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Abstract. In this paper we prove convergence and error estimates for the so-called 3-�eld formulation using

piecewise linear �nite elements stabilized with boundary bubbles. Optimal error bounds are proved in L

2

and in

the broken H

1

norm for the internal variable u, and in suitable weighted L

2

norms for the other variables � and

 .

1. Introduction

The aim of this paper is to consider the e�ects of bubble stabilizations of the so-called three-�eld formulation

for domain decomposition methods. Let us briey recall it. Assume that we have to solve a linear elliptic problem

whose variational formulation is given by:

�nd w 2 V such that a(w; v) = (f; v) 8v 2 V;(1.1)

on a domain 
. We assume that the problem is associated to a second-order di�erential operator, so that the

space V will be a subspace of H

1

(
). By splitting 
 into subdomains 


s

one introduces suitable subspaces

V

s

(to be made precise in the sequel) of H

1

(


s

), and de�nes M

s

= H

�1=2

(@


s

); � = [

s

@


s

, and � =

ftraces on � of the functions of V g. Setting V

�

:= �

s

V

s

and M

�

:= �

s

M

s

, the three-�eld formulation of (1.1)

then reads

8

>

>

<

>

>

:

�nd u 2 V

�

; � 2M

�

; and  2 � such that

i) a

s

(u

s

; v)� < �

s

; v >

s

= (f; v)

s

8v 2 V

s

8s

ii) < �

s

; u

s

>

s

= < �

s

;  >

s

8�

s

2M

s

8s

iii)

P

s

< �

s

; ' >

s

= 0 8' 2 �

(1.2)

(the nearly obvious meaning of a

s

; < :; : >

s

and (:; :)

s

will be made precise in the next section.)

This formulation was originally introduced in [8], [9], where it was proved that, under reasonable assumptions,

problem (1.2) has a unique solution related to the solution of (1.1) by

8

<

:

i) u

s

= w

j


s

for each s

ii) �

s

=

@w

@n

a

j@


s

for each s

iii)  = w

j�

;

(1.3)

with

@

@n

a

j@


s

= outward conormal derivative to 


s

. In order to approximate (1.2) one has to choose, for every

s, �nite dimensional subspaces V

s

h

;M

s

h

and �

h

of V

s

;M

s

and � respectively, to construct V

�

h

:= �

s

V

s

h

and

M

�

h

:= �

s

M

s

h

, and to consider the following discretized problem.

8

>

>

<

>

>

:

�nd u

h

2 V

�

h

; �

h

2M

�

h

; and  

h

2 �

h

such that

i) a

s

(u

s

h

; v)� < �

s

h

; v >

s

= (f; v)

s

8v 2 V

s

h

8s

ii) < �

s

; u

s

h

>

s

= < �

s

;  

h

>

s

8�

s

2M

s

h

8s

iii)

P

s

< �

s

h

; ' >

s

= 0 8' 2 �

h

:

(1.4)

In [8], [9] we proved that a �nite element discretization of (1.2) on compatible grids (with a suitable interpre-

tation of M

s

h

) gives back the global �nite element solution of (1.1) with formulae identical to (1.3). To deal with

more general approximations, including the use of (possibly) di�erent discretizations for the three variables in

the same subdomain, or from one subdomain to another, a wide class of stabilization procedures was introduced

and discussed in [2]. However, it is interesting to see if, for particular cases, a simpler and cheaper stabilization

could be used, instead of the more general (but heavier and costlier) stabilization of [2]. A typical example of

interest is clearly the case where the variables u and  are approximated by continuous piecewise linear �nite

elements, although on di�erent, incompatible grids, and the variable � by piecewise constants. This was done

in [7], where a stabilization procedure was proposed, based on the idea of adding suitable boundary bubbles to

the space V

s

h

. The underlying concept is reasonably simple: it is clear that in (1.4) the only control on  

h

can

be obtained from (1.4 ii). Therefore, to gain control on  

h

one can increase the space M

s

h

. As each space M

s

h

is

1
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made of piecewise constants, this can be done simply by re�ning the mesh. It has to be pointed out that, once

the �rst re�nement has been made, the grid for M

s

h

could undergo a further re�nement (if convenient for some

technical reason) without jeopardizing the control on  

h

. In its turn, the control on �

h

can only be obtained

from equation (1.4 i), since (1.4 iii) is clearly too weak (any monster taking the same value with opposite signs at

the interfaces will satisfy (1.4 iii).) Hence, to control �

s

h

we have to enrich the �nite element spaces V

s

h

, and the

cheapest way is to add boundary bubbles. In [7] we showed, on a single domain problem, that an almost arbitrary

mismatch between the grid forM

s

h

and that for V

s

h

can be stabilized (to gain control on �

s

h

) by suitable quadratic

boundary bubbles. We also showed that the bubbles, together with the unknown �

h

, could be easily eliminated by

static condensation, thus remaining with a symmetric (if problem (1.1) is symmetric) positive de�nite problem

in the unknown u

h

only. In particular, in [7] we assumed, as a starting point, that two original, unrelated grids

were given, one for �

h

and one for u

h

. For technical reasons (essentially, in order to be able to perform the static

condensation on �

s

h

afterwards) our �rst step was to re�ne the grid for M

s

h

, by adding all the boundary nodes

of the grid for V

s

h

. However we had to assume, to avoid technical di�culties, that the points of the two original

grids were not too close (otherwise the re�ned grid for M

s

h

might contain very small intervals) and that the two

given grids were \comparable" in the following sense

h

s

�

� h

s

u

(1.5)

(with  a �xed constant) with obvious meaning for the symbols. These assumptions were removed or relaxed,

always for the single domain case, in [10], where an optimal estimate for u�u

h

was proved, allowing the presence

of \very close nodes" and changing (1.5) into the much weaker

h

s

�

� (h

s

u

)

3

(1.6)

(see [10] for further details.)

Here we tackle the whole problem (1.4), proving optimal error estimates for the three variables u; �;  . We

assume that two independent grids are given, this time for V

s

h

and �

h

. It seems particularly reasonable to assume

the grid for �

h

as given, since in many cases this will be the space were multidomain preconditioners (for the Schur

complement) will be applied: to have a convenient grid might then allow the use of more powerful preconditioners

(see for instance [13], [15], [3], [5], [20], [14], [18], [19].) Similarly, the given grids for V

s

h

might have been chosen,

in each subdomain, to match speci�c di�culties arising in that subdomain, and related to the coe�cients of the

operator and/or to the right-hand side. On the other hand, the choice of the grid for M

s

h

seems to be less crucial,

at least in a certain number of applications, and could be made in order to allow an easier stabilization. As in

the single domain problem, we work with piecewise linear �nite elements for  

h

and u

h

. The bubbles used for

stabilization, as well as the unknowns �

s

h

(piecewise constants), can be eliminated by static condensation. For

the sake of simplicity we restrict ourselves to the case were the given grids for V

s

h

and �

h

are \comparable", in

the above sense. It would surely be interesting to have results under weaker assumptions, at least of the type

(1.6). On the other hand, we allow the case of \very close nodes" that can be generated by merging the nodes of

the two given independent grids. For a multi�eld formulation similar to the one discussed here (but using four

�elds) and related preconditioners we refer to [16].

We now give an outline of the paper. In the next Section we make precise our assumptions on the domain, the

operator, the given decompositions and the formulation of the stabilized discrete problem. We shall also recall a

few trace theorems that will be used in the subsequent sections. In Section 3 we prove the error estimates: we

start with u � u

h

, proving optimal estimates �rst in the broken H

1

�norm and then in the L

2

�norm. Optimal

error estimates are then proven for  � 

h

and for ���

h

, in suitable weighted L

2

-norms. Under our assumptions,

these estimates imply optimal error bounds in L

2

(�) for  �  

h

. The same is true for � � �

h

, but only outside

the possible \very small intervals". Finally, in Section 4 we underline some numerical aspects, such as the actual

implementation of the procedure and its expected numerical performances.

