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1 Introdu
tion

In re
ent times, there has been a 
onsiderable interest, mostly among math-

emati
ians, in the extension of Dis
ontinuous Galerkin methods to the treat-

ment of ellipti
 problems (see, for instan
e, [5℄ and the referen
es therein).

Although their pra
ti
al interest is still under investigation, it is 
lear that

the DG approa
h often implies a di�erent approa
h to the problem, that 
an

sometimes lead, in the end, to new 
onforming or non
onforming �nite ele-

ments that would have been more diÆ
ult to dis
over starting with the 
las-

si
al approa
h. This is surely the 
ase, for instan
e, of the extension of the

Crouzeix-Raviart element for Stokes problem or nearly in
ompressible elasti
-

ity problems (see [22℄), or the higher order Arnold-Falk elements for Reissner-

Mindlin plates (see [6℄). The element that we are going to present here, again

for Reissner-Mindlin plates, 
ould be 
onsidered as another example in this
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dire
tion. In a sense, being a non
onforming element, it 
ould have been ob-

tained dire
tly with the more standard �nite element ma
hinery. However,

the possibility of using su
h an element be
ame 
lear only after using a DG

approa
h.

The element, in essen
e, is based on the use of non
onforming pie
ewise

linear fun
tions for both rotations and transversal displa
ements. Thus, all

the unknowns share the same nodes. For the element to work, however, we

have to add some internal degrees of freedom (that 
ould easily be elimi-

nated by stati
 
ondensation). There are many variants available for these

internal degrees of freedom: here the whole dis
ussion is made assuming that

we have an additional non
onforming P

2

�bubble (in bary
entri
 
oordinates,

�

2

:= 3(�

2

1

+ �

2

2

+ �

2

3

) � 2) added to ea
h 
omponent of rotations, and to

transversal displa
ements. Several possible variants are dis
ussed, at the end,

in Remark 8.

We are fully aware that the main interest, for new Reissner-Mindlin elements,

relies in the possibility of obtaining a 
onvenient shell element out of them.

Indeed, there are, by now, several elements that 
ould be 
onsidered as sat-

isfa
tory for the plate Reissner-Mindlin problem (see, just to name a few of

them, [7℄ - [10℄, [13℄. [15℄, [20℄, [23℄ - [25℄, and the referen
es therein), but very

few elements for shells have been analyzed in a thorough way, mathemati-


ally and experimentally (see, e.g. [3℄, [16℄ - [19℄, [21℄). This, however, will not

be dis
ussed here, and will possibly be obje
t of future works. We refer for

instan
e to [12℄ for a wider dis
ussion and more referen
es.

The promising features of this element are its sempli
ity, the low degree, and,

as already pointed out, the fa
t that all variables share the same nodes (the

midpoints of the edges). The element has optimal order af approximation

and is lo
king free. Compared with an ideal 
onforming linear element, we

have here more degrees of freedom for the same mesh. However, in several

experiments on various types of ellipti
 problems, the ratio a

ura
y/d.o.f. for


onforming and non
onforming linear elements turned out to be quite similar

(the formers having a slight edge in the presen
e of very regular solutions, the

latters being preferable for less regular ones).

Hen
e, all together, we believe that the extension of su
h an element to shell

problems has, at least, good possibilities.

An outline of the paper is as follows. In Se
tion 2 we present the problem and

re
all some of the diÆ
ulties related to the numeri
al treatment. In Se
tion 3

we introdu
e the non
onforming element, based on typi
al instruments of Dis-


ontinuous Galerkin approa
h. Finally, in Se
tion 4, we prove error estimates

and show possible variants of the element dis
ussed in Se
tion 3.
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2 The problem

Given g in, say, L

2

(
), the Reissner{Mindlin equations with 
lamped boundary

require to �nd (�; w;
) su
h that

� divC

"

(�)� 
 = 0 in 
; (1)

� div 
 = g in 
; (2)


 = �t

�2

(rw � �) in 
; (3)

� = 0; w = 0 on �
: (4)

In (1)-(3), C is the tensor of bending moduli, � represents the rotations, w the

transversal displa
ement, and 
 the s
aled shear stresses. Moreover,

"

is the

usual symmetri
 gradient operator, �(= 5=6) is the shear 
orre
tion fa
tor,

and t is the thi
kness.

