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1 Introdution

In reent times, there has been a onsiderable interest, mostly among math-

ematiians, in the extension of Disontinuous Galerkin methods to the treat-

ment of ellipti problems (see, for instane, [5℄ and the referenes therein).

Although their pratial interest is still under investigation, it is lear that

the DG approah often implies a di�erent approah to the problem, that an

sometimes lead, in the end, to new onforming or nononforming �nite ele-

ments that would have been more diÆult to disover starting with the las-

sial approah. This is surely the ase, for instane, of the extension of the

Crouzeix-Raviart element for Stokes problem or nearly inompressible elasti-

ity problems (see [22℄), or the higher order Arnold-Falk elements for Reissner-

Mindlin plates (see [6℄). The element that we are going to present here, again

for Reissner-Mindlin plates, ould be onsidered as another example in this
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diretion. In a sense, being a nononforming element, it ould have been ob-

tained diretly with the more standard �nite element mahinery. However,

the possibility of using suh an element beame lear only after using a DG

approah.

The element, in essene, is based on the use of nononforming pieewise

linear funtions for both rotations and transversal displaements. Thus, all

the unknowns share the same nodes. For the element to work, however, we

have to add some internal degrees of freedom (that ould easily be elimi-

nated by stati ondensation). There are many variants available for these

internal degrees of freedom: here the whole disussion is made assuming that

we have an additional nononforming P

2

�bubble (in baryentri oordinates,

�

2

:= 3(�

2

1

+ �

2

2

+ �

2

3

) � 2) added to eah omponent of rotations, and to

transversal displaements. Several possible variants are disussed, at the end,

in Remark 8.

We are fully aware that the main interest, for new Reissner-Mindlin elements,

relies in the possibility of obtaining a onvenient shell element out of them.

Indeed, there are, by now, several elements that ould be onsidered as sat-

isfatory for the plate Reissner-Mindlin problem (see, just to name a few of

them, [7℄ - [10℄, [13℄. [15℄, [20℄, [23℄ - [25℄, and the referenes therein), but very

few elements for shells have been analyzed in a thorough way, mathemati-

ally and experimentally (see, e.g. [3℄, [16℄ - [19℄, [21℄). This, however, will not

be disussed here, and will possibly be objet of future works. We refer for

instane to [12℄ for a wider disussion and more referenes.

The promising features of this element are its sempliity, the low degree, and,

as already pointed out, the fat that all variables share the same nodes (the

midpoints of the edges). The element has optimal order af approximation

and is loking free. Compared with an ideal onforming linear element, we

have here more degrees of freedom for the same mesh. However, in several

experiments on various types of ellipti problems, the ratio auray/d.o.f. for

onforming and nononforming linear elements turned out to be quite similar

(the formers having a slight edge in the presene of very regular solutions, the

latters being preferable for less regular ones).

Hene, all together, we believe that the extension of suh an element to shell

problems has, at least, good possibilities.

An outline of the paper is as follows. In Setion 2 we present the problem and

reall some of the diÆulties related to the numerial treatment. In Setion 3

we introdue the nononforming element, based on typial instruments of Dis-

ontinuous Galerkin approah. Finally, in Setion 4, we prove error estimates

and show possible variants of the element disussed in Setion 3.
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2 The problem

Given g in, say, L

2

(
), the Reissner{Mindlin equations with lamped boundary

require to �nd (�; w;) suh that

� divC

"

(�)�  = 0 in 
; (1)

� div  = g in 
; (2)

 = �t

�2

(rw � �) in 
; (3)

� = 0; w = 0 on �
: (4)

In (1)-(3), C is the tensor of bending moduli, � represents the rotations, w the

transversal displaement, and  the saled shear stresses. Moreover,

"

is the

usual symmetri gradient operator, �(= 5=6) is the shear orretion fator,

and t is the thikness.

