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Abstrat. In reent times, several attempts have been made to reover some information from the subgrid sales and

transfer them to the omputational sales. Many stabilizing tehniques an also be onsidered as part of this e�ort. We

disuss here a framework in whih some of these attempts an be set and analyzed.

1 Introdution

In the numerial simulation of a ertain number of problems, there are physial e�ets that take plae on a sale

whih is muh smaller than the smallest one representable on the omputational grid, but have a strong impat on

the larger sales, and, therefore, annot be negleted without jeopardizing the overall quality of the �nal solution.

In other ases, the disrete sheme laks the neessary stability properties beause it does not treat in a proper

way the smallest sales allowed by the omputational grid. As a onsequene, some "smallest sale mode" appears

as abnormally ampli�ed in the �nal numerial results. Most types of numerial instabilities are produed in this

way, as the hekerboard pressure mode for nearly inompressible materials, or the �ne-grid spurious osillations

in onvetion-dominated ows. See for instane [19℄ and the referenes therein for a lassial overview of several

types of these and other instabilities of this nature.

In the last deade it has beome lear that several attempts to reover stability, in these ases, ould be

interpreted as a way of improving the simulation of the e�ets of the smallest sales on the larger ones. By doing

that, the small sales an be seen by the numerial sheme and therefore be kept under ontrol.

These two situations are quite di�erent, in nature and sale. Nevertheless it is not unreasonable to hope that

some tehniques that have been developed for dealing with the latter lass of phenomena might be adapted to

deal with the former one. In this sense, one of the most promising tehnique seems to be the use of Residual-

Free Bubbles (see e.g. [10℄, [18℄.) In the following setions, we are going to summarize the general idea behind

it, trying to underline its potential and its limitations. In Setion 2 we present the ontinuous problems in an

abstrat setting, and provide examples of appliations, related to advetion dominated ows, omposite materials,

and visous inompressible ows. For appliation of these onepts to other problems we refer, for instane, to

[13℄, [14℄, [16℄, [18℄, [24℄. In Setion 3 we introdue the basi features of the RFB method. Starting from a given

disretization (that might possibly be unstable), we disuss the suitable bubble spae that an be added to the

original �nite element spae. Inreasing the spae with bubbles leads to the augmented problem, usually in�nite

dimensional, whih, in the end, will have to be solved in some suitable approximate way. In Setion 4 we give

an idea of how error estimates an be dedued for the augmented problem. In Setion 5 we disuss the related

omputational aspets, and we present several strategies that an be used to deal with the augmented problem,

in order to minimize the omputational ost. We shall see in partiular that several other methods that are

known in the literature an atually be seen as variants of the RFB proedure, in whih one or another of the

above strategies is employed. This inludes, for advetion dominated problems, the lassial SUPG methods (as

it was already well known, see, e.g., [4℄) as well as the older Petrov-Galerkin methods based on suitable operator

dependent hoies of test and trial funtions [25℄. For omposite materials, this inludes both the multisale

methods of [22℄, [23℄, and the upsaling methods of [1℄, [2℄. Finally, in Setion 6 we draw some onlusions.

2 The ontinuous problem

We onsider the following ontinuous problem

(

�nd u 2 V suh that

L(u; v) =< f; v > 8v 2 V;

(2.1)



where V is a Hilbert spae, and V

0

its dual spae, L(u; v) is a ontinuous bilinear form on V � V , and f 2 V

0

is the foring term. We assume that, for all f 2 V

0

, problem (2.1) has a unique solution. Various problems of

interest for the appliations an be written in the variational form (2.1), aording to di�erent hoies of the

spae V and the bilinear form L. Typial hoies for V , when V is a spae of salar funtions, are the following:

if O � R

d

; (d = 1; 2; 3) denotes a generi domain, V ould be, for instane, L

2

(O); H

1

(O); H

1

0

(O); H

2

(O) or

L

2

0

(O), the last one being the spae of L

2

�funtions having zero mean value. In the ase where V is a spae of

vetor valued funtions, a �rst hoie ould be to take the artesian produt of the previous salar spaes. Other

typial hoies for V an be:

H(div;O) := f� 2 (L

2

(O))

d

suh that r � � 2 L

2

(O)g;

H

0

(div;O) := f� 2 H(div;O) suh that � � n = 0 on �Og;

or also, for a generi domain O � R

3

,

H(url;O) := f� 2 (L

2

(O))

3

suh that r ^ � 2 (L

2

(O))

3

g

H

0

(url;O) := f� 2 H(url;O) suh that � ^ n = 0 on �Og:

Produt spaes are also used quite often: for instane, H(div;O) � L

2

(O), or (H

1

0

(O))

d

� L

2

0

(O), et. Next, we

provide some lassial examples of problems and we indiate the orresponding spae V , the bilinear form L, and

the variational formulation.