The above equations 
orrespond to the minimization of the fun
tional

J

t

(�; v) =

1

2

a(�;�) +

�t

�2

2

jjrv � �jj

2

0;


� (g; v); (5)

where

a(�;�) :=

Z




C

"

(�) :

"

(�)dx;

and (�; �) (resp. jj�jj

0;


) is the inner-produ
t (resp. norm) in L

2

(
). The 
lassi
al

variational formulations of problem (1){(3)

is

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

Find (�; w;
) 2 (H

1

0

(
))

2

�H

1

0

(
)� (L

2

(
))

2

:

a(�;�)� (
;�) = 0 � 2 (H

1

0

(
))

2

;

(
;rv) = (g; v) v 2 H

1

0

(
);

t

2

�

(
; � )� (rw; � ) + (�; � ) = 0 � (L

2

(
))

2

:

(6)

It is known that, keeping g �xed, and letting t! 0, the minimizing argument

(�

t

; w

t

) of J

t

(�; v) tends to a �nite limit (�

0

; w

0

) su
h that �

0

= rw

0

, and w

0

is the minimizing argument of

1

2

a(rv;rv) � (g; v) over H

2

0

(
) (that is, the

solution of the Kir
hho� model; see, for instan
e, [14℄).

A 
onforming approximation of the problem leads to introdu
e �nite element

subspa
es �

h

� (H

1

0

(
))

2

and W

h

� H

1

0

(
), and to look for a pair (�

t

h

; w

t

h

)

minimizing (5) over �

h

�W

h

. It is expe
ted that, for h small, the sequen
e of

solutions tend, for t ! 0, to a limit (�

0

h

; w

0

h

) 
lose to (�

0

; w

0

). Indeed, if this

3



is not the 
ase, then the 
onvergen
e (in h) of (�

t

h

; w

t

h

) to (�

t

; w

t

) 
annot be

uniform in t, and this is a problem when t << diam(
).

On the other hand, it is 
lear that we must have

�

0

h

= rw

0

h

: (7)

For simple-minded dis
retizations, it 
an o

ur that the set of pairs (�

h

; w

h

) 2

�

h

�W

h

satisfying (7) is very small.

For instan
e, if both �

h

and W

h

are made of pie
ewise linear 
ontinuous

fun
tions, then (7) implies �

0

h

= rw

0

h

= 0. This is the lo
king phenomenon. In

order to avoid lo
king, a typi
al remedy is to 
hange J

t

into

J

t

h

(�; v) :=

1

2

a(�;�) +

�t

�2

2

jjP

h

(rv � �)jj

0;


� (g; v); (8)

where P

h

is a suitable proje
tion (or interpolation) operator, in general on

some lower degree polynomials. In the engineering pra
ti
e, the redu
tion


orresponding to the use of P

h

is a
tually often realized by using a redu
ed

integration formula in the shear term.

3 Non
onforming approximation

We shall introdu
e a non
onforming �nite element approximation of problem

(1){(3) using a Dis
ontinuous Galerkin type approa
h. Let then T

h

be a de-


omposition of 
 into triangles T . As we are going to work with dis
ontinuous

elements, the starting working spa
e will be

H

1

(T

h

) :=

Y

T2T

h

H

1

(T ) with seminorm jvj

2

1;h

=

X

T2T

h

jjrvjj

2

0;


: (9)

For ve
tor valued fun
tions we shall use (H

1

(T

h

))

2

, and for tensors (H

1

(T

h

))

4

s

.

A typi
al instrument of the DG approa
h is the use of jumps and averages,

that have to be de�ned. We denote by E

h

the set of all the edges in T

h

, and

by E

0

h

the set of internal edges. Let e be an internal edge of T

h

, shared by two

elements E

+

and E

�

, and let ' denote a fun
tion in H

1

(T

h

), or a ve
tor in

(H

1

(T

h

))

2

, or a tensor in (H

1

(T

h

))

4

s

. We de�ne the average as usual:

f'g =

'

+

+ '

�

2

8e 2 E

0

h

: (10)

For a s
alar fun
tion ' 2 H

1

(T

h

) we de�ne its jump as

['℄ = '

+

n

+

+ '

�

n

�

8e 2 E

0

h

; (11)
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while the jump of a ve
tor ' 2 (H

1

(T

h

))

2

is given by:

['℄ = ('

+


 n

+

)

S

+ ('

�


 n

�

)