The above equations orrespond to the minimization of the funtional

J

t

(�; v) =

1

2

a(�;�) +

�t

�2

2

jjrv � �jj

2

0;


� (g; v); (5)

where

a(�;�) :=

Z




C

"

(�) :

"

(�)dx;

and (�; �) (resp. jj�jj

0;


) is the inner-produt (resp. norm) in L

2

(
). The lassial

variational formulations of problem (1){(3)

is

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

Find (�; w;) 2 (H

1

0

(
))

2

�H

1

0

(
)� (L

2

(
))

2

:

a(�;�)� (;�) = 0 � 2 (H

1

0

(
))

2

;

(;rv) = (g; v) v 2 H

1

0

(
);

t

2

�

(; � )� (rw; � ) + (�; � ) = 0 � (L

2

(
))

2

:

(6)

It is known that, keeping g �xed, and letting t! 0, the minimizing argument

(�

t

; w

t

) of J

t

(�; v) tends to a �nite limit (�

0

; w

0

) suh that �

0

= rw

0

, and w

0

is the minimizing argument of

1

2

a(rv;rv) � (g; v) over H

2

0

(
) (that is, the

solution of the Kirhho� model; see, for instane, [14℄).

A onforming approximation of the problem leads to introdue �nite element

subspaes �

h

� (H

1

0

(
))

2

and W

h

� H

1

0

(
), and to look for a pair (�

t

h

; w

t

h

)

minimizing (5) over �

h

�W

h

. It is expeted that, for h small, the sequene of

solutions tend, for t ! 0, to a limit (�

0

h

; w

0

h

) lose to (�

0

; w

0

). Indeed, if this

3



is not the ase, then the onvergene (in h) of (�

t

h

; w

t

h

) to (�

t

; w

t

) annot be

uniform in t, and this is a problem when t << diam(
).

On the other hand, it is lear that we must have

�

0

h

= rw

0

h

: (7)

For simple-minded disretizations, it an our that the set of pairs (�

h

; w

h

) 2

�

h

�W

h

satisfying (7) is very small.

For instane, if both �

h

and W

h

are made of pieewise linear ontinuous

funtions, then (7) implies �

0

h

= rw

0

h

= 0. This is the loking phenomenon. In

order to avoid loking, a typial remedy is to hange J

t

into

J

t

h

(�; v) :=

1

2

a(�;�) +

�t

�2

2

jjP

h

(rv � �)jj

0;


� (g; v); (8)

where P

h

is a suitable projetion (or interpolation) operator, in general on

some lower degree polynomials. In the engineering pratie, the redution

orresponding to the use of P

h

is atually often realized by using a redued

integration formula in the shear term.

3 Nononforming approximation

We shall introdue a nononforming �nite element approximation of problem

(1){(3) using a Disontinuous Galerkin type approah. Let then T

h

be a de-

omposition of 
 into triangles T . As we are going to work with disontinuous

elements, the starting working spae will be

H

1

(T

h

) :=

Y

T2T

h

H

1

(T ) with seminorm jvj

2

1;h

=

X

T2T

h

jjrvjj

2

0;


: (9)

For vetor valued funtions we shall use (H

1

(T

h

))

2

, and for tensors (H

1

(T

h

))

4

s

.

A typial instrument of the DG approah is the use of jumps and averages,

that have to be de�ned. We denote by E

h

the set of all the edges in T

h

, and

by E

0

h

the set of internal edges. Let e be an internal edge of T

h

, shared by two

elements E

+

and E

�

, and let ' denote a funtion in H

1

(T

h

), or a vetor in

(H

1

(T

h

))

2

, or a tensor in (H

1

(T

h

))

4

s

. We de�ne the average as usual:

f'g =

'

+

+ '

�

2

8e 2 E

0

h

: (10)

For a salar funtion ' 2 H

1

(T

h

) we de�ne its jump as

['℄ = '

+

n

+

+ '

�

n

�

8e 2 E

0

h

; (11)
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while the jump of a vetor ' 2 (H

1

(T

h

))

2

is given by:

['℄ = ('

+


 n

+

)

S

+ ('

�


 n

�

)

S

8e 2 E

0

h

; (12)

where (' 
 n)

S

denotes the symmetri part of the tensor produt. We do

not need to de�ne jumps of tensors. On the boundary edges we de�ne jumps

of salars as ['℄ = 'n, and jumps of vetors as ['℄ = (' 
 n)