2. Statement of the problem and discretization

2.1. Assumptions on the operator, the domain, and the subdomains. To �x ideas, let us consider the

following di�erential problem

�

Au = f in 
 � R

2

u = 0 on @


(2.1)

where 
 is a convex polygon, and

Au � �

2

X

i;j=1

@

@x

j

�

a

ij

(x)

@u

@x

i

�

+ a

0

(x)u:(2.2)
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We assume that, for almost every x in 
, 0 � a

0

(x) � K and that the 2 � 2 matrix (a

ij

(x)) is symmetric and

positive de�nite, with smallest eigenvalue � � > 0 and largest eigenvalue � �, independent of x. To the operator

A we assign the bilinear form

a(w; v) =

Z




(

2

X

i;j=1

a

ij

(x)

@w

@x

i

@v

@x

j

+ a

0

(x)w v) dx; w; v 2 H

1

(
):(2.3)

Let V = H

1

0

(
), with norm jj � jj

V

= j � j

1;


. With our assumptions on the coe�cients the bilinear form is

continuous and V�elliptic, i.e.,

9� > 0 : �jvj

2

1;


� a(v; v) 8v 2 V;(2.4)

9M > 0 : a(w; v) �M jjwjj

1;


jjvjj

1;


8w; v 2 V :(2.5)

Then for, say, f 2 L

2

(
) problem (1.1) has a unique solution u 2 H

1

0

(
) \H

2

(
).

Let now 
 be partitioned into a �nite number N of polygonal subdomains 


s

(s = 1; N), with boundary

�

s

= @


s

and diameter H

s

. We make precise the notation of (1.2) by de�ning, for s = 1; N ,

V

s

= fv 2 H

1

(


s

); v = 0 on �

s

\ @
g;

< �; � >

s

= duality pairing between H

1=2

(�

s

) and H

�1=2

(�

s

);

(�; �)

s

= scalar product in L

2

(


s

);

a

s

(w; v) =

P

2

i;j=1

(a

ij

(x)

@w

@x

i

;

@v

@x

j

)

s

+ (a

0

(x)w; v)

s

w; v 2 V:

(2.6)

In agreement with the de�nition of V and � = ftraces on � of the functions of V g, we will have:

� = f' 2 H

1=2

(�) : ' = 0 on @
g:(2.7)

With this notation problem (1.1) is equivalent to problem (1.2), and the relationship between the solution w of

(1.1) and the solution (u; �;  ) of (1.2) is precisely given in (1.3). We explicitly note that (2.5) will also hold in

each 


s

, by replacing 
, V and a with 


s

, V

s

and a

s

respectively.

Finally, we recall some known results related to trace theorems, whose proof can be checked by using trace

theorems on the reference element. We have that for every �

0

� �=3 there exists a constant C = C(�

0

) such that,

for every triangle T with minimum angle bounded from below by �

0

,

jvj

1=2;@T

� C jvj

1;T

8v 2 H

1

(T );(2.8)

j

@v

@n

a

j

1=2;@T

� C jvj

2;T

8v 2 H

2

(T );(2.9)

jvj

3=2;@T

� C jvj

2;T

8v 2 H

2

(T );(2.10)

where, as we shall do throughout the whole paper, the usual notation for Sobolev norms and seminorms (see e.g.

[12]) is used. On the other hand, we can easily deduce that, if e is an edge of T , and h

T

its diameter,

jjvjj

2

0;e

� C h

�1

T

jjvjj

0;T

(jjvjj

0;T

+ h

T

jvj

1;T

) 8v 2 H

1

(T );(2.11)

always with a constant C depending only on �

0

. The basic instrument for proving (2.11) is the fundamental

theorem of calculus applied to v

2

n

, where v

n

is a sequence of smooth functions converging to v in H

1

(T ).

We end this section by recalling a well known property of Sobolev fractional norms and seminorms. We report

it for seminorms of fractional order � in dimension one, but the result is more general. If an interval I is the

disjoint union of subintervals I

k

, then

X

k

jvj

2

�;I

k

� jvj

2

�;I

8v 2 H

�

(I):(2.12)

2.2. Assumptions on T

 

; T

s

u

and generation of the T

s

�

decompositions. In order to discretize problem

(1.2), let T

 

be a decomposition of � into intervals I , and let, for each s = 1; N , T

s

u

be a decomposition of 


s

into triangles T , and T

s

�

a decomposition of �

s

into intervals I . We shall denote by h

s

u

; h

s

�

; h

 

the mesh size of

T

s

u

; T

s

�

; T

 

respectively. Next, we de�ne the �nite element spaces

V

s

h

= fv 2 V

s

: v

jT

2 P

1

(T ) 8T 2 T

s

u

g 8s;(2.13)

M

s

h

= f�

s

2 L

2

(�

s

) : �

s

jI

2 P

0

(I) 8I 2 T

s

�

g 8s;(2.14)

�

h

= f' 2 � : '

jI

2 P

1

(I) 8I 2 T

 

g;(2.15)

and we set, as before, V

�

h

:= �

s

V

s

h

and M

�

h

:= �

s

M

s

h

. Then we look for an approximate solution (u

h

; �

h

;  

h

)

of (1.2), with u

h

2 V

�

h

; �

h

2 M

�

h

; and  

h

2 �

h

. If the three decompositions are totally arbitrary, the discrete

problem can be unstable, and even singular. Here we assume that the decompositions T

s

u

and T

 

are given and
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`untouchable'. To avoid unnecessary complications in the bubble stabilization described below, we just require

that, for each s, the decomposition T

s

u

does not include triangles having more than one edge on the boundary

of 


s

. As we have seen in the Introduction, we can however choose the grid T

s

�

in such a way that the problem

becomes stabilizable by the simple addition of boundary bubbles to the spaces V

s

h

. To do that, however, we shall

need, as in [7], some minor assumptions on the two decompositions T

s

u

and T

 

. Next, we will generate the T

s

�

decomposition and introduce the stabilization through boundary bubbles. We assume that the decomposition

T

 

is quasi-uniform [12] and that, for all s, the restriction to the boundary �

s

of T

s

u

is also quasi-uniform. We

assume moreover that the decompositions are comparable. In particular we introduce h

max

as the biggest among

the lengths of the intervals of T

 

and the lengths of the boundary edges of the decompositions T

s

u

, for all s.

Similarly, we de�ne h

min

as the minimum over the same set. We assume that:

9

1

> 0 such that h

max

� 

1

h

min

:(2.16)

In the sequel, to avoid heaviness in the notation we shall write h in place of h

min

and h for the maximum diameter

over T

 

and over all T

s

u

's (including internal triangles). We apologize for the rather unusual notation but, as we

shall see, h will be used much more often than h.

Remark 1. The assumptions on the T

u

grid are rather heavy, and will forbid the application of the present theory

to several interesting cases. We remark nevertheless that, in a certain number of cases, grid re�nements and self

adaptive procedures might occur only in the interior of the subdomains, thus escaping our present limitations. On

the other hand, as we shall see in the last Section, we believe that the above assumptions are just technical ones,

and that the results (and the applicability of the whole method) are valid in more general circumstances.

We generate now the grid for the �

h

's as

T

s

�

= merge f(T

s

u

)

j�

s
; (T

 

)

j�

s
g 8s:(2.17)

More precisely, for all s, we take as nodes for T

s

�

the union of the nodes of T

 

and the nodes of T

s

u

belonging to

�

s

. In doing this it may occur that T

s

�

has very small intervals, whenever two nodes of (T

s

u

)

j�

s
and (T

 

)

j�

s
get

too close. Such \small intervals" will be allowed in our discussion (neglecting possible programming problems),

but will need a special treatment from the theoretical point of view. For this we introduce a constant � such

that 0 < � < 1 and we de�ne, following essentially the notation of [10], \irregular" the intervals whose length is

smaller than �h. More precisely, for I

s

�

2 T

s

�

, we say that

I

s

�

is \irregular" if jI

s

�

j � �h:(2.18)

Otherwise I

s

�

will be called \regular". Therefore, we have

9

2

> 0 such that, 8s 8I

s

�

2 T

s

�

if I

s

�

is \regular", then jI

s

�

j � 

2

h:(2.19)

Note that one endpoint of an irregular interval must be a node of T

s

u

, and the other one a node of T

 

.