S

8e 2 E

0

h

; (12)

where (' 
 n)

S

denotes the symmetri
 part of the tensor produ
t. We do

not need to de�ne jumps of tensors. On the boundary edges we de�ne jumps

of s
alars as ['℄ = 'n, and jumps of ve
tors as ['℄ = (' 
 n)

S

, where n

is the outward normal to �
. We also de�ne averages of ve
tors and tensors

as f'g = '. It 
an be easily 
he
ked that, if ' is a smooth tensor, and � a

pie
ewise smooth ve
tor, the following equality holds (see, e.g., [4℄ for a similar


omputation):

X

T2T

h

Z

T

'n � � ds =

X

e2E

h

Z

e

f'g : [�℄ ds: (13)

We now introdu
e the �nite element spa
es that we are going to use. On a

generi
 triangle T 2 T

h

we de�ne:

P (T ) := P

1

(T )� �

2

(T ); (14)

where P

1

(T ) denotes the set of polynomials of degree � 1 on T , and �

2

denotes

the non
onforming bubble of P

2

, i.e., the polynomial of degree 2 vanishing at

the two Gauss points of ea
h edge. In bary
entri
 
oordinates this bubble has

the expression (for instan
e),

�

2

= 3(�

2

1

+ �

2

2

+ �

2

3

)� 2: (15)

We then de�ne, lo
ally, the �nite element spa
es for approximating �; w; and


 as:

P

�

(T ) = (P

1

(T ))

2

� �

2

(T ); (16)

P

w

(T ) = P

1

(T )� �

2

(T ) (17)

P




(T ) = (P

0

(T ))

2

�r�

2

(T ): (18)

(See �gure 1 for the 
hoi
e of degrees of freedom). Next, we form the �nite

θ w γ

Fig. 1. Lo
al dof for the three variables

element spa
es:

�

h

= f� : �

jT

2 P

�

(T );

Z

e

[�℄ds = 0 8e 2 E

h

g; (19)

W

h

= fv : v

jT

2 P

w

(T );

Z

e

[v℄ds = 0 8e 2 E

h

g; (20)

�

h

= f� : �

jT

2 P




(T )g; (21)
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and noti
e that

r

h

W

h

� �

h

; (22)

where r

h

denotes the gradient element by element.

Proposition 1 A ve
tor � 2 P




(T ) is uniquely determined by the following

3 degrees of freedom:

Z

T

� dx; (23)

Z

T

div � dx = 0: (24)

Proof Condition (24) determines the 
oeÆ
ient of the bubble part, while 
on-

ditions (23) take 
are of the 
onstant part of the 
omponents. 2

The degrees of freedom (23){(24) 
an be used to de�ne the redu
tion operator

P

h

: (H

1

(T

h

))

2

! �

h

.

De�nition 2 For any � 2 (H

1

(T

h

))

2

, P

h

� 2 �

h

is de�ned lo
ally by:

Z

T

(� � P

h

�) dx = 0 8T 2 T

h

; (25)

Z

T

div(� � P

h

�) dx = 0 8T 2 T

h

: (26)

It is easy to 
he
k that

kP

h

�k

0;


� Ck�k

0;


� 2 �

h

: (27)

Finally, we introdu
e a penalty on the jumps of fun
tions in �

h

as:

p

�

(�;�) :=

X

e2E

h

1

jej

Z

e

[�℄ : [�℄ ds; (28)

and we de�ne:

a

T

(�;�) :=

Z

T

C

"

(�) :

"

(�) dx: (29)

The dis
rete problem is then

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

Find (�

h

; w

h

;


h

) 2 �

h

�W

h

� �

h

X

T2T

h

a

T

(�

h

;�) + p

�

(�

h

;�)� (


h

; P

h

�) = 0 � 2 �

h

;

(


h

;r

h

v) = (g; v) v 2 W

h

;

t

2

�

(


h

; � )� (r

h

w

h

; � ) + (P

h

�

h

; � ) = 0 � 2 �

h

:

(30)
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We point out that, sin
e both P

h

�

h

andr

h

w

h

belong to �

h

, the third equation

of (30) is just another way of writing




h

= �t

�2

(r

h

w

h

� P

h

�

h

): (31)

Hen
e, 


h


an be eliminated elementwise, so that system (30) is the varia-

tional formulation of (8) in the unknowns �

h

; w

h

only. The introdu
tion of

the auxiliary variable 


h

is just a mathemati
al tri
k to perform the error

analysis.

