
∣∣∣δ <{∇Πkηh}, [[uI − u ]] > −γ < [[uI − u ]], [[ ηh ]]

∣∣∣
≤ C ‖u− uI‖1,DG‖ηh‖1,DG.

(7.7)

Using (7.6) and (7.7) in (7.2) we have then

‖ηh‖1,DG ≤ C
(
‖f − fh‖V ′

1,DG
+ ‖u− uI‖1,DG + ‖uπ − u‖2,DG

)
, (7.8)

and estimate (7.1) follows by triangle inequality.

According to the classical Scott-Dupont theory (see e.g. [4]) we have
the following result.
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Proposition 7.1. Assume that Assumption H1 is satisfied. Then
there exists a constant C, depending only on k and ζ, such that for every
w ∈ Hk+1(K) there exist a wπ ∈ Pk(K), and a wI ∈ V Kk such that

|w − wπ|r,K ≤ C hk+1−r
K |w|k+1,K 0 ≤ r ≤ k + 1,

|w − wI |r,K ≤ C hk+1−r
K |w|k+1,K r = 0, 1.

(7.9)

This, together with (4.2), inserted in (7.1) gives the optimal estimate

‖u− uh‖1,DG ≤ C hk|u|k+1,Ω.
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