2.3. Introduction of the bubbles. For each s, we add to the discretization of u

s

as many bubbles as the

intervals of T

s

�

. More precisely, let T be a triangle having an edge T

0

on �

s

, so that T

0

= [

k

I

k

; I

k

2 T

s

�

.

Accordingly, T = [

k

T

k

. (See Fig. 1). A boundary bubble b

k

is a function b

k

2 H

1

(


s

) such that supp(b

k

) � T

k

and

R

I

k

b

k

6= 0. (See [7] for more details.) The optimal shape of these bubbles is still under investigation. As a

simple example, one can think of a quadratic function vanishing on the two internal edges of T

k

(see Fig. 1). As

the choice has to be made up to a scaling factor, we can then assume that b

k

has value 1=4 at the midpoint of

I

k

. With this choice one can easily compute that

Z

T

k

b

k

dx = jT

k

j=12;

Z

I

k

b

k

ds = jI

k

j=6;

Z

T

k

jrb

k

j

2

dx =

P

3

i=1

je

k;i

j

2

48jT

k

j

;(2.20)

where e

k;i

are the edges of T

k

. Consequently, we can deduce

jb

k

j

2

1;T

k

�

Z

T

k

jrb

k

j

2

dx � h

T

=jI

k

j;(2.21)

with h

T

= diameter of T , jI

k

j = length of I

k

, and  a positive constant independent of h

T

and jI

k

j.
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T
1

T
2

T
3

I
2

I
1

I
3

T
k

I
k

b
k

Figure 1

2.4. The stabilized problem. From now on we shall always assume that the decompositions T

 

and T

s

u

are

given and satisfy (2.16), that the decompositions T

s

�

are generated according to (2.17), and that the spaces

V

s

h

; M

s

h

and �

h

are de�ned as in (2.13), (2.14) and (2.15), respectively. Let moreover, for every s; B

s

h

be the

space of bubbles introduced above. We shall replace the space V

s

h

by the augmented space

e

V

s

h

= V

s

h

�B

s

h

8s(2.22)

and then set

e

V

�

h

= �

s

e

V

s

h

; M

�

h

= �

s

M

s

h

. The stabilized discrete problem is now

8

>

>

<

>

>

:

�nd u

h

2

e

V

�

h

; �

h

2M

�

h

and  

h

2 �

h

such that

i) a

s

(u

s

h

; v)� < �

s

h

; v >

s

= (f; v)

s

8v 2

e

V

s

h

8s

ii) < �

s

; u

s

h

>

s

= < �

s

;  

h

>

s

8�

s

2M

s

h

8s

iii)

P

s

< �

s

h

; ' >

s

= 0 8' 2 �

h

:

(2.23)

Remark 2. As pointed out in [7] and further developed in [10] for the single-domain case, the bubbles and the

multipliers �

s

h

can be eliminated by static condensation, leaving, as unknowns, only  

h

and the piecewise linear

part of u

h

. This will be further discussed in the last Section.

3. Error estimates

Comparing (1.2) and (2.23) we easily obtain the error equations

8

<

:

i) a

s

(u

s

� u

s

h

; v)� < �

s

� �

s

h

; v >

s

= 0 8v 2

e

V

s

h

8s

ii) < �

s

; u

s

� u

s

h

>

s

= < �

s

;  �  

h

>

s

8�

s

2M

s

h

8s

iii)

P

s

< �

s

� �

s

h

; ' >

s

= 0 8' 2 �

h

:

(3.1)

Let u

s

I

2

e

V

s

h

; �

s

I

2 M

s

h

;  

I

2 �

h

be some interpolants of u

s

2 V

s

; �

s

2 M

s

;  2 � respectively, to be speci�ed

later. Then, by adding and subtracting these interpolants in (3.1) we obtain

�

P

s

ju

s

� u

s

h

j

2

1;


s

�

X

s

a

s

(u

s

� u

s

h

; u

s

� u

s

I

)

| {z }

+

P

s

a

s

(u

s

� u

s

h

; u

s

I

� u

s

h

) (use (3:1 i))

= I +

P

s

< �

s

� �

s

h

; u

s

I

� u

s

h

>

s

:

(3.2)

For the second term in (3.2), by adding and subtracting u

s

we have

P

s

< �

s

� �

s

h

; u

s

I

� u

s

h

>

s

=

X

s

< �

s

� �

s

h

; u

s

I

� u

s

>

s

| {z }

+

P

s

< �

s

� �

s

h

; u

s

� u

s

h

>

s

= II +

P

s

< �

s

� �

s

h

; u

s

� u

s

h

>

s

:

(3.3)

By inserting now �

s

I

in the last term of (3.3) and using (3.1 ii) we have

P

s

< �

s

� �

s

h

; u

s

� u

s

h

>

s

=

X

s

< �

s

� �

s

I

; u

s

� u

s

h

>

s

| {z }

+

P

s

< �

s

I

� �

s

h

; u

s

� u

s

h

>

s

= III +

P

s

< �

s

I

� �

s

h

;  �  

h

>

s

:

(3.4)
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Finally, inserting �

s

in the last term of (3.4) and using (3.1 iii) we have

P

s

< �

s

I

� �

s

h

;  �  

h

>

s

=

X

s

< �

s

I

� �

s

;  �  

h

>

s

| {z }

+

X

s

< �

s

� �

s

h

;  �  

I

>

s

| {z }

= IV + V:

(3.5)

We will now de�ne proper interpolants to estimate the di�erent pieces of (3.2), (3.3), (3.4), and (3.5). From now

on we will omit the superscript s unless it is really necessary.

Let  

I

2 �

h

be the usual continuous piecewise linear interpolant of  , and, for each s, let u

I

2 V

s

h

be the usual

continuous piecewise linear interpolant of u. The standard interpolation estimates are [12]

jju� u

I

jj

r;T

� Ch

2�r

T

juj

2;T

8T 2 T

s

u

(r = 0; 1);(3.6)

jju� u

I

jj

r;e

� Cjej

3=2�r

juj

3=2;e

8e edge of T; 8T 2 T

s

u

(r = 0; 1);(3.7)

jj �  

I

jj

r;I

� CjI j

3=2�r

j j

3=2;I

8I 2 T

 

(r = 0; 1):(3.8)

(Here and in the sequel C will denote a constant independent of the mesh size, not necessarily the same in the

various occurrences). For the ��variable two di�erent `interpolants' will be needed. For each s, let us denote by

�

I

the piecewise constant function on the T

 

�grid de�ned by

Z

I

 

(�� �

I

) ds = 0 8I

 

2 T

 

;(3.9)

and by

e

� 2M

s

h

the piecewise constant function on the T

�

�grid de�ned by

Z

I

s

�

(��

e

�)b ds = 0 8I

s

�

2M

s

h

; 8b 2 B

s

h

:(3.10)

We recall that the following interpolation estimates hold (see [12])

jj�� �

I

jj

�r;I

 

� CjI

 

j

1=2+r

j�j

1=2;I

 

; 0 � r � 1=2;(3.11)

jj��

e

�jj

�r;I

s

�

� CjI

s

�

j

1=2+r

j�j

1=2;I

s

�

0 � r � 1=2:(3.12)

We also recall that (1.3) implies that � takes opposite values on the two sides of each subdomain interface. In its

turn �

I

, being de�ned on the T

 

�grid, inherits the same property. Hence,

X

s

< �;' >

s

=

X

s

< �

I

; ' >

s

= 0 8' 2 �;(3.13)

as ' 2 � is single-valued on �. On the other hand,

e

� does not enjoy this property.

Some comments are in order before proceeding to estimate the various pieces in (3.2)-(3.5). In doing this, two

types of di�culties will arise. One is connected with the fact that, on the left-hand side of (3.2), we have the

broken H

1

� seminorm of the error while, in estimating some of the pieces, it would be easier to use the broken

H

1

�norm. Hence, we will need to bound the norm of the error with its seminorm. This is not a major problem,

and is dealt with in Lemma 4. The second source of di�culties lies in the estimate of pieces II and V , whose

treatment is actually very similar, where an estimate of � � �

h

in terms of u � u

h

is needed. This is done in

Lemma 1.