4 Error estimates

We shall prove error estimates in the following norms:

jjj�jjj

2

�

:= k�k

2

0;


+ k

"

(�)k

2

0;


+

X

e2E

h

1

jej

k[�℄k

2

0;e

; � 2 (H

1

(T

h

))

2

; (32)

jjjvjjj

2

W

:= kvk

2

0;


+ jvj

2

1;h

=: kvk

2

1;h

v 2 H

1

(T

h

); (33)

jjj� jjj

2

�

:= k�k

2

0;


� 2 (H

1

(T

h

))

2

: (34)

In the sequel we shall often use the following result (see [1℄-[2℄): let T be a

triangle, and let e be an edge of T . Then 9C > 0 only depending on the

minimum angle of T su
h that

jj'jj

2

0;e

� C

�

jej

�1

jj'jj

2

0;T

+ jejj'j

2

1;T

�

' 2 H

1

(T

h

): (35)

Clearly, (35) also holds for ve
tor valued fun
tions ' 2 (H

1

(T

h

))

2

.

De�ne:

a

h

(�;�) :=

X

T2T

h

a

T

(�;�) + p

�

(�;�); �;� 2 (H

1

(T

h

))

2

; (36)

and noti
e that

a

h

(�;�) � Cjjj�jjj

�

jjj�jjj

�

�;� 2 (H

1

(T

h

))

2

; (37)

a

h

(�;�) � �jjj�jjj

2

�

� 2 �

h

: (38)

We observe that the ellipti
ity property (38) is not trivial to prove. We refer

for instan
e to [6℄, where the following result is proved:

k�k

2

0;


� C(k

"

(�)k

2

0;


+

X

e2E

h

1

jej

k[�℄k

2

0;e

); � 2 (H

1

(T

h

))

2

: (39)

In (37), (39), and in the sequel we denote by C a positive 
onstant independent

of h, not ne
essarily the same at the various o

urren
ies.

7



Multiplying equation (1) by � 2 �

h

, integrating by parts, and using [�℄ = 0

we obtain

a

h

(�;�)� (
;�) = 


�

(�;�) � 2 �

h

; (40)

where, using (13),




�

(�;�) :=

X

T2T

h

Z

T

C

"

(�)n � � ds =

X

e2E

h

Z

e

fC

"

(�)g : [�℄ ds: (41)

Multiplying equation (2) by v 2 W

h

and integrating by parts we have

(
;r

h

v) = (g; v) + 


W

(
; v) v 2 W

h

; (42)

where




W

(
; v) :=

X

T2T

h

Z

T


 � nv ds =

X

e2E

h

Z

e

f
g : [v℄ ds: (43)

Colle
ting (40), (42), and (3) we obtain

8

>

>

>

>

>

<

>

>

>

>

>

:

a

h

(�;�)� (
;�) = 


�

(�;�) � 2 �

h

;

(
;r

h

v) = (g; v) + 


W

(
; v) v 2 W

h

;


 = �t

�2

(rw � �):

(44)

By subtra
ting (30) from (44), and using (31) we 
an form the error equations

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

a

h

(� � �

h

;�)� (
;�) + (


h

; P

h

�) = 


�

(�;�) � 2 �

h

;

(
 � 


h

;r

h

v) = 


W

(
; v) v 2 W

h

;


 � 


h

= �t

�2

[r

h

(w � w

h

)� (� � P

h

�

h

)℄:

(45)

We see from (45) that the non 
onforming approa
h leads to 
onsisten
y errors




W

(
; v) and 


�

(�;�) that need to be estimated. This 
an be done using

(35) and the de�nition of the �nite element spa
es �

h

; W

h

, as shown in the

following Proposition.