Ex 2.1: Advetion-dominated salar equations:

�"�u+  � ru = f in 
; u = 0 on �


V := H

1

0

(
); L(u; v) :=

Z




"ru � rv dx+

Z




 � ru v dx; < f; v > :=

Z




fv dx

L(u; v) =< f; v > 8v 2 V

Ex 2.2: Linear ellipti problems with omposite materials:

�r � (�(x)ru) = f in 
; u = 0 on �


V := H

1

0

(
); L(u; v) :=

Z




�(x)ru � rv dx; < f; v > :=

Z




fv dx

L(u; v) =< f; v > 8v 2 V

(where �(x) � �

0

> 0 might have a very �ne struture).

Ex 2.3: Composite materials in mixed form, i.e., the same problem of the previous example, but now with:

� = ��r in 
; r � � = f in 
;  = 0 on �


V := � � �; � := H(div;
); � := L

2

(
)

a

0

(�; � ) :=

Z




�

�1

� � � dx; b(� ; ') :=

Z




r � � 'dx

L((�;  ); (� ; ')) := a

0

(�; � )� b(� ;  ) + b(�; '); < f; (� ; ') > :=

Z




f' dx

L((�;  ); (� ; ')) =< f; (� ; ') > 8(� ; ') 2 V

Ex 2.4: Stokes problem for visous inompressible uids:

��u+rp = f in 
; r � u = 0 in 
; u = 0 on �


V := U�Q; U := (H

1

0

(
))

d

; Q := L

2

0

(
)

a

1

(u;v) :=

Z




ru : rv dx b(v; q) :=

Z




r � v q dx

L((u; p); (v; q)) := a

1

(u;v) � b(v; p) + b(u; q); < f; (v; q) > :=

Z




f � v dx

L((u; p); (v; q)) =< f; (v; q) > 8(v; q) 2 V



3 From the disrete problem to the augmented problem

Let T

h

be a deomposition of the omputational domain 
, with the usual nondegeneray onditions [12℄, and

let V

h

� V be a �nite element spae. The original disrete problem is then:

(

�nd u

h

2 V

h

suh that

L(u

h

; v

h

) =< f; v

h

> 8v

h

2 V

h

:

(3.1)

Note that we do not assume that (3.1) has a unique solution. Indeed, the stabilization that we are going to

introdue an, in some ases, take are of problems originally ill-posed. Our aim is, essentially, to solve in the

end a �nal linear system having as many equations as the number of degrees of freedom of V

h

. Apart from that,

we are ready to pay some extra work, in order to have a better method. In some ases, the total amount of

additional work will be small. In other ases, it an be huge. However, we want to be able to perform the extra

work independently in eah element so that we an do it, as a pre-proessor, in parallel. This implies that we are

ready to add as many degrees of freedom as we want at the interior of eah element. For that, to V and T

h

we

assoiate the maximal spae of bubbles

B(V ; T

h

) =

Y

K

B

V

(K); with B

V

(K) = fv 2 V : supp(v) � Kg:

Let us give some examples of the dependene of B

V

(K) on V .

� if V = H

1

0

(
) then B

V

(K) = H

1

0

(K)

� if V = H

1

(
) then B

V

(K) = fv 2 H

1

(K); v = 0 on �K \
g

� if V = L

2

(
) then B

V

(K) = L

2

(K)

� if V = L

2

0

(
) then B

V

(K) = L

2

0

(K)

� if V = H

2

0

(
) then B

V

(K) = H

2

0

(K)

� if V = H

0

(div;
) then B

V

(K) = H

0

(div;K)

� if V = H(div;
) then B

V

(K) = f� 2 H(div;K); � � n = 0 on �K \
g

Similar de�nitions and properties hold for the spaes H(url;O), but we are not going to use them here.