Lemma 1. Let T be a boundary triangle of T

s

u

, and let I

k

be a boundary edge as in Fig. 1. Then we have

jj�

h

�

e

�jj

0;I

k

� Ch

T

1=2

jI

k

j

�1

jju� u

h

jj

1;T

k

;(3.14)

where (u; �;  ) is the solution of (1.2) and (u

h

; �

h

;  

h

) that of (2.23).

Proof.

j�

h

�

e

�j

jI

k

= j

R

I

k

(�

h

�

e

�)b

k

dsj=

R

I

k

b

k

ds (use (3:10))

= j

R

I

k

(�

h

� �)b

k

dsj=

R

I

k

b

k

ds (use (3:1 i))

= ja(u� u

h

; b

k

)j=

R

I

k

b

k

ds (use (2:5))

�M jju� u

h

jj

1;T

k

jjb

k

jj

1;T

k

=

R

I

k

b

k

ds (use (2:20)� (2:21))

� Ch

T

1=2

jI

k

j

�3=2

jju� u

h

jj

1;T

k

:

(3.15)
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The result follows then by observing that

jj�

h

�

e

�jj

0;I

k

= j�

h

�

e

�j

jI

k

jI

k

j

1=2

(3.16)

The unsatisfactory part of (3.14) is clearly the presence of jI

k

j

�1

. To deal with it in the treatment of II and V

we shall need an estimate for u� u

I

and  � 

I

, respectively, where jI

k

j appears as a factor. This is done in the

following Lemma.

Lemma 2. Let e � �

s

be either an edge of a triangle of T

s

u

or an interval of T

 

, and let I

k

be an interval of

T

s

�

included in e . Let g be a function in H

3=2

(e), and let g

I

be its linear interpolant on e (that is, g

I

2 P

1

(e),

and g

I

= g at the endpoints of e). Then the following estimate holds

jjg � g

I

jj

0;I

k

� Cjej

1=2

jI

k

jjgj

3=2;e

:(3.17)

Proof. If I

k

is a regular interval, the result follows immediately from usual interpolation estimates [12] and (2.16),

(2.19). Indeed we have

jjg � g

I

jj

0;I

k

� Cjej

3=2

jgj

3=2;e

� Cjej

1=2

jI

k

jjgj

3=2;e

:(3.18)

If instead I

k

is irregular, then one of its endpoints must coincide with an endpoint of e. Setting then d = g � g

I

,

and choosing a coordinate system on e such that I

k

= (0; jI

k

j); and d(0) = 0, the fundamental theorem of calculus

and Cauchy-Schwarz inequality give

d(s) =

Z

s

0

d

0

(t) dt � s

1=2

(

Z

s

0

(d

0

(t))

2

dt)

1=2

:(3.19)

From (3.19) we then have

jjdjj

2

0;I

k

�

R

jI

k

j

0

d

2

(s) ds �

R

jI

k

j

0

s(

R

s

0

(d

0

(t))

2

dt) ds

� jI

k

j

R

jI

k

j

0

(

R

jI

k

j

0

(d

0

(t))

2

dt) ds = jI

k

j

2

jdj

2

1;I

k

;

(3.20)

so that

jjg � g

I

jj

0;I

k

� jI

k

j jg � g

I

j

1;I

k

:(3.21)

Finally, the result follows from (3.21) and interpolation estimates [12]

jg � g

I

j

1;I

k

� jg � g

I

j

1;e

� Cjej

1=2

jgj

3=2;e

:(3.22)

Lemma 2 is the crucial step where we could not avoid the assumption (2.16), at least in the present line of proof.

Indeed, for intervals jI

k

j which are away from the endpoints of e, we cannot estimate jjg � g

I

jj

0;I

k

better than

jej

2

jI

k

j

1=2

, even using a W

2;1

regularity for g (which, in the applications, will be either u or  .) This is not

enough to compensate for the jI

k

j

�1

term in (3.14), unless jej is bounded in terms of jI

k

j. The use of a higher

regularity for g and/or a nonlinear bound of jej in terms of jI

k

j would strongly increase the ugliness of the paper

without seriously improving the quality of the results. An ideal result would be to derive optimal error bounds

without assuming any relationship between T

u

j�

and T

 

, but we did not succeed so far. In view of this, from

now on we shall use (2.16) whenever this can simplify the proofs, even when it is not strictly necessary.

The combined use of Lemma 1 and Lemma 2 allows us to prove the following Lemma 3 and Corollary 1, which

provide the basic instruments for estimating the terms II and V , respectively.

Lemma 3. Let T be a boundary triangle of T

s

u

with a boundary edge T

0

, and let I

k

be an interval of T

s

�

included

in T

0

. Then

j

Z

I

k

(�� �

h

)(u� u

I

) dsj � C(h

2

T

j�j

1=2;I

k

+ h

T

jju� u

h

jj

1;T

)juj

2;T

;(3.23)

where (u; �;  ) is the solution of (1.2), (u

h

; �

h

;  

h

) that of (2.23), and u

I

is the linear interpolant of u.
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Proof. Using Cauchy-Schwarz inequality, the triangle inequality, the interpolation estimate (3.12) and then (3.14)

and (3.17) with g = u we easily deduce

j

R

I

k

(�� �

h

)(u� u

I

) dsj � jj�� �

h

jj

0;I

k

jju� u

I

jj

0;I

k

� (jj� �

e

�jj

0;I

k

+ jj

e

�� �

h

jj

0;I

k

)jju� u

I

jj

0;I

k

� (CjI

k

j

1=2

j�j

1=2;I

k

+ jj

e

�� �

h

jj

0;I

k

)jju� u

I

jj

0;I

k

� C(jI

k

j

1=2

j�j

1=2;I

k

+ h

1=2

T

jI

k

j

�1

jju� u

h

jj

1;T

)h

1=2

T

jI

k

j juj

3=2;T

0

;

(3.24)

and the result follows immediately from (2.10) and jI

k

j � Ch

T

.

With similar arguments we can prove the following result.

Corollary 1. In the same hypotheses of Lemma 3 we have

j

Z

I

k

(�� �

h

)( �  

I

) dsj � C(jI

k

j

3=2

j�j

1=2;I

k

+ h

1=2

T

jju� u

h

jj

1;T

)jI

 

j

1=2

j j

3=2;I

 

;(3.25)

where (u; �;  ) is the solution of (1.2), (u

h

; �

h

;  

h

) that of (2.23), I

 

is the interval 2 T

 

such that I

k

� I

 

, and

 

I

is the linear interpolant of  .

Proof. The proof mimics exactly that of Lemma 3 with u =  ; u

I

=  

I

.

We have now all the necessary instruments to estimate the pieces (3.2)-(3.5). To simplify the following notation,

we set, for s=1,N

E

2

h;s

= jju� u

h

jj

2

1;


s

; E

2

I;s

=

P

T�


s

h

2

T

juj

2

2;T

(3.26)

E

2

h

=

X

s

E

2

h;s

; E

2

I

=

P

s

E

2

I;s

:(3.27)

We can now estimate the di�erent pieces in (3.2)-(3.3)-(3.4)-(3.5). We begin with (3.2):

I =

P

s

a

s

(u� u

h

; u� u

I

) (use (2.5))

�M

P

s

jju� u

h

jj

1;


s

jju� u

I

jj

1;


s

(C-S)

�M(

P

s

jju� u

h

jj

2

1;


s

)

1=2

(

P

s

jju� u

I

jj

2

1;


s

)

1=2

(use (3.26) and (3.27))

=ME

h

E

I

;

(3.28)

where, as well as in the following, C-S indicates the use of Cauchy-Schwarz inequality. We now estimate (3.3). We

recall that (2.16) implies that for every triangle T in T

s

u

having an edge T

0

in �

s

there are only a �nite number

of subintervals I

k

of T

s

�

contained in T

0

. Then:

II =

P

s

< �� �

h

; u

I

� u >

s

=

P

s

P

T

P

k

R

I

k

(�� �

h

)(u

I

� u) d� (use (3.23) and (2.12))

� C

P

s

P

T

(h

2

T

j�j

1=2;T

0

+ h

T

jju� u

h

jj

1;T

)juj

2;T

(use (1.3) and (2.9))