S

, where n

is the outward normal to �
. We also de�ne averages of vetors and tensors

as f'g = '. It an be easily heked that, if ' is a smooth tensor, and � a

pieewise smooth vetor, the following equality holds (see, e.g., [4℄ for a similar

omputation):

X

T2T

h

Z

T

'n � � ds =

X

e2E

h

Z

e

f'g : [�℄ ds: (13)

We now introdue the �nite element spaes that we are going to use. On a

generi triangle T 2 T

h

we de�ne:

P (T ) := P

1

(T )� �

2

(T ); (14)

where P

1

(T ) denotes the set of polynomials of degree � 1 on T , and �

2

denotes

the nononforming bubble of P

2

, i.e., the polynomial of degree 2 vanishing at

the two Gauss points of eah edge. In baryentri oordinates this bubble has

the expression (for instane),

�

2

= 3(�

2

1

+ �

2

2

+ �

2

3

)� 2: (15)

We then de�ne, loally, the �nite element spaes for approximating �; w; and

 as:

P

�

(T ) = (P

1

(T ))

2

� �

2

(T ); (16)

P

w

(T ) = P

1

(T )� �

2

(T ) (17)

P



(T ) = (P

0

(T ))

2

�r�

2

(T ): (18)

(See �gure 1 for the hoie of degrees of freedom). Next, we form the �nite

θ w γ

Fig. 1. Loal dof for the three variables

element spaes:

�

h

= f� : �

jT

2 P

�

(T );

Z

e

[�℄ds = 0 8e 2 E

h

g; (19)

W

h

= fv : v

jT

2 P

w

(T );

Z

e

[v℄ds = 0 8e 2 E

h

g; (20)

�

h

= f� : �

jT

2 P



(T )g; (21)
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and notie that

r

h

W

h

� �

h

; (22)

where r

h

denotes the gradient element by element.

Proposition 1 A vetor � 2 P



(T ) is uniquely determined by the following

3 degrees of freedom:

Z

T

� dx; (23)

Z

T

div � dx = 0: (24)

Proof Condition (24) determines the oeÆient of the bubble part, while on-

ditions (23) take are of the onstant part of the omponents. 2

The degrees of freedom (23){(24) an be used to de�ne the redution operator

P

h

: (H

1

(T

h

))

2

! �

h

.

De�nition 2 For any � 2 (H

1

(T

h

))

2

, P

h

� 2 �

h

is de�ned loally by:

Z

T

(� � P

h

�) dx = 0 8T 2 T

h

; (25)

Z

T

div(� � P

h

�) dx = 0 8T 2 T

h

: (26)

It is easy to hek that

kP

h

�k

0;


� Ck�k

0;


� 2 �

h

: (27)

Finally, we introdue a penalty on the jumps of funtions in �

h

as:

p

�

(�;�) :=

X

e2E

h

1

jej

Z

e

[�℄ : [�℄ ds; (28)

and we de�ne:

a

T

(�;�) :=

Z

T

C

"

(�) :

"

(�) dx: (29)

The disrete problem is then

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

Find (�

h

; w

h

;

h

) 2 �

h

�W

h

� �

h

X

T2T

h

a

T

(�

h

;�) + p

�

(�

h

;�)� (

h

; P

h

�) = 0 � 2 �

h

;

(

h

;r

h

v) = (g; v) v 2 W

h

;

t

2

�

(

h

; � )� (r

h

w

h

; � ) + (P

h

�

h

; � ) = 0 � 2 �

h

:

(30)
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We point out that, sine both P

h

�

h

andr

h

w

h

belong to �

h

, the third equation

of (30) is just another way of writing



h

= �t

�2

(r

h

w

h

� P

h

�

h

): (31)

Hene, 

h

an be eliminated elementwise, so that system (30) is the varia-

tional formulation of (8) in the unknowns �

h

; w

h

only. The introdution of

the auxiliary variable 

h

is just a mathematial trik to perform the error

analysis.