Proposition 3 In the above assumptions, the 
onsisten
y terms 


W

(
; v) and




�

(�;�) 
an be bound as:




W

(
; v) � Chj
j

1;


jvj

1;h

v 2 W

h

; (46)




�

(�;�) � Chj�j

2;


jjj�jjj

�

� 2 �

h

: (47)

Proof Let P

0

e

(
) and P

0

e

(C

"

(�)) denote 
onstant approximations of 
 and

C

"

(�) on e, respe
tively. Then, thanks to the de�nitions (19)-(20) of �

h

and

8



W

h

, for every edge e 2 E

h

we have

Z

e

f
g � [v℄ ds =

Z

e

f
 � P

0

e

(
)g � [v℄ ds 8v 2 W

h

;

Z

e

fC

"

(�)g : [�℄ ds =

Z

e

fC

"

(�)� P

0

e

(C

"

(�))g : [�℄ ds 8� 2 �

h

:

(48)

Using (48), Cau
hy-S
hwarz, (35), and 
lassi
al interpolation results we ob-

tain, for v 2 W

h

,




W

(
; v) =

X

e2E

h

Z

e

f
 � P

0

e

(
)g � [v℄ ds

�

�

X

e2E

h

jejjjf
 � P

0

e

(
)gjj

2

0;e

�

1=2

�

X

e2E

h

1

jej

jj[v℄jj

2

0;e

�

1=2

� C

�

X

T2T

h

(jj
 � P

0

e

(
)jj

2

0;T

+ jej

2

j
j

2

1;T

)

�

1=2

�

X

e2E

h

1

jej

jj[v℄jj

2

0;e

�

1=2

� Chj
j

1;


�

X

e2E

h

1

jej

jj[v℄jj

2

0;e

�

1=2

:

(49)

Moreover, using similar arguments, always for v 2 W

h

we have

X

e2E

h

1

jej

jj[v℄jj

2

0;e

=

X

e2E

h

1

jej

Z

e

[v�P

0

e

(v)℄ � [v℄ ds � jvj

1;h

(

X

e2E

h

1

jej

jj[v℄jj

2

0;e

)

1=2

: (50)

Thus,

(

X

e2E

h

1

jej

jj[v℄jj

2

0;e

)

1=2

� jvj

1;h

; v 2 W

h

; (51)

and (46) follows. Pro
eeding in exa
tly the same way we obtain




�

(�;�) � Chj�j

2;


�

X

e2E

h

1

jej

jj[�℄jj

2

0;e

�

1=2

� Chj�j

2;


jjj�jjj

�

� 2 �

h

: (52)

2

We have now to introdu
e suitable interpolants of � and w.

Lemma 4 For every � 2 (H

1

0

(
))

2

, the following 
onditions

Z

e

(� � �

I

) ds = 0 8e edge of T; 8T; (53)

Z

T

(� � �

I

) dx = 0 8T; (54)

uniquely determine �

I

2 �

h

. Moreover, if � 2 (H

2

(
))

2

, the following inter-

polation estimate holds:

jjj� � �

I

jjj

�

� Chj�j

2;


: (55)
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Proof The 8 degrees of freedom (53){(54) uniquely de�ne �

I

2 P

�

(T ) 8T 2 T

h

.

Indeed, �

2je

being a Legendre polynomial of degree 2, the 6 
onditions (53)

determine the linear part of �

I

, while the 2 remaining 
onditions (54) take


are of the bubble part. Estimate (55) follows immediately from standard

interpolation results, using (35) to estimate the jump terms. 2

Lemma 5 For every w 2 H

1

0

(
), the following 
onditions

Z

e

(w � w

I

) ds = 0; 8e edge of T; 8T; (56)

Z

T

�(w � w

I

) dx = 0 8T; (57)

uniquely determine w

I

2 W

h

. Moreover, if w 2 H

2

(
), the following interpo-

lation estimate holds:

jjjw � w

I

jjj

W

� Chjwj

2;


: (58)

Proof The 3 
onditions (56) determine the linear part of w

I

, and 
ondition

(57) takes 
are of the bubble part. Estimate (58) is a standard interpolation

result. 2

Finally, it remains to de�ne a suitable interpolant 


I

2 �

h

of 
. In analogy

with the de�nition (31) for 


h

, we de�ne:




I

= �t

�2

(r

h

w

I

� P

h

�

I

): (59)

The next Lemma provides a result that plays a 
ru
ial role for deriving error

estimates.