� C

P

s

P

T

(h

2

T

juj

2;T

+ h

T

jju� u

h

jj

1;T

)juj

2;T

(C-S)

� C(E

2

I

+E

h

E

I

)

(3.29)

The estimate of (3.4) is also simple, provided that we introduce the following notation. For every s, and for every

I

 

in �

s

we denote by T

 

a generic triangle (not necessarily in T

s

u

but respecting the minimum angle condition)
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belonging to 


s

and having I

 

as an edge. Then,

III =

P

s

< �� �

I

; u� u

h

>

s

=

P

s

P

I

 

R

(�� �

I

)(u� u

h

) d� ((3.9) and duality)

�

P

s

P

I

 

jj�� �

I

jj

�1=2;I

 

ju� u

h

j

1=2;I

 

(use (3.11) and (2.8))

� C

P

s

P

I

 

jI

 

jj�j

1=2;I

 

ju� u

h

j

1;T

 

(use (2.9) and C-S)

� C

P

s

(

P

T

h

2

T

juj

2;T

)

1=2

ju� u

h

j

1;


s

(C-S)

� CE

I

E

h

:

(3.30)

The term IV would be a potential source of major di�culties, as it requires in principle an estimate of  � 

h

in

terms of u� u

h

. Our choice of �

I

, however, makes it vanish thanks to (3.13):

IV =

X

s

< �

s

I

� �

s

;  �  

h

>

s

= 0:(3.31)

Before estimating V we need further notation. For every triangle T in T

s

u

, we de�ne I

 

(T ) as the union of the

intervals I

 

in T

 

which intersect @T on a set of nonzero length. Note that there are only a �nite number of

them, depending only on the constant 

1

in (2.16). We also denote by T

s

 

any triangle (with the minimum angle

property) in 


s

having I

 

(T ) as an edge. Then the estimate of the last piece proceeds as follows.

V =

P

s

< �� �

h

;  �  

I

>

s

=

P

s

P

T

P

k

R

I

k

(�� �

h

)( �  

I

) d� (use (3.25))

� C

P

s

P

T

P

k

(jI

k

j

3=2

j�j

1=2;I

k

+ h

1=2

T

jju� u

h

jj

1;T

)jI

 

j

1=2

j j

3=2;I

 

(use (2.12) and (2.16))

� C

P

s

P

T

(h

2

T

j�j

1=2;T

0
+ h

T

jju� u

h

jj

1;T

)j j

3=2;I

 

(T )

(use (2.9) and (2.10))

� C

P

s

P

T

(h

2

T

juj

2;T

+ h

T

jju� u

h

jj

1;T

)juj

2;T

 

(C-S)

� C(E

2

I

+E

h

E

I

):

(3.32)

We can now collect equations (3.2)-(3.5) and the estimates (3.28)- (3.32), thus obtaining

�

X

s

ju

s

� u

s

h

j

2

1;


s

� C(E

2

I

+E

I

E

h

):(3.33)

The �nal estimate would then be achieved if we could bound the term E

h

=

P

s

jju � u

h

jj

2

1;


s

appearing in the

right-hand side of (3.33) in terms of the left-hand side. For this we need the following lemma.

Lemma 4. If (u; �;  ) and (u

h

; �

h

;  

h

) are the solutions of (1.2) and (2.23) respectively, then

X

s

jju� u

h

jj

2

1;


s

� C

X

s

ju� u

h

j

2

1;


s

:(3.34)

Proof. For each s, let q

s

be de�ned as

q

s

= (

Z




s

(u� u

h

) dx)=j


s

j;(3.35)

and let q be the piecewise constant function de�ned on 
 by q

j


s

= q

s

. Then set

w = u� u

h

� q:(3.36)

Since w has zero mean value in each 


s

we easily have

X

s

jjwjj

2

1;


s

� C

X

s

jwj

2

1;


s

= C

X

s

ju� u

h

j

2

1;


s

:(3.37)

Let now � 2 H

1

0

(
) \ H

2

(
) be the solution of ��� = q in 
; set � = r� and set, for every s = 1; N ,

�

�

s

=

@�

@n

s

j�

s

= � � n

s

j�

s . We consider now a new, arti�cial triangulation in each 


s

that agrees with T

 

on

�

s

and has maximum diameter smaller than or equal to h (plus, clearly, the usual minimum angle condition).
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Note that, in this way, we obtain a compatible decomposition of the whole 
. Let now �

I

be the lowest order

Raviart-Thomas interpolant of � (see e.g. [6]). We have

jj�

I

jj

H(div;
)

� Cjj� jj

1;


� Cjj�jj

2;


� Cjjqjj

0;


:(3.38)

We notice that, for each s, if �

s

I

is the interpolant of �

�

s

de�ned as in (3.9), then

�

s

I

= �

I

� n

s

j�

s :(3.39)

With classical arguments we have then

jjqjj

2

0;


= �

R




��q dx = �

P

s

R




s

��q

s

dx = �

P

s

R

�

s

�

�

s

q

s

d� = �

P

s

R

�

s

�

s

I

q

s

d�

= �

P

s

R

�

s

�

s

I

(q

s

+ w) d� +

P

s

R

�

s

�

s

I

w d� = �

P

s

R

�

s

�

s

I

(u� u

h

) d� +

P

s

R

�

s

�

s

I

w d�

= �

P

s

R

�

s

�

s

I

( �  

h

) d� +

P

s

R

�

s

�

s

I

w d�:

(3.40)

The �rst term in the last line of (3.40) vanishes thanks to (3.13), and the second can be bounded as follows

P

s

R

�

s

�

s

I

w d� =

P

s

R

�

s

�

I

� n

s

w d� =

P

s

(

R




s

div �

I

wdx +

R




s

�

I

� rwdx)

� jj�

I

jj

H(div;
)

(

P

s

jjwjj

2

1;


s

)

1=2

� Cjjqjj

0;


(

P

s

jjwjj

2

1;


s

)

1=2

;

(3.41)

where, in the �rst step, we used (3.39), and in the last step we used (3.38). Hence, from (3.40),(3.41) and (3.37),

jjqjj

0;


� C(

X

s

jjwjj

2

1;


s

)

1=2

� C(

X

s

ju� u

h

j

2

1;


s

)

1=2

:(3.42)

Since

X

s

jju� u

h

jj

2

1;


s

=

X

s

jjw + qjj

2

1;


s

=

X

s

(jjwjj

2

1;


s

+ jjqjj

2

0;


s

);(3.43)

using (3.42) in (3.43) we have the result .

From (3.33) and (3.34) we deduce the �rst convergence theorem.

Theorem 1. Let (u; �;  ) and (u

h

; �

h

;  

h

) be the solutions of (1.2) and (2.23) respectively. Then the following

estimate holds

E

h

= (

X

s

jju� u

h

jj

2

1;


s

)

1=2

� CE

I

� Chjuj

2;


:(3.44)

We are now able to prove a convergence result in L

2

(
) for the u variable.

Theorem 2. Let (u; �;  ) and (u

h

; �

h

;  

h

) be the solutions of (1.2) and (2.23) respectively. Then the following

estimate holds

jju� u

h

jj

0;


� ChE

I

� Ch

2

juj

2;


:(3.45)

Proof. Let w 2 H

1

0

(
) \ H

2

(
) be the solution of the adjoint problem of (2.1) A

�

w = u � u

h

in 
. Let, for

every s = 1; N , w

s

I

2 V

s

h

be the piecewise linear interpolant of w, so that interpolation estimate (3.6) holds, and

let ew

I

2 �

h

be the piecewise linear interpolant of w on �, for which interpolation estimate (3.8) holds. Then,

integrating by parts, inserting w

s

I

, using (3.1 i), and inserting ew

I

we get

jju� u

h

jj

2

0;


=< u� u

h

; A

�

w >= �

P

s

< u� u

h

;

@w

@n

a

>

s

+

P

s

a

s

(u� u

h

; w)

= I +

P

s

a

s

(u� u

h

; w � w

s

I

) +

P

s

a

s

(u� u

h

; w

s

I

) = I + II +

P

s

< �� �

h

; w

s

I

>

s

= I + II +

P

s

< �� �

h

; w

s

I

� w >

s

+

P

s

< �� �

h

; w � ew

I

>

s

+

P

s

< �� �

h

; ew

I

>

s

= I + II + III + IV + V:

(3.46)

The term I will be estimated later on. To estimate II we proceed as for (3.28) and use continuous dependence

of w on u� u

h

and (3.44). Thus,

II � Chjwj

2;


(

X

s

jju� u

h

jj

2

1;


s

)

1=2

� ChE

h

jju� u

h

jj

0;


:(3.47)
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The term V vanishes thanks to (3.1 iii), while III and IV can be treated exactly as (3.29) and (3.32) respectively:

III; IV � C

P

s

P

T

(h

2

T

juj

2;T

+ h

T

jju� u

h

jj

1;T

)jwj

2;T

� C

P

s

P

T

(h

T

juj

2;T

+ jju� u

h

jj

1;T

)hjwj

2;T

� C(E

2

I

+E

2

h

)

1=2

hjwj

2;


� ChE

I

jju� u

h

jj

0;


:

(3.48)

It remains to estimate the term I . For that, set, for every s = 1; N , �

�

s

=

@w

@n

a

j�

s

. Let �

s

I

be the interpolant of �

�

s

de�ned as in (3.9). Inserting �

s

I

, using (3.1 ii), (3.13), (3.11), and (2.8) we have

I = �

P

s

< u� u

h

; �

�

s

� �

s

I

>

s

�

P

s

< u� u

h

; �

s

I

>

s

= �

P

s

< u� u

h

; �

�

s

� �

s

I

>

s

�

P

s

<  �  

h

; �

s

I

>

s

= �

P

s

< u� u

h

; �

�

s

� �

s

I

>

s

�

P

s

ju� u

h

j

1=2;�

s

jj�

�

s

� �

s

I

jj

�1=2;�

s

� C

P

s

ju� u

h

j

1;


s

hj�

�

s

j

1=2;�

s
� ChE

h

jwj

2;


� ChE

I

jju� u

h

jj

0;


:

(3.49)

Finally, using (3.47)-(3.49) in (3.46) we conclude.

So far, we have obtained optimal error estimates for the variable u. In a sense, this might be considered as

su�cient, in order to assess the accuracy of the three-�eld formulation. However, it might be interesting to see if

similar error estimates could be proved for the other two variables � and  . In the sequel we are going to present

some of those error estimates, restraining ourselves, for the sake of simplicity, to the ones whose proof is more

elementary. In particular we shall obtain optimal error estimates for both  and � in the weighted L

2

-norms

jjj'jjj

�

 

= (

X

I

 

jI

 

j jj'jj

2

0;I

 

)

1=2

(3.50)

and

jjj�jjj

�

�

= (

X

s

X

k

jI

k

j jj�jj

2

0;I

k

)

1=2

(3.51)

In order to make the following exposition more uent, we anticipate the following technical fact, whose proof is

totally elementary and will therefore be left to the reader. Assume that I is an interval, � a real number with

0 < � < 1, and I

�

a subinterval having length jI

�

j � �jI j. Let m

�

be the midpoint of I

�

. Then, for every p,

polynomial of degree � 1 that does not change sign in I , we have

Z

I

�

p(m

�

)p(t) dt = jI

�

jp

2

(m

�

) �

3�

3

4

Z

I

p

2

(t) dt:(3.52)

We can now prove the following Inf-Sup condition for the spaces M

s

h

and �

hj�

s

.

Lemma 5. Let s be �xed. Assume that the interval I

 

2 T

 

j�

s

contains at least two regular intervals I

�

2 T

s

�

.

Then, for every '

h

2 �

h

not identically zero on I

 

, there exists a �

s

h

2M

s

h

, not identically zero on I

 

, such that

jj�

s

h

jj

2

0;I

 

=

Z

I

 

�

s

h

'

h

d� � (

3�

3

min

4

)

1=2

jj'

h

jj

0;I

 

jj�

s

h

jj

0;I

 

;(3.53)

where

�

min

= minf

�h

jI

 

j

; I

 

� T

 

j�

s

g;(3.54)

and � is de�ned in (2.18).

Proof. As '

h

is not identically zero, there exists at least one regular interval I

�

where '

h

does not change sign.

Let m be the midpoint of this I

�

, and set �

s

h

= '

h

(m) in I

�

, �

s

h

= 0 in the rest of I

 

. We have then

Z

I

 

�

s

h

'

h

d� = jj�

s

h

jj

2

0;I

 

:(3.55)

On the other hand, using (3.52) we also have

Z

I

 

�

s

h

'

h

d� �

3�

3

min

4

jj'

h

jj

2

0;I

 

;(3.56)

as the regularity of I

�

implies jI

�

j � �h � �

min

jI

 

j. Now, (3.55)-(3.56) give (3.53).
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We can now prove our convergence theorem for the variable  .

Theorem 3. Let (u; �;  ) and (u

h

; �

h

;  

h

) be the solutions of (1.2) and (2.23) respectively, and assume that for

all s = 1; N each interval I

 

2 T

 

j�

s

contains at least two regular intervals I

�

2 T

s

�

. Then the following estimate

holds

jjj �  

h

jjj

�

 

= (

X

s

X

I

 

jI

 

j jj �  

h

jj

2

0;I

 

)

1=2

� ChE

I

� Ch

2

juj

2;


:(3.57)

Proof. . Let  

I

be the interpolant of  as in (3.7), and use, in every I

 

, Lemma 5 with '

h

=  

h

� 

I

. We obtain

jI

 

j

1=2

Z

I

 

�

s

h

( 

h

�  

I

) d� � (

3�

3

min

4

)

1=2

jI

 

j

1=2

jj 

h

�  

I

jj

0;I

 

jj�

s

h

jj

0;I

 

:(3.58)

On the other hand,

jI

 

j

1=2

Z

I

 

�

s

h

( 

h

�  

I

) d� = jI

 

j

1=2

Z

I

 

�

s

h

( 

h

�  ) d� + jI

 

j

1=2

Z

I

 

�

s

h

( �  

I

) d� = I + II(3.59)

In order to bound the �rst term, we set as in (3.30) T

 

a triangle in 


s

having I

 

as an edge, and we apply (2.11)

in T

 

. We obtain

I = jI

 

j

1=2

R

I

 

�

s

h

( 

h

�  ) d� = jI

 

j

1=2

R

I

 

�

s

h

(u

h

� u) d� � jI

 

j

1=2

jj�

s

h

jj

0;I

 

jju

h

� ujj

0;I

 

� CjI

 

j

1=2

jj�

s

h

jj

0;I

 

(jI

 

j

�1

jju� u

h

jj

2

0;T

 

+ jju� u

h

jj

0;T

 

jju� u

h

jj

1;T

 

)

1=2

(3.60)

The second term in (3.59) is easily bounded using (3.8) and (2.10) as

II � Cjj�

s

h

jj

0;I

 

jI

 

j

2

j j

3=2;I

 

� Cjj�

s

h

jj

0;I

 

jI

 

j

2

juj

2;T

 

:(3.61)

Inserting (3.60)-(3.61) in (3.59) and then in (3.58) and taking the square gives, on the intervals I

 

where  

h

� 

I

does not vanish identically:

jI

 

jjj 

h

�  

I

jj

2

0;I

 

� C(jju� u

h

jj

2

0;T

 

+ jI

 

jjju� u

h

jj

0;T

 

jju� u

h

jj

1;T

 

+ jI

 

j

4

juj

2

2;T

 

):(3.62)

Summation of (3.62) gives, using (3.44) and (3.45)

X

s

X

I

 

jI

 

j jj 

h

�  

I

jj

2

0;I

 

� Ch

2

E

2

I

(3.63)

and the result follows by (3.8) and the triangle inequality.

Remark 3. We notice that the additional assumption required on T

s

�

for proving the error bound (3.57) is not

di�cult to realize in practice. Indeed, one can start by de�ning T

s

�

as in (2.17). If there is an I

 

that does

not contain two regular intervals of T

s

�

, we just add a node to T

s

�

, by splitting in two equal parts the longest I

�

contained in I

 

.