Let us now turn to the hoie of the loal bubble spae B

h

(K). If possible, we would like to augment the

spae V

h

by adding, in eah element K, the whole B

V

(K). This would hange V

h

into V

h

+ B(V ; T

h

). However,

some onditions are needed, as we shall see below. This might forbid, in some ases, to take the whole B

V

(K) in

the augmentation proess: some omponents of B

V

(K) have to be disarded. This will beome more lear in the

examples below. At this very abstrat and general level, we assume that, in eah K 2 T

h

, we hoose a subspae

B

h

(K) � B

V

(K) and, for the moment, \the bigger the better". A �rst ondition that we require is that, for every

g 2 V

0

, the auxiliary problem

(

�nd w

B;K

2 B

h

(K) suh that

L(w

B;K

; v) =< g; v > 8v 2 B

h

(K)

(3.2)

has a unique solution. We point out that the hoie \the bigger the better" for B

h

(K) is made (so far) in order

to understand the full potential of the method. As we shall see, in pratie we will need to solve (3.2) a few times

in eah K. This implies that a �nite dimensional hoie for B

h

(K) will be, in the end, neessary.

Having hosen B

h

(K), we an now write the augmented problem. For that, let

V

A

:= V

h

+�

K

B

h

(K): (3.3)

Two requirements have to be ful�lled: �rst of all, in (3.3) we must have a diret sum, and, seond, for every

f 2 V

0

, the augmented problem

(

�nd u

A

2 V

A

suh that

L(u

A

; v

A

) =< f; v

A

> 8v

A

2 V

A

(3.4)

must have a unique solution. To summarize, in the augmentation proess three onditions have to be ful�lled:

1) the loal problems (3:2) must have a unique solution;

2) in (3:3) we must have a diret sum;

3) the augmented problem (3:4) must have a unique solution:



These are then the requirements that an guide us in hoosing B

h

(K) in the various ases.

Examples of hoies of B

h

(K).

Ex 3.1 - Referring to Examples 2.1 and 2.2 of the previous setion, suppose that V

h

is made of ontinuous

pieewise linear funtions. In this ase it is easy to hek that the hoie B

h

(K) = B

V

(K) � H

1

0

(K) veri�es all

of the three onditions.

Ex 3.2 - Suppose now that, always referring to Examples 2.1 and 2.2, V

h

is made of ontinuous pieewise ubi

funtions. The hoie B

h

(K) = B

V

(K) is not viable anymore, as learly ondition 2) is violated: V

h

ontains

funtions of B

V

(K). In situations like this we should then hoose a di�erent B

h

(K), but we ould also redue the

original spae V

h

. This is atually the simplest strategy, and we are going to follow it. Here, for instane, we an

just remove the ubi bubble from V

hjK

and take a redued spae, still denoted by V

h

with an abuse of notation,

as a spae of any serendipity ubi element (see, for instane, the element desribed in [12℄, page 50). Or we might

take V

h

as the spae of funtions v

h

that are polynomials of degree � 3 at the interelement boundaries and verify

Lv

h

= 0 separately in eah K. Notie that these two hoies produe the same augmented spae V

A

, and hene

the same solution u

A

to (3.4).

Ex 3.3 - Let us onsider the problem of Example 2.3, and assume that V

h

= �

h

� U

h

is made by lowest order

Raviart-Thomas elements (see for instane [3℄). For this problem we have

B

V

(K) = f� 2 H(div;K); � � n = 0 on �K \
g � L

2

(K):

we notie now that taking B

h

(K) = B

V

(K) would not guarantee that problems (3.2) have a unique solution.

Indeed, for internal elements K, the Inf-sup ondition is not veri�ed, sine

R

K

div� v dx = 0 forall v onstant on

K. Condition 2) would also be violated by the hoie B

h

(K) = B

V

(K): in fat, U

h

being the spae of pieewise

onstants, U

hjK

ontains bubbles of L

2

(K). A possible remedy in this ase is to take

B

h

(K) = H

0

(div;K)� L

2

0

(K) � B

V

(K):

With this hoie V

h

remains the same, and B

h

is the spae of all pairs (�; v) 2 V suh that � has zero normal

omponent at the boundary of eah element, and v has zero mean value in eah element. The same hoie for B

h

would be suitable also in the ase of higher order Raviart-Thomas spaes (or, say, for BDM spaes; see always

[3℄), but then V

h

should lose all internal degrees of freedom, apart from the pieewise onstant salars.