Lemma 6 Let 


I

2 �

h

be de�ned as in (59), where w

I

is given in (56)-

(57), �

I

in (53)-(54), and P

h

�

I

is given by (25)-(26). Then, the following

fundamental property holds:




I

= P

h


: (60)

Moreover, if 
 2 (H

1

(
))

2

, the following interpolation estimate holds:

k
 � 


I

k

�

� Chj
j

1;


: (61)

Proof By subtra
ting (59) from (3) we obtain

�

�1

t

2

(
 � 


I

) =r

h

(w � w

I

)� (� � P

h

�

I

): (62)

Hen
e, thanks to (56), (54), and (25),

�t

2

R

T

(
 � 


I

) dx =

R

T

r(w � w

I

) dx�

R

T

(� � P

h

�

I

) dx

�

R

T

(� � �

I

+ �

I

� P

h

�

I

) dx = 0;

(63)
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i.e., (25) is veri�ed. Moreover, due to (57), (53), and (26),

�

�1

t

2

R

T

div(
 � 


I

) dx =

R

T

�(w � w

I

) dx�

R

T

div(� � P

h

�

I

) dx

= �

R

T

div(� � �

I

+ �

I

� P

h

�

I

) dx = 0;

(64)

i.e., (26) is also veri�ed and the proof of (60) is 
on
luded. Finally, (61) follows

from standard interpolation results. 2

We are now ready to prove the error estimates. Using (38)-(37) and the �rst

equation in (45) we have:

�jjj�

I

� �

h

jjj

2

�

� a

h

(�

I

� �; �

I

� �

h

) + a

h

(� � �

h

; �

I

� �

h

)

� Cjjj� � �

I

jjj

�

jjj�

I

� �

h

jjj

�

+ (
; �

I

� �

h

)

�(


h

; P

h

(�

I

� �

h

)) + 


�

(�; �

I

� �

h

):

(65)

From (47) we have




�

(�; �

I

� �

h

) � Chj�j

2;


jjj�

I

� �

h

jjj

�

: (66)

For the remaining terms, we 
an write

(
; �

I

��

h

)�(


h

; P

h

(�

I

��

h

)) = (
; (I�P

h

)(�

I

��

h

))+(
�


h

; P

h

(�

I

��

h

)):

Let P

0


 be a pie
ewise 
onstant approximation of 
. Using (25), 
lassi
al

interpolation estimates, and (27) we easily dedu
e

(
; (I � P

h

)(�

I

� �

h

)) = (
 � P

0


; (I � P

h

)(�

I

� �

h

))

� Chj
j

1;


k(I � P

h

)(�

I

� �

h

)k

0;


� Chj
j

1;


jjj�

I

� �

h

jjj

�

:

(67)

By subtra
ting (59) from the third equation of (30) we get

P

h

(�

I

� �

h

) = �

�1

t

2

(


h

� 


I

)�r

h

(w

h

� w

I

): (68)

Thus, using this, the se
ond equation of (45), and (46) we have:

(
 � 


h

; P

h

(�

I

� �

h

))= �

�1

t

2

(
 � 


h

;


h

� 


I

)� (
 � 


h

;r

h

(w

h

� w

I

))

= �

�1

t

2

(
 � 


I

;


h

� 


I

)� �

�1

t

2

jj


h

� 


I

jj

2

0;


+ 


W

(
; w

h

� w

I

) (69)

��

�1

t

2

jj
 � 


I

jj

0;


jj


h

� 


I

jj

0;


� �

�1

t

2

jj


h

� 


I

jj

2

0;


+Chj
j

1;


jw

h

� w

I

j

1;h

:
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We set, for the sake of brevity, Æ� = �

I

� �

h

; Æ
 = 


I

� 


h

. Substituting

(52), (67), and (69) in (65), and using the interpolation estimates (55), (61)

we obtain

�jjjÆ�jjj

2

�

+�

�1

t

2

jjÆ
jj

2

0;


� C(jjj� � �

I

jjj

�

+ hj�j

2;


+ hj
j

0;


)jjjÆ�jjj

�

+�

�1

t

2

k
 � 


I

k

0;


kÆ
k

0;


+ Chj
j

1;


jw

h

� w

I

j

1;h

� Ch(j�j

2;


+ j
j

0;


)jjjÆ�jjj

�

+Ch(�

�1

t

2

j
j

1;


kÆ
k

0;


+ j
j

1;


jw

h

� w

I

j

1;h

):

(70)

On the other hand, from (68) we have:

jw

h

� w

I

j

1;h

� �

�1

t

2

kÆ
k

0;


+ kÆ�k

0;


: (71)

Using this and the inequality 2ab �

"

a

2

+ b

2

=

"

in (70) we �nally obtain:

jjjÆ�jjj

2

�

+ �

�1

t

2

kÆ
k

2

0;


� Ch

2

(j�j

2

2;


+ k
k

2

1;


+ �

�1

t

2

j
j

2

1;


); (72)

that is,

jjj�

I

� �

h

jjj

�

+ tk


I

� 


h

k

�

� Ch(j�j

2;


+ k
k

1;


): (73)

We 
an �nally 
on
lude with the following 
onvergen
e theorem.