4 Error estimates

We shall prove error estimates in the following norms:

jjj�jjj

2

�

:= k�k

2

0;


+ k

"

(�)k

2

0;


+

X

e2E

h

1

jej

k[�℄k

2

0;e

; � 2 (H

1

(T

h

))

2

; (32)

jjjvjjj

2

W

:= kvk

2

0;


+ jvj

2

1;h

=: kvk

2

1;h

v 2 H

1

(T

h

); (33)

jjj� jjj

2

�

:= k�k

2

0;


� 2 (H

1

(T

h

))

2

: (34)

In the sequel we shall often use the following result (see [1℄-[2℄): let T be a

triangle, and let e be an edge of T . Then 9C > 0 only depending on the

minimum angle of T suh that

jj'jj

2

0;e

� C

�

jej

�1

jj'jj

2

0;T

+ jejj'j

2

1;T

�

' 2 H

1

(T

h

): (35)

Clearly, (35) also holds for vetor valued funtions ' 2 (H

1

(T

h

))

2

.

De�ne:

a

h

(�;�) :=

X

T2T

h

a

T

(�;�) + p

�

(�;�); �;� 2 (H

1

(T

h

))

2

; (36)

and notie that

a

h

(�;�) � Cjjj�jjj

�

jjj�jjj

�

�;� 2 (H

1

(T

h

))

2

; (37)

a

h

(�;�) � �jjj�jjj

2

�

� 2 �

h

: (38)

We observe that the elliptiity property (38) is not trivial to prove. We refer

for instane to [6℄, where the following result is proved:

k�k

2

0;


� C(k

"

(�)k

2

0;


+

X

e2E

h

1

jej

k[�℄k

2

0;e

); � 2 (H

1

(T

h

))

2

: (39)

In (37), (39), and in the sequel we denote by C a positive onstant independent

of h, not neessarily the same at the various ourrenies.
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Multiplying equation (1) by � 2 �

h

, integrating by parts, and using [�℄ = 0

we obtain

a

h

(�;�)� (;�) = 

�

(�;�) � 2 �

h

; (40)

where, using (13),



�

(�;�) :=

X

T2T

h

Z

T

C

"

(�)n � � ds =

X

e2E

h

Z

e

fC

"

(�)g : [�℄ ds: (41)

Multiplying equation (2) by v 2 W

h

and integrating by parts we have

(;r

h

v) = (g; v) + 

W

(; v) v 2 W

h

; (42)

where



W

(; v) :=

X

T2T

h

Z

T

 � nv ds =

X

e2E

h

Z

e

fg : [v℄ ds: (43)

Colleting (40), (42), and (3) we obtain

8

>

>

>

>

>

<

>

>

>

>

>

:

a

h

(�;�)� (;�) = 

�

(�;�) � 2 �

h

;

(;r

h

v) = (g; v) + 

W

(; v) v 2 W

h

;

 = �t

�2

(rw � �):

(44)

By subtrating (30) from (44), and using (31) we an form the error equations

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

a

h

(� � �

h

;�)� (;�) + (

h

; P

h

�) = 

�

(�;�) � 2 �

h

;

( � 

h

;r

h

v) = 

W

(; v) v 2 W

h

;

 � 

h

= �t

�2

[r

h

(w � w

h

)� (� � P

h

�

h

)℄:

(45)

We see from (45) that the non onforming approah leads to onsisteny errors



W

(; v) and 

�

(�;�) that need to be estimated. This an be done using

(35) and the de�nition of the �nite element spaes �

h

; W

h

, as shown in the

following Proposition.

Proposition 3 In the above assumptions, the onsisteny terms 

W

(; v) and



�

(�;�) an be bound as:



W

(; v) � Chjj

1;


jvj

1;h

v 2 W

h

; (46)



�

(�;�) � Chj�j

2;


jjj�jjj

�

� 2 �

h

: (47)

Proof Let P

0

e

() and P

0

e

(C

"

(�)) denote onstant approximations of  and

C

"

(�) on e, respetively. Then, thanks to the de�nitions (19)-(20) of �

h

and

8



W

h

, for every edge e 2 E

h

we have

Z

e

fg � [v℄ ds =

Z

e

f � P

0

e

()g � [v℄ ds 8v 2 W

h

;