Ex 3.4 - Let us now examine the Stokes problem of Example 2.4, and assume that V

h

is made of pieewise

quadrati veloities in (H

1

0

(
))

d

, and disontinuous pieewise linear pressures in L

2

0

(
), a hoie whih is known

not to be stable, but an be stabilized with the present tehnique. Atually, in this ase one an see that B

V

(K) =

(H

1

0

(K))

d

�L

2

0

(K). Taking B

h

(K) = B

V

(K) would violate ondition 2), but we an redue the spae V

h

, taking

it to be the spae of quadrati veloities and onstant pressures. It is easy to hek that with this last hoie we

have a diret sum in (3.3). Moreover, problem (3.4) has a unique solution, beause the Inf-sup ondition is now

veri�ed in V

A

.

Ex 3.5 - Let us onsider again the Stokes problem of Example 2.4, but now with V

h

= U

h

�Q

h

made of pieewise

linear ontinuous veloities in (H

1

0

(
))

d

, and pieewise onstant pressures in L

2

0

(
). It is well known that for this

hoie the Inf-sup ondition does not hold. Moreover, if we augment V

h

with bubble funtions, no matter how,

the augmented problem (3.4) will never verify the Inf-sup ondition. To see that, augment as muh as you an

the veloity spae: U

A

= U

h

+�

K

(H

1

0

(K))

d

, and augment as little as you an the pressure spae: Q

A

= Q

h

+f0g.

For every v 2 (H

1

0

(K))

d

and for every onstant q in K, we learly have (div v; q) = 0. Hene, for q 2 Q

h

:

sup

v2V

A

(div v; q)

jjvjj

1

= sup

v2U

h

(div v; q)

jjvjj

1

;

and we know that the last quantity annot bound jjqjj

0

for all q 2 Q

h

. We learly see that, in ases like this, our

strategy is totally useless, and should not be applied.

4 An example of error estimates

To give an idea of how to proeed to obtain error estimates, let us onsider, as an example, a general singular

perturbation problem where

L(u; v) := "a

1

(u; v) + a

0

(u; v)



with

a

1

(v; v) � �jjvjj

2

V

8v 2 V; a

1

(u; v) � jjujj

V

jjvjj

V

8u; v 2 V (4.1)

a

0

(v; v) � 0 8v 2 V; a

0

(u; v) �M jjujj

V

jjvjj

H

8u; v 2 V (4.2)

where H is a spae suh that V � H with ontinuous embedding. We set e := u� u

A

and � := u� u

I

, u

I

being

some interpolant of u in V

h

. Proeeding as usual we have

"�jjejj

2

V

� L(e; e) = L(e; �) = "a

1

(e; �) + a

0

(e; �); (4.3)

and the term a

0

(e; �) is the soure of all diÆulties, sine it does not ontain " as an expliit fator. In order to

estimate it, let � = �

B

+ �

H

be any deomposition of � with �

B

2 B

h

and �

H

2 H . Notie that �

B

2 B

h

� V

A

,

so that, by Galerkin orthogonality,

"a

1

(e; �

B

) = �a

0

(e; �

B

): (4.4)

Using this and the bounds (4.1)-(4.2) we an proeed as in [9℄ and dedue:

a

0

(e; �) = a

0

(e; �

B

) + a

0

(e; �

H

) = �"a

1

(e; �

B

) + a

0

(e; �

H

)

� "jjejj

V

jj�

B

jj

V

+M jjejj

V

jj�

H

jj

H

� "

1=2

�

"

1=2

jjejj

V

jj�

B

jj

V

+M"

�1=2

jjejj

V

jj�

H

jj

H

�

� "

1=2

(1 +M)jjejj

V

�

"

1=2

jj�

B

jj

V

+ "

�1=2

jj�

H

jj

H

�

:

(4.5)