Theorem 7 Let (�; w;
) be the solution of (44), and let (�

h

; w

h

;


h

) that of

(30). Then, the following estimate holds:

jjj� � �

h

jjj

�

+ tjjj
 � 


h

jjj

�

� Ch(j�j

2;


+ k
k

1;


); (74)

jjjw � w

h

jjj

W

� Ch(j�j

2;


+ k
k

1;


+ jwj

1;


); (75)

with C a positive 
onstant independent of h.

Proof Estimate (74) follows from (73) and the triangle inequality. To derive

(75), use �rst (71) and (73) to obtain

jw

h

� w

I

j

1;h

� Ch(j�j

2;


+ k
k

1;


): (76)

Next, via duality argument and (51) it 
an be proved that, if 
 is 
onvex, then

(see, e.g., [2℄, [6℄)

kvk

0;


� Cjvj

1;


8v 2 W

h

: (77)

The result (75) follows then by the triangle inequality. 2

Remark 8 As already pointed out, the 
hoi
e of bubble spa
es presented above

is not, by far, the unique way in whi
h the basi
 element (see below) 
an

be made to work. We 
onsider here as basi
 element the one in whi
h ea
h


omponent of the rotations �

h

, as well as the transversal displa
ement w

h

, are

pie
ewise linear non
onforming fun
tions, while the shears 


h

are pie
ewise


onstants.
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Our analysis 
annot be applied to this element: indeed, we remark that we 
an-

not give up the d.o.f. (25) (�

h

must 
ontain at least the pie
ewise 
onstants):

but then we need, for de�ning �

I

, the degrees of freedom (54), otherwise we


annot prove (63), whi
h is a 
ru
ial ingredient of Lemma 6, that, in turn, is

the 
ornerstone of our proof strategy. In 
on
lusion, we need a bubble de-

gree of freedom for �. Clearly, we are not obliged to use the non
onforming

bubble (15). The 
ubi
 bubble (�

1

�

2

�

3

) would do the same job. Essentially,

any element of the type

(P

NC

1

�B)

2

for �; P

NC

1

for w; (P

0

)

2

for 
;

(where P

NC

1

= P

1

�non
onforming, B =bubble) would work, with only very

minor assumptions on the type of bubble (quadrati
, 
ubi
, pyramid, et
.).

We point out that we do not need bubbles for w

h

, as far as we keep

the shears to be pie
ewise 
onstants. Indeed, for pie
ewise 
onstant shears, we

would only use the d.o.f.(25), and hen
e we only need property (63) in the


ru
ial Lemma 6. But, for that, only the d.o.f (56) are ne
essary, and we are

safe.

On the other hand we might want, as we did here, to have the same degrees

of freedom for �

h

and w

h

. If we want this, then we 
an add a bubble to w

h

as

well. But if we add a bubble to w

h

we must also add its gradient in

�

h

, or otherwise 
ondition r

h

W

h

� �

h

(whi
h is also 
ru
ial) will be violated.

Other 
hanges 
an be done in the penalty terms, here de�ned as in (28). In the

above dis
ussion, we only used penalty for the � variable, and this is needed

be
ause otherwise the dis
rete Korn inequality would fail. We do not need

penalty for w, but we might also use it, if we wish. We also point out that, in

order to have the dis
rete Korn inequality, we only need to penalize the

jumps of the linear part of �. Hen
e, for instan
e, in our element we 
ould

substitute (28) with

e

p

�

(�;�) :=

X

e2E

h

1

jej

Z

e

[Q

1

�℄ : [Q

1

�℄ dx; (78)

where Q

1

is the L

2

�proje
tion on the spa
e of polynomials of degree � 1. This

(that we a
tually re
ommand) will have the ni
e e�e
t of allowing a simpler

elimination of the bubbles (that, otherwise, will see ea
h other at the interele-

ment boundaries through the jump term: a most undesirable 
ir
umstan
e).

This would not o

ur if we use true bubbles, instead of non
onforming ones.
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