Z

e

fC

"

(�)g : [�℄ ds =

Z

e

fC

"

(�)� P

0

e

(C

"

(�))g : [�℄ ds 8� 2 �

h

:

(48)

Using (48), Cauhy-Shwarz, (35), and lassial interpolation results we ob-

tain, for v 2 W

h

,



W

(; v) =

X

e2E

h

Z

e

f � P

0

e

()g � [v℄ ds

�

�

X

e2E

h

jejjjf � P

0

e

()gjj

2

0;e

�

1=2

�

X

e2E

h

1

jej

jj[v℄jj

2

0;e

�

1=2

� C

�

X

T2T

h

(jj � P

0

e

()jj

2

0;T

+ jej

2

jj

2

1;T

)

�

1=2

�

X

e2E

h

1

jej

jj[v℄jj

2

0;e

�

1=2

� Chjj

1;


�

X

e2E

h

1

jej

jj[v℄jj

2

0;e

�

1=2

:

(49)

Moreover, using similar arguments, always for v 2 W

h

we have

X

e2E

h

1

jej

jj[v℄jj

2

0;e

=

X

e2E

h

1

jej

Z

e

[v�P

0

e

(v)℄ � [v℄ ds � jvj

1;h

(

X

e2E

h

1

jej

jj[v℄jj

2

0;e

)

1=2

: (50)

Thus,

(

X

e2E

h

1

jej

jj[v℄jj

2

0;e

)

1=2

� jvj

1;h

; v 2 W

h

; (51)

and (46) follows. Proeeding in exatly the same way we obtain



�

(�;�) � Chj�j

2;


�

X

e2E

h

1

jej

jj[�℄jj

2

0;e

�

1=2

� Chj�j

2;


jjj�jjj

�

� 2 �

h

: (52)

2

We have now to introdue suitable interpolants of � and w.

Lemma 4 For every � 2 (H

1

0

(
))

2

, the following onditions

Z

e

(� � �

I

) ds = 0 8e edge of T; 8T; (53)

Z

T

(� � �

I

) dx = 0 8T; (54)

uniquely determine �

I

2 �

h

. Moreover, if � 2 (H

2

(
))

2

, the following inter-

polation estimate holds:

jjj� � �

I

jjj

�

� Chj�j

2;


: (55)
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Proof The 8 degrees of freedom (53){(54) uniquely de�ne �

I

2 P

�

(T ) 8T 2 T

h

.

Indeed, �

2je

being a Legendre polynomial of degree 2, the 6 onditions (53)

determine the linear part of �

I

, while the 2 remaining onditions (54) take

are of the bubble part. Estimate (55) follows immediately from standard

interpolation results, using (35) to estimate the jump terms. 2

Lemma 5 For every w 2 H

1

0

(
), the following onditions

Z

e

(w � w

I

) ds = 0; 8e edge of T; 8T; (56)

Z

T

�(w � w

I

) dx = 0 8T; (57)

uniquely determine w

I

2 W

h

. Moreover, if w 2 H

2

(
), the following interpo-

lation estimate holds:

jjjw � w

I

jjj

W

� Chjwj

2;


: (58)

Proof The 3 onditions (56) determine the linear part of w

I

, and ondition

(57) takes are of the bubble part. Estimate (58) is a standard interpolation

result. 2

Finally, it remains to de�ne a suitable interpolant 

I

2 �

h

of . In analogy

with the de�nition (31) for 

h

, we de�ne:



I

= �t

�2

(r

h

w

I

� P

h

�

I

): (59)

The next Lemma provides a result that plays a ruial role for deriving error

estimates.