Taking now the supremum over all possible deompositions � = �

B

+ �

H

, and then over " > 0 we obtain

a

0

(e; �) � "

1=2

(1 +M)jjejj

V

sup

">0

h

sup

�

B

+�

H

=�

�

"

1=2

jj�

B

jj

V

+ "

�1=2

jj�

H

jj

H

�i

: (4.6)

By de�nition (see [7℄) the double supremum is the norm of � in a suitable interpolation spae, usually denoted

by [B

h

; H ℄

1

2

;1

, that for brevity we shall denote by F . Hene, (4.6) beomes

a

0

(e; �) � "

1=2

(1 +M)jjejj

V

jj�jj

F

: (4.7)

Inserting (4.7) in (4.3) gives

"�jjejj

2

V

� "a

1

(e; �) + a

0

(e; �) � "

1=2

jjejj

V

("

1=2

jj�jj

V

+ (1 +M)jj�jj

F

);

and �nally

"

1=2

�jju� u

A

jj

V

� "

1=2

jju� u

I

jj

V

+ (1 +M)jju� u

I

jj

F

: (4.9)

Notie that an estimate for "

1=2

jju�u

A

jj

V

is not as bad as we are used to. For instane, with an argument similar

to the one used before, using (4.4)-(4.5), from (4.9) we an see that

jjA

0

(u� u

A

)jj

F

0

:= sup

'

a

0

(u� u

A

; ')

jj'jj

F

= sup

'

a

0

(u� u

A

; '

B

) + a

0

(u� u

A

; '

H

)

jj'jj

F

= sup

'

�"a

1

(u� u

A

; '

B

) + a

0

(u� u

A

; '

H

)

jj'jj

F

� (1 +M)"

1=2

jju� u

A

jj

V

sup

'

"

1=2

jj'

B

jj

V

+ "

�1=2

jj'

H

jj

H

jj'jj

F

� (1 +M)"

1=2

jju� u

A

jj

V

� C ("

1=2

jju� u

I

jj

V

+ jju� u

I

jj

F

);

whih is a typial estimate that an be obtained with stabilized methods (see, e.g., [22℄, [27℄). We refer to [6℄, [9℄,

[28℄ for the error analysis for residual-free bubbles methods for advetion dominated problems.



5 Computational aspets

Let us now examine the struture of the abstrat augmented problem (3.4). Sine we onstruted the spae V

A

as a diret sum:

V

A

:= �

K

B

h

(K) � V

h

we have then the unique splittings: u

A

= u

B

+u

h

; v

A

= v

B

+ v

h

. The augmented problem an then be written as

(

�nd u

A

= u

B

+ u

h

2 V

A

suh that

L(u

B

+ u

h

; v

B

+ v

h

) =< f; v

B

+ v

h

> 8v

B

2 B

h

; 8v

h

2 V

h

:

(5.1)

The assoiated system will therefore have the form:

 

L

B;B

L

B;h

L

h;B

L

h;h

! 

u

B

u

h

!

=

 

f

B

f

h

!

with L

B;B

blok diagonal:

There are di�erent strategies for solving the (still in�nite dimensional) problem (5.1). All of them are based on

the (approximate) solution of the problems

(

�nd w

i

B

2 B

h

suh that

L(w

i

B

; v

B

) = L(v

i

; v

B

) �< Lv

i

; v

B

> 8v

B

2 B

h

;

(5.2)

where the fv

i

g's are a basis for V

h

, plus, if neessary, the solution of the problem

(

�nd w

f

B

2 B

h

suh that

L(w

f

B

; v

B

) =< f; v

B

> 8v

B

2 B

h

:

(5.3)

As we shall see, what is atually needed, for all strategies, is the omputation (for i; j = 1; :::; dim(V

h

)) of the

quantities

S

j;i

:= L(w

i

B

; v

j

) �< w

i

B

; L

�

v

j

>; and T

j

:= L(w

f

B

; v

j

) �< w

f

B

; L

�

v

j

>; (5.4)

where L

�

is the adjoint operator of L. In turn, the omputation of the solution of the problems (5.2) amounts to

solve, in eah K, the loal bubble problem

(

�nd w

i

B;K

2 B

h

(K) suh that

L(w

i

B;K

; b) =< Lv

i

; b > 8b 2 B

h

(K):

(5.5)

The same is obviously true for (5.3). Moreover, f an often be approximated, in eah K, by elements of LV

h

jK

,

so that the solution of (5.3) an be easily obtained from the solutions of the problems (5.2).