Remark 4. The norm (3.50) used in estimate (3.57) is clearly weaker than the norm in L

2

(�). However it is

optimal, compared with the regularity assumptions on the solution. In particular, using (2.16) and (3.57) one can

easily deduce

jj �  

h

jj

0;�

� Ch

3=2

juj

2;


(3.64)

for quasi-uniform meshes.

As far as the � variable is concerned, we already had in (3.15) that

j�

h

�

e

�j

jI

k

� Ch

T

1=2

jI

k

j

�3=2

jju� u

h

jj

1;T

(3.65)

for every I

k

� T

s

�

(s=1,N), where T is the triangle in T

s

u

having I

k

as part of its boundary. If I

k

is regular, this

implies

j�

h

�

e

�j

jI

k

� CjI

k

j

�1

jju� u

h

jj

1;T

:(3.66)

We would like to prove that (3.66) is essentially true for irregular intervals as well. Assume therefore that I

k

is

irregular. We need some notation. Let Q be the endpoint of I

k

that is a vertex of T

s

u

(there must be one). Let

T be the triangle of T

s

u

having I

k

� @T . Let P and R be the boundary vertices in T

s

u

sharing a triangle with Q.
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QP RP Q R

T

K

Figure 2

Let Q

0

be the other endpoint of I

k

and assume, to �x ideas, that Q

0

2 QR. As it will be the worst case, we also

assume that there exist two other points, P

0

2 PQ and R

0

2 QR such that PP

0

and RR

0

are irregular intervals of

T

s

�

. See Fig. 2. Let now v

h

be a function in V

s

h

(hence, piecewise linear on T

s

u

) such that v

h

(Q) = 1 and v

h

= 0

at the other vertices, and K=supp(v

h

). In the case of Fig. 2, K will be the union of the three triangles.

We are ready. Splitting the integral in �ve pieces we have

j

R

Q

0

Q

(�

h

�

e

�)v

h

d�j = j

R

R

P

� d��

R

P

0

P

� d��

R

Q

P

0

� d��

R

R

0

Q

0

� d��

R

R

R

0

� d�j

� jI j + jII j + jIII j + jIV j+ +jV j

(3.67)

and we bound separately the �ve pieces. To start with, we remark that III and IV are made of regular integrals.

Therefore from (3.66) we have immediately

jIII j + jIV j � Cjju� u

h

jj

1;K

;(3.68)

as jv

h

j � 1. On the other hand, using elementary calculus and then (3.65) we have

jII j = j�

h

�

e

�j

PP

0

� jPP

0

j � v

h

(

P + P

0

2

) = j�

h

�

e

�j

PP

0

�

(jPP

0

j)

2

2jPQj

� C jju� u

h

jj

1;K

:(3.69)

The term V is then estimated in an identical way

jV j � C jju� u

h

jj

1;K

:(3.70)

so that we have only to deal with I . Adding and subtracting �, using (3.12), (3.1,i), (2.9) and estimating the

norms of v

h

(that is jjv

h

jj

0;PR

� Ch

1=2

and jjv

h

jj

1;K

� C) we obtain:

R

R

P

(�

h

�

e

�)v

h

d� =

R

R

P

(�

h

� �)v

h

d� +

R

R

P

(��

e

�)v

h

d� � Ch

1=2

j�j

1=2;PR

jjv

h

jj

0;PR

+ a(u� u

h

; v

h

)

� Chjuj

2;K

+ M jju� u

h

jj

1;K

jjv

h

jj

1;K

� C(hjuj

2;K

+ jju� u

h

jj

1;K

):

(3.71)

Summing all the �ve contributions from (3.68), (3.70), (3.69) and (3.71) we have

j

Z

Q

0

Q

(�

h

�

e

�)v

h

d�j � C(hjuj

2;K

+ jju� u

h

jj

1;K

):(3.72)

On the other hand, the same integral can be estimated from below:

j

R

Q

0

Q

(�

h

�

e

�)v

h

d�j = j�

h

�

e

�j

I

k

� jQQ

0

j � v

h

(

Q+Q

0

)

2

) = j�

h

�

e

�j

I

k

� jQQ

0

j �

2jQRj�jQQ

0

j

2jQRj

� CjI

k

j j�

h

�

e

�j

I

k

(3.73)

Comparing (3.72) and (3.73) we conclude with the following theorem.

Theorem 4. Let (u; �;  ) and (u

h

; �

h

;  

h

) be the solutions of (1.2) and (2.23) respectively, and let

e

� be de�ned

by (3.10). For all s=1,N let I

k

be an interval in T

s

�

, and let K be the union of those triangles of T

s

u

that have

at least one point in common with I

k

. We have

j�

h

�

e

�j

I

k

� CjI

k

j

�1

(hjuj

2;K

+ jju� u

h

jj

1;K

):(3.74)

From (3.74), the previous error estimate (3.44), the interpolation estimate (3.12) and the triangle inequality we

have then the �nal error estimate for �, in the norm (3.51).

Theorem 5. Let (u; �;  ) and (u

h

; �

h

;  

h

) be the solutions of (1.2) and (2.23) respectively. We have
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jjj�� �

h

jjj

�

�

= (

X

s

X

k

jI

k

j jj�� �

h

jj

2

0;I

k

)

1=2

� CE

I

� Chjuj

2;


:(3.75)

4. Numerical considerations

In this Section we shall address a certain number of numerical considerations, in order to cast some light on

di�erent issues, like the actual implementation of the procedure and its expected numerical performances. To

present a full set of numerical experiments (that might show the accuracy and stability of the method, the quality

of the preconditioners that can be used, and the overall performance in terms of accuracy versus computer time

in di�erent typical situations of industrial interest) is far beyond the scopes of this paper.

On the other hand, since a full numerical evidence in support of the present approach is presently lacking, it

is worth spending a few comments in order to explain the reasons why we believe in its potential.

We then go back to the stabilized problem (2.23), that we report here for the convenience of the reader:

8

>

>

<

>

>

:

�nd u

h

2

e

V

�

h

; �

h

2M

�

h

and  

h

2 �

h

such that

i) a

s

(u

s

h

; v)� < �

s

h

; v >

s

= (f; v)

s

8v 2

e

V

s

h

8s

ii) < �

s

; u

s

h

>

s

= < �

s

;  

h

>

s

8�

s

2M

s

h

8s

iii)

P

s

< �

s

h

; ' >

s

= 0 8' 2 �

h

:

(4.1)

First of all, we note that the formulation (4.1) does not seem to be very well suited for a global solution, as one

would have by applying an iterative algorithm (conjugate gradient, GMRES, etc) to the whole system. Even the

procedure that eliminates the bubbles and the Lagrange multipliers �

s

h

(that we are going to describe in detail

in the sequel) will not produce a system which is well suited for that. On the other hand, in most cases, this is

not the preferred way for solving a domain decomposition problem. Looking at (4.1) it is clear that, for �xed

 

h

, the �rst two equations can be solved independently and in parallel. We can therefore consider the mapping

S

h

= (S

u

;S

�

) that associates to the pair (f;  

h

) the solution (u

h

; �

h

) of the �rst two equations of (4.1). With

this notation, problem (4.1) can be written as:

�nd  

h

2 �

h

such that

X

s

< S

�

(f;  

h

); ' >

s

= 0; 8' 2 �

h

:(4.2)

It is clear that in (4.2) a crucial role is played by the linear operator S

h

, from �

h

to its dual space, de�ned by:

< S

h

( 

h

); ' >:=

X

s

< S

�

(0;  

h

); ' >

s

;(4.3)

which is commonly called Schur complement, and whose spectral properties have a paramount relevance in solving

(4.2) by iterative methods. It is easy to see that S

h

is the discretization of a pseudo-di�erential operator S, of

order 1, on �

h

. In order to precondition (4.2) one has to �nd a cheaply computable operator that could be

regarded as an approximation of S

�1

. Several choices for that are found in the literature. For instance one could

solve local Neumann problems (not necessarily related to the actual form of the operator A or to the T

s

u

grids)

in order to get an approximation of the local Steklov-Poincar�e operators. Or one can de�ne a sort of H

1=2

inner

product on �

h

, and invert the associated linear operator. We refer to the survey [11], and to the impressive set

of proceedings of the various meetings on Domain Decomposition Methods, whose last volume is [4]. It is clear,

however, that in doing that the task is made much easier if the grid on �

h

is uniform. For instance one could use

fast solvers for the local Neumann problems, or �nd easy expressions for the H

1=2

inner product, and so on. This

is the main reason why we believe that an approach allowing the use of a uniform grid on �

h

(independently of

the grids that are used in the subdomains) is worth investigating.