Lemma 6 Let 

I

2 �

h

be de�ned as in (59), where w

I

is given in (56)-

(57), �

I

in (53)-(54), and P

h

�

I

is given by (25)-(26). Then, the following

fundamental property holds:



I

= P

h

: (60)

Moreover, if  2 (H

1

(
))

2

, the following interpolation estimate holds:

k � 

I

k

�

� Chjj

1;


: (61)

Proof By subtrating (59) from (3) we obtain

�

�1

t

2

( � 

I

) =r

h

(w � w

I

)� (� � P

h

�

I

): (62)

Hene, thanks to (56), (54), and (25),

�t

2

R

T

( � 

I

) dx =

R

T

r(w � w

I

) dx�

R

T

(� � P

h

�

I

) dx

�

R

T

(� � �

I

+ �

I

� P

h

�

I

) dx = 0;

(63)
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i.e., (25) is veri�ed. Moreover, due to (57), (53), and (26),

�

�1

t

2

R

T

div( � 

I

) dx =

R

T

�(w � w

I

) dx�

R

T

div(� � P

h

�

I

) dx

= �

R

T

div(� � �

I

+ �

I

� P

h

�

I

) dx = 0;

(64)

i.e., (26) is also veri�ed and the proof of (60) is onluded. Finally, (61) follows

from standard interpolation results. 2

We are now ready to prove the error estimates. Using (38)-(37) and the �rst

equation in (45) we have:

�jjj�

I

� �

h

jjj

2

�

� a

h

(�

I

� �; �

I

� �

h

) + a

h

(� � �

h

; �

I

� �

h

)

� Cjjj� � �

I

jjj

�

jjj�

I

� �

h

jjj

�

+ (; �

I

� �

h

)

�(

h

; P

h

(�

I

� �

h

)) + 

�

(�; �

I

� �

h

):

(65)

From (47) we have



�

(�; �

I

� �

h

) � Chj�j

2;


jjj�

I

� �

h

jjj

�

: (66)

For the remaining terms, we an write

(; �

I

��

h

)�(

h

; P

h

(�

I

��

h

)) = (; (I�P

h

)(�

I

��

h

))+(�

h

; P

h

(�

I

��

h

)):

Let P

0

 be a pieewise onstant approximation of . Using (25), lassial

interpolation estimates, and (27) we easily dedue

(; (I � P

h

)(�

I

� �

h

)) = ( � P

0

; (I � P

h

)(�

I

� �

h

))

� Chjj

1;


k(I � P

h

)(�

I

� �

h

)k

0;


� Chjj

1;


jjj�

I

� �

h

jjj

�

:

(67)

By subtrating (59) from the third equation of (30) we get

P

h

(�

I

� �

h

) = �

�1

t

2

(

h

� 

I

)�r

h

(w

h

� w

I

): (68)

Thus, using this, the seond equation of (45), and (46) we have:

( � 

h

; P

h

(�

I

� �

h

))= �

�1

t

2

( � 

h

;

h

� 

I

)� ( � 

h

;r

h

(w

h

� w

I

))

= �

�1

t

2

( � 

I

;

h

� 

I

)� �

�1

t

2

jj

h

� 

I

jj

2

0;


+ 

W

(; w

h

� w

I

) (69)

��

�1

t

2

jj � 

I

jj

0;


jj

h

� 

I

jj

0;


� �

�1

t

2

jj

h

� 

I

jj

2

0;


+Chjj

1;


jw

h

� w

I

j

1;h

:
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We set, for the sake of brevity, Æ� = �

I

� �

h

; Æ = 

I

� 

h

. Substituting

(52), (67), and (69) in (65), and using the interpolation estimates (55), (61)

we obtain

�jjjÆ�jjj

2

�

+�

�1

t

2

jjÆjj

2

0;


� C(jjj� � �

I

jjj

�

+ hj�j

2;


+ hjj

0;


)jjjÆ�jjj

�

+�

�1

t

2

k � 

I

k

0;


kÆk

0;


+ Chjj

1;


jw

h

� w

I

j

1;h

� Ch(j�j

2;


+ jj

0;


)jjjÆ�jjj

�

+Ch(�

�1

t

2

jj

1;


kÆk

0;


+ jj

1;


jw

h

� w

I

j

1;h

):

(70)

On the other hand, from (68) we have:

jw

h

� w

I

j

1;h

� �

�1

t

2

kÆk

0;


+ kÆ�k

0;


: (71)

Using this and the inequality 2ab �

"

a

2

+ b

2

=

"

in (70) we �nally obtain:

jjjÆ�jjj

2

�

+ �

�1

t

2

kÆk

2

0;


� Ch

2

(j�j

2

2;


+ kk

2

1;


+ �

�1

t

2

jj

2

1;


); (72)

that is,

jjj�

I

� �

h

jjj

�

+ tk

I

� 

h

k

�

� Ch(j�j

2;


+ kk

1;


): (73)

We an �nally onlude with the following onvergene theorem.