A areful inspetion of the loal problems (5.5) suggests several observations that are omputationally relevant.

� For eah v

i

, the omputation of w

i

B

an be done in parallel.

� In eah element K, the dimension of spanfLv

i

jK

g will be small. In general, it will be less than or equal to the

number of degrees of freedom of V

h

in K.

� Finally, as we already pointed out, only the quantities S

j;i

=< w

i

B

; L

�

v

j

> are atually needed. Hene, only

some averages of w

i

B

will be used, and therefore a rough approximation might often be suÆient.

� The same onsiderations learly hold for the ontributions T

j

to the right-hand side.

5.1 First strategy

Let us see in more detail how the whole proedure an be applied in pratie. For this, onsider problem (5.1)

and note that u

B

is the solution of

L(u

B

; v

B

) = �L(u

h

; v

B

)+ < f; v

B

> 8v

B

2 B

h

;



and an be seen as an (aÆne) funtion of u

h

and f :

u

B

= L

�1

B;B

(f � Lu

h

):

Substituting into (5.1), and taking now v

h

as a test funtion, gives

L(u

h

; v

h

) + L(L

�1

B;B

(f � Lu

h

); v

h

)) =< f; v

h

> 8v

h

2 V

h

; (5.6)

whih is an equation in terms of u

h

alone, where the additional term

L(L

�1

B;B

(f � Lu

h

); v

h

) � L(u

B

; v

h

) (5.7)

represents the e�et of the small sales onto the oarse ones. To see how to ompute the additional term (5.7) let

us write u

h

:=

P

i

U

i

v

i

and take v

j

as a test funtion. We have

L(u

B

; v

j

) = L(L

�1

B;B

(f � Lu

h

); v

j

) = L(L

�1

B;B

f; v

j

)�

X

i

L(L

�1

B;B

Lv

i

; v

j

)U

i

= L(w

f

B

; v

j

)�

X

i

L(w

i

B

; v

j

)U

i

= T

j

�

X

i

S

j;i

U

i

;

that learly shows the use of the auxiliary terms T

j

and S

j;i

. Indeed, setting

K

j;i

= L(v

i

; v

j

); and F

j

=< f; v

j

>; (5.8)

we have from (5.6) that the U

i

's an be obtained as the solution of the following linear system of equations:

X

i

(K

j;i

� S

j;i

)U

i

= F

j

� T

j

j = 1; :::; dim(V

h

): (5.9)

Example - To see how this strategy an be applied, let us go bak to the advetion-dominated equation, that we

reall here:

�"�u+  � ru = f in 
; u = 0 on �
;

V := H

1

0

(
); L(u; v) :=

Z




"ru � rv dx+

Z




 � ru v dx:

Assume that the original �nite element spae V

h

is made of pieewise linear ontinuous funtions. Assume moreover

that both the soure term f and the onvetive term  are pieewise onstant. Then, it is easy to see that for all

v

i

the terms Lv

i

and L

�

v

i

are onstant in eah K. Consequently, all the w

i

B

an be omputed by solving a single

problem in eah K, that is

(

�nd b

K

2 H

1

0

(K) suh that

L(b

K

; b) =< 1; b > 8b 2 H

1

0

(K):

(5.10)

With some omputations, the problem beomes now (see, e.g., [4℄):

8

>

<

>

:

�nd u

h

2 V

h

suh that, for all v

h

2 V

h

:

L(u

h

; v

h

)�

X

K

R

K

b

K

dx

jKj

Z

K

(f �  � ru

h

) � rv

h

dx =< f; v

h

> :

(5.11)

This oinides with the SUPG method with �

K

=

R

K

b

K

dx

jKj

(see [11℄, [16℄).