Let us now discuss the actual computation of the operator S

h

, and in particular the solution of the local

problems in each 


s

. For this, we concentrate on a single domain. We assume  

h

to be given, and we see how

to compute the corresponding u

s

h

and �

s

h

. For the sake of simplicity, we might drop at this point the superscript

s, as the same identical procedure will be applied, in parallel, in each subdomain. With an abuse of notation, we

are also going to call 
 (instead of 


s

) the current subdomain, and so on. No confusion should arise. With this

simpli�ed notation the local problem becomes:

8

<

:

given  

h

on @
; �nd u

h

2

e

V

h

and �

h

2M

h

such that

i) a(u

h

; v)� < �

h

; v > = (f; v) 8v 2

e

V

h

ii) < �; u

h

> = < �; 

h

> 8� 2M

h

;

(4.4)
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where M

h

is made of piecewise constants on T

�

, and

e

V

h

is obtained as the sum of piecewise linear functions on

T

u

(that we will denote by V

L

,) and the space of boundary bubbles B

h

. Accordingly, u

h

will be written as

u

h

(x) = u

L

(x) +

X

k

u

k

B

b

k

(x):(4.5)

From the second equation of (4.4), by taking � as the characteristic function of an interval I

k

of T

�

, we obtain:

u

k

B

=

�

Z

I

k

 

h

ds�

Z

I

k

u

L

ds

�

=

Z

I

k

b

k

ds:(4.6)

We remark that both u

L

and  

h

are linear in each I

k

, so that, indicating by m

k

the midpoint of I

k

, and setting



I

k

=

Z

I

k

b

k

ds;(4.7)

we immediately obtain from (4.6) that

u

k

B

= ( 

h

(m

k

)� u

L

(m

k

))jI

k

j=

I

k

:(4.8)

We can now use the �rst equation of (4.4), with v = b

k

, in order to express �

k

as a function of the other variables:

�

k

=

�

a(u

L

; b

k

) + u

k

B

a(b

k

; b

k

)� (f; b

k

)

�

=

I

k

:(4.9)

Assume now, for simplicity, that in (2.2) we have a

0

= 0, and that the other coe�cients a

i;j

are piecewise

constants. Assume also that the right-hand side f is piecewise constant. The last two assumptions are not

really restrictive, as in most cases both a

i;j

and f are approximated anyhow by piecewise constants in the actual

implementation. The �rst assumption, on a

0

, is more restrictive, but, as we shall see, is there only to have a nicer

�nal formula, and a piecewise constant a

0

could also be taken very easily into account. We remark now that,

integrating by parts, for every v

L

2 V

L

and for every k we have:

a(v

L

; b

k

) = a(b

k

; v

L

) =

Z

I

k

@v

L

@n

a

b

k

ds =

@v

L

@n

a



I

k

;(4.10)

where clearly @v

L

=@n

a

is the conormal derivative of v

L

with respect to the bilinear form a, as given in (2.3). We

also set:



T

k

=

Z

T

k

b

k

dx; 

a

k

= a(b

k

; b

k

);(4.11)

so that (4.9) becomes

�

k

=

@u

L

@n

a

+

�

u

k

B



a

k

� f

k



T

k

�



I

k

:(4.12)

With some manipulations, using (4.8) and (4.10), we obtain

a(

X

k

u

k

B

b

k

; v

L

) =

Z

@


( 

h

� u

L

)

@v

L

@n

a

ds:(4.13)

Taking now the �rst equation of (4.4) for v = v

L

, using (4.8) (4.12) and (4.10), we obtain with easy computations

that

a(u

L

; v

L

)� < u

L

;

@v

L

@n

a

> � < v

L

;

@u

L

@n

a

> +

P

k

�

jI

k

j



I

k

�

2



a

k

u

L

(m

k

)v

L

(m

k

) =

(f; v

L

)�

P

k

f

k

�



T

k

jI

k

j



I

k

�

v

L

(m

k

)� <  

h

;

@v

L

@n

a

> +

P

k

�

jI

k

j



I

k

�

2



a

k

 

h

(m

k

)v

L

(m

k

):

(4.14)

Equation (4.14) can be further simpli�ed. In particular, if v

L

is a basis function having value 1 at a boundary

node and 0 at the other nodes of T

u

, and if f is piecewise constant on T

u

, using (2.20) we rather easily get:

X

k

f

k

�



T

k

jI

k

j



I

k

�

v

L

(m

k

) =

X

k

f

k

jT

k

j

2

v

L

(m

k

) =

3

4

Z

f v

L

dx(4.15)

where the last integral is made over the triangles having an edge on @
. By linearity, the formula will then hold

for every v

L

vanishing at all internal nodes. Hence, we can also consider the new scalar product, de�ned for

piecewise linear functions u

L

and v

L

as

< u

L

; v

L

>

h

:=

X

k

�

jI

k

j



I

k

�

2



a

k

u

L

(m

k

)v

L

(m

k

);(4.16)
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and, in agreement with (4.15),

(f; v

L

)

�

:=

3

4

Z

f v

�

L

dx;(4.17)

where the integral is extended over the elements having an edge on @
, and v

�

L

is obtained from v

L

by setting all

the values at internal nodes equal to zero. Equation (4.14) becomes now

a(u

L

; v

L

)� < u

L

;

@v

L

@n

a

> � < v

L

;

@u

L

@n

a

> + < u

L

; v

L

>

h

=

(f; v

L

)� (f; v

L

)

�

� <  

h

;

@v

L

@n

a

> + <  

h

; v

L

>

h

8v

L

2 V

L

:

(4.18)

The nature of the resulting local problem should now be clear. We remark �rst that the method we obtained by

adding and eliminating bubbles is very close to the Nitsche's method [17], which roughly corresponds to

a(u

L

; v

L

)� < u

L

;

@v

L

@n

a

> � < v

L

;

@u

L

@n

a

> +

�

h

< u

L

; v

L

>=

(f; v

L

)� <  

h

;

@v

L

@n

a

> +

�

h

<  

h

; v

L

> 8v

L

2 V

L

;

(4.19)

and whose implementation is immediate. In (4.19) � is a suitable constant which has to be � �

0

depending on

the minimum angle of the triangles. We also point out that, for reasonably smooth f , the term (f; v

L

)

�

, which

appears in (4.18) and not in (4.19), will actually be negligible (but in any case is easy to compute). On the other

hand the terms

�

h

< u

L

; v

L

> and < u

L

; v

L

>

h

compare very well in terms of powers of h. The e�ect of having

smaller intervals I

k

, or even irregular intervals, should correspond, roughly speaking, to choose a local value for �

which is bigger than necessary. In these circumstances, both (4.18) and (4.19) exhibit, in practical computations,

the typical behavior of penalty methods, as depicted in Fig. 3: for smaller and smaller values of the penalty

parameter ", the relative error stabilizes to a value which is slightly bigger that the optimal one (corresponding,

in general, to " � h) that is well within the bounds of optimality (in terms of powers of h.) For this reason, we

believe that our assumptions on the grids, and in particular the quasi-uniformity of T

u

on the boundary and the

comparability of the two grids T

u

and T

 

, are rather technical assumptions, and do not correspond to an actual

weakness of the method.

Finally, we want to point out that, in the spirit of [1], one could think of changing the shape of the bubbles b

k

so

that the actual computation of the coe�cients appearing in the �nal reduced system become easier. Essentially,

within certain limitations, one might prescribe the value of the coe�cients and use them in the computation, just

knowing that there exist bubbles (still providing optimal error bounds) that will produce, after elimination, the

prescribed coe�cients. The actual shape of these virtual bubbles does not need to be known explicitly, as only

the �nal coe�cients enter the computation. These matters are currently under investigation.
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