Theorem 7 Let (�; w;) be the solution of (44), and let (�

h

; w

h

;

h

) that of

(30). Then, the following estimate holds:

jjj� � �

h

jjj

�

+ tjjj � 

h

jjj

�

� Ch(j�j

2;


+ kk

1;


); (74)

jjjw � w

h

jjj

W

� Ch(j�j

2;


+ kk

1;


+ jwj

1;


); (75)

with C a positive onstant independent of h.

Proof Estimate (74) follows from (73) and the triangle inequality. To derive

(75), use �rst (71) and (73) to obtain

jw

h

� w

I

j

1;h

� Ch(j�j

2;


+ kk

1;


): (76)

Next, via duality argument and (51) it an be proved that, if 
 is onvex, then

(see, e.g., [2℄, [6℄)

kvk

0;


� Cjvj

1;


8v 2 W

h

: (77)

The result (75) follows then by the triangle inequality. 2

Remark 8 As already pointed out, the hoie of bubble spaes presented above

is not, by far, the unique way in whih the basi element (see below) an

be made to work. We onsider here as basi element the one in whih eah

omponent of the rotations �

h

, as well as the transversal displaement w

h

, are

pieewise linear nononforming funtions, while the shears 

h

are pieewise

onstants.
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Our analysis annot be applied to this element: indeed, we remark that we an-

not give up the d.o.f. (25) (�

h

must ontain at least the pieewise onstants):

but then we need, for de�ning �

I

, the degrees of freedom (54), otherwise we

annot prove (63), whih is a ruial ingredient of Lemma 6, that, in turn, is

the ornerstone of our proof strategy. In onlusion, we need a bubble de-

gree of freedom for �. Clearly, we are not obliged to use the nononforming

bubble (15). The ubi bubble (�

1

�

2

�

3

) would do the same job. Essentially,

any element of the type

(P

NC

1

�B)

2

for �; P

NC

1

for w; (P

0

)

2

for ;

(where P

NC

1

= P

1

�nononforming, B =bubble) would work, with only very

minor assumptions on the type of bubble (quadrati, ubi, pyramid, et.).

We point out that we do not need bubbles for w

h

, as far as we keep

the shears to be pieewise onstants. Indeed, for pieewise onstant shears, we

would only use the d.o.f.(25), and hene we only need property (63) in the

ruial Lemma 6. But, for that, only the d.o.f (56) are neessary, and we are

safe.

On the other hand we might want, as we did here, to have the same degrees

of freedom for �

h

and w

h

. If we want this, then we an add a bubble to w

h

as

well. But if we add a bubble to w

h

we must also add its gradient in

�

h

, or otherwise ondition r

h

W

h

� �

h

(whih is also ruial) will be violated.

Other hanges an be done in the penalty terms, here de�ned as in (28). In the

above disussion, we only used penalty for the � variable, and this is needed

beause otherwise the disrete Korn inequality would fail. We do not need

penalty for w, but we might also use it, if we wish. We also point out that, in

order to have the disrete Korn inequality, we only need to penalize the

jumps of the linear part of �. Hene, for instane, in our element we ould

substitute (28) with

e

p

�

(�;�) :=

X

e2E

h

1

jej

Z

e

[Q

1

�℄ : [Q

1

�℄ dx; (78)

where Q

1

is the L

2

�projetion on the spae of polynomials of degree � 1. This

(that we atually reommand) will have the nie e�et of allowing a simpler

elimination of the bubbles (that, otherwise, will see eah other at the interele-

ment boundaries through the jump term: a most undesirable irumstane).

This would not our if we use true bubbles, instead of nononforming ones.
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