5.2 Alternative omputational strategies

Another possibility is to hange the spae V

h

: for every basis funtion v

i

2 V

h

, de�ne

ev

i

:= v

i

� w

i

B

; (5.12)



and remember that w

i

B

was de�ned by

L(w

i

B

; v

B

) = L(v

i

; v

B

) 8v

B

2 B

h

: (5.13)

Therefore,

L(ev

i

; v

B

) = 0 8v

B

2 B

h

: (5.14)

Set now

e

V

h

= span fev

i

g, and notie that, again, V

A

=

e

V

h

�B

h

. Split then u

A

as u

A

= eu

h

+ eu

B

, with eu

h

in

e

V

h

,

and eu

B

in B

h

. Then, thanks to (5.14), eu

B

is the solution of

L(eu

B

; v

B

) � L(u

A

; v

B

) =< f; v

B

> 8v

B

2 B

h

: (5.15)

Hene eu

B

equals w

f

B

, solution of (5.3), and an be omputed before knowing eu

h

. Finally, eu

h

an be omputed

as the solution of

L(eu

h

; v

h

) + L(eu

B

; v

h

) =< f; v

h

> 8v

h

2 V

h

; (5.16)

with the same number of unknowns and equations as the dimension of V

h

. It is interesting to observe that the

di�erene between this and the �rst strategy is mainly psyologial. Indeed, setting eu

h

:=

P

i

e

U

i

ev

i

, we have from

(5.12), (5.8), and (5.4)

L(eu

h

; v

j

) =

X

i

L(ev

i

; v

j

)

e

U

i

=

X

i

L(v

i

� w

i

B

; v

j

)

e

U

i

=

X

i

(K

j;i

� S

j;i

)

e

U

i

;

L(eu

B

; v

j

) = L(w

f

B

; v

j

) = T

j

;

(5.17)

so that, inserting (5.17) into (5.16) we obtain

X

i

(K

j;i

� S

j;i

)

e

U

i

= F

j

� T

j

j = 1; :::; dim(V

h

); (5.18)

whih is exatly (5.9).

A third possibility would be, assuming that the adjoint problem of (5.13) is uniquely solvable, to de�ne ŵ

i

B

solution of

L(v

B

; ŵ

i

B

) = L(v

B

; v

i

) 8v

B

2 B

h

; (5.19)

and to assoiate to any v

i

, basis funtion in V

h

, the funtion

v̂

i

= v

i

� ŵ

i

B

: (5.20)

Therefore, v̂

i

is the solution of

L(v

B

; v̂

i

) �< v

B

; L

�

v̂

i

>= 0 8v

B

2 B

h

: (5.21)

Set then V

�

h

= span fv̂

i

g, and notie that, in general, V

�

h

will be di�erent from

e

V

h

, unless the bilinear form L is

symmetri. We have again V

A

= V

�

h

+B

h

, always with a diret sum. Take now in (5.1) for u

A

the same splitting

as before, that is, u

A

= eu

h

+ eu

B

, with eu

h

2

e

V

h

; eu

B

2 B

h

, and for v

A

take instead the splittig v

A

= v̂

h

+ v

B

, with

v̂

h

2 V

�

h

; v

B

2 B

h

, always without hanging the �nal solution u

A

. Substituting in (5.1) shows that eu

B

is again

the solution of (5.15). Hene, as before, eu

B

equals w

f

B

, and an be omputed before knowing eu

h

. Finally, eu

h

an

be omputed as the solution of

L(eu

h

; v̂

h

) =< f; v̂

h

> 8v̂

h

2 V

�

h

: (5.22)

The matrix assoiated with (5.22) is however given by

L(ev

i

; v̂

j

) = L(ev

i

; v

j

� ŵ

j

B

) = L(ev

i

; v

j

) = K

j;i

� S

j;i

(5.23)

(having used (5.20), (5.14), and (5.17)). On the other hand,

< f; v̂

j

>=< f; v

j

� ŵ

j

B

>= F

j

� < f; ŵ

j

B

>; (5.24)



and, using (5.3), (5.19), and (5.4),

< f; ŵ

j

B

>= L(w

f

B

; ŵ

j

B

) = L(w

f

B

; v

j

) = T

j

: (5.25)

We are therefore bak to the system (5.18). It is somehow remarkable that the solution of (5.22) an be omputed

without atually omputing the funtions v̂

j

.

Remark Although the above strategies, as we have seen, do oinide in pratie, this is not often reognized in the

literature. For instane, formulations (5.16) and (5.22), when applied to advetion dominated problems oinide

with the lassial so-alled Petrov-Galerkin methods in whih suitable trial and test funtions, depending on the

operator, were used (see [25℄, and see, in Fig. 1, the typial shape of the basis funtions in

e

V

h

and V

�

h

). The above

omputation shows that these methods oinide with SUPG when the hoie of the stabilization parameter �

K

is

made as in (5.11). On the other hand, when applied to problems related to omposite materials, as in Example

2.2 (respetively, Example 2.3), the formulation (5.22) reprodues the multisale methods of [22℄, [23℄ and the

upsaling method of [1℄, [2℄, respetively.

c c

~ *Vh Vh

Fig. 1. Typial shape of the basis funtions in

e

V

h

and V

�

h

So far, we assumed that we were able to ompute the solutions of the loal bubble problems (5.2). As antiipated,

these solutions annot be omputed exatly, but require some suitable approximation. Let us see, in the partiular

ase of advetion dominated problems, how this approximate solutions an be arried out in pratie.

We reall that, in this ase, solving (5.15) amounts in pratie to ompute, in eah K, the \unitary bubble"

b

K

, solution of

�"�b

K

+  � rb

K

= 1 in eah K: (5.26)

Atually, what we really need is its mean value in eah K (see (5.11)).

Several triks an be used to ompute

R

K

b

K

dx.

� A possibility is to solve by hand the pure onvetive problem, as advoated in [10℄:

8

>

>

<

>

>

:

�nd

e

b

K

2 H

1

(K) suh that

 � r

e

b

K

= 1 in K;

e

b

K

= 0 on �K

�

(= inow)

Notie that the integral of

e

b

K

on K is just the volume of a pyramid, as shown in Fig. 2.

� Another possibility is to solve (5.26) on a subgrid with very few degrees of freedom, but well hosen (e.g., Pseudo

RFB [8℄, Shishkin [17℄, et, see Fig. 3). Typially few nodes in the element boundary layer are needed.

� As an alternative, one ould use subgrid arti�ial visosity; that means solving, instead of (5.26), the problem

�("+ "

A

)�b

K

+  � rb

K

= 1 in eah K

on a very rough grid (typially, one node), where "

A

is a suitably hosen arti�ial visosity, in general ' h

K

(see

[20℄). Unfortunately, the problem of the optimal hoie for "

A

is rather deliate. Indeed, using a one-dimensional

spae B

h

(K) = span f�

K

(x)g results in an SUPG method with

�

K

=

(

R

K

� dx)

2

jKj("+ "

A

)

R

K

jr�j

2

dx

;

as shown in [5℄. This implies that the bigger is "

A

the smaller is �

K

, that is, we add arti�ial visosity for stabilizing

and we derease the stabilization parameter.



cc

Fig. 2. Possible shapes of

e

b

K

; here  = (1; 0)

C

PSEUDO  RFB SHISHKIN

C

Fig. 3. Example of meshes

6 Conlusions

The Residual Free Bubble approah o�ers a uni�ed framework for setting and analyzing several two-level and/or

stabilized methods. It onsists, essentially, in augmenting a given �nite element spae with spaes of funtions

having support in a single element. The neessary requirements for this augmentation proess have been introdued

and disussed for several examples. The split nature of the bubble spae allows to eliminate the additional

unknowns with an element by element proedure, that an be arried out in parallel. The elimination proess

involves in general the approximate solution of a partial di�erential equation in eah element. We have seen

however that in many ases a rough approximation an be suÆient.

The use of this type of approah for stabilizing unstable �nite element formulations were already well known.

Here we presented the method in a very general setting, and this allowed us to show that several other methods

for stabilizing and, mostly, for dealing with subgrid phenomena, an atually be seen as a partiular ase of the

RFB approah. This inludes, on one side, old methods like the Petrov Galerkin methods with speial, operator

dependent, trial and test funtions for advetion dominated problems, as well as more reent approahes like the

multisale method or the upsaling method for problems with omposite materials.

Other developments and appliations to di�erent problems are surely worth further investigations, as well

as some reent variants like the use of non-onforming bubbles, the possibility of adding edge-bubbles, or the

onnetions with domain deomposition methods.
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