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Abstract. In recent times, several attempts have been made to recover some information from the subgrid scales and
transfer them to the computational scales. Many stabilizing techniques can also be considered as part of this effort. We
discuss here a framework in which some of these attempts can be set and analyzed.

1 Introduction

In the numerical simulation of a certain number of problems, there are physical effects that take place on a scale
which is much smaller than the smallest one representable on the computational grid, but have a strong impact on
the larger scales, and, therefore, cannot be neglected without jeopardizing the overall quality of the final solution.

In other cases, the discrete scheme lacks the necessary stability properties because it does not treat in a proper
way the smallest scales allowed by the computational grid. As a consequence, some ”smallest scale mode” appears
as abnormally amplified in the final numerical results. Most types of numerical instabilities are produced in this
way, as the checkerboard pressure mode for nearly incompressible materials, or the fine-grid spurious oscillations
in convection-dominated flows. See for instance [19] and the references therein for a classical overview of several
types of these and other instabilities of this nature.

In the last decade it has become clear that several attempts to recover stability, in these cases, could be
interpreted as a way of improving the simulation of the effects of the smallest scales on the larger ones. By doing
that, the small scales can be seen by the numerical scheme and therefore be kept under control.

These two situations are quite different, in nature and scale. Nevertheless it is not unreasonable to hope that
some techniques that have been developed for dealing with the latter class of phenomena might be adapted to
deal with the former one. In this sense, one of the most promising technique seems to be the use of Residual-
Free Bubbles (see e.g. [10], [18].) In the following sections, we are going to summarize the general idea behind
it, trying to underline its potential and its limitations. In Section 2 we present the continuous problems in an
abstract setting, and provide examples of applications, related to advection dominated flows, composite materials,
and viscous incompressible flows. For application of these concepts to other problems we refer, for instance, to
[13], [14], [16], [18], [24]. In Section 3 we introduce the basic features of the RFB method. Starting from a given
discretization (that might possibly be unstable), we discuss the suitable bubble space that can be added to the
original finite element space. Increasing the space with bubbles leads to the augmented problem, usually infinite
dimensional, which, in the end, will have to be solved in some suitable approximate way. In Section 4 we give
an idea of how error estimates can be deduced for the augmented problem. In Section 5 we discuss the related
computational aspects, and we present several strategies that can be used to deal with the augmented problem,
in order to minimize the computational cost. We shall see in particular that several other methods that are
known in the literature can actually be seen as variants of the RFB procedure, in which one or another of the
above strategies is employed. This includes, for advection dominated problems, the classical SUPG methods (as
it was already well known, see, e.g., [4]) as well as the older Petrov-Galerkin methods based on suitable operator
dependent choices of test and trial functions [25]. For composite materials, this includes both the multiscale
methods of [22], [23], and the upscaling methods of [1], [2]. Finally, in Section 6 we draw some conclusions.

2 The continuous problem

We consider the following continuous problem

find v € V such that
(2.1)

L(u,v) =< f,vo > Yo eV,



where V' is a Hilbert space, and V' its dual space, £(u,v) is a continuous bilinear form on V' x V', and f € V'
is the forcing term. We assume that, for all f € V', problem (2.1) has a unique solution. Various problems of
interest for the applications can be written in the variational form (2.1), according to different choices of the
space V and the bilinear form L. Typical choices for V', when V is a space of scalar functions, are the following:
if O c R, (d = 1,2,3) denotes a generic domain, V' could be, for instance, L2(O), H'(O), H}(O), H*(O) or
L3(0), the last one being the space of L?—functions having zero mean value. In the case where V is a space of
vector valued functions, a first choice could be to take the cartesian product of the previous scalar spaces. Other
typical choices for V' can be:

H(div; 0) := {1 € (L*(0))? such that V -7 € L*(0)},
Hy(div; O) := {7 € H(div; O) such that 7-n =0 on 00},
or also, for a generic domain O C R?,
H(curl; O) := {1 € (L*(0))? such that VA T € (L*(0))*}
Hoy(curl; O) := {7 € H(curl; O) such that 7 An =0 on 00}.
Product spaces are also used quite often: for instance, H(div; Q) x L2(0), or (H}(0))? x L3(0), etc. Next, we

provide some classical examples of problems and we indicate the corresponding space V', the bilinear form £, and
the variational formulation.

Ex 2.1: Advection-dominated scalar equations:

—eAu+c-Vu=f inf2; u=0 ondf?

Vo= Hy(2); L(u,v) :=/ 5Vu-Vvda:+/
7} 7}

L(u,v) =< f,v > Yo eV

c-Vuvdz; <f,v>:=/fvda:
Q

Ex 2.2: Linear elliptic problems with composite materials:
—V - (a(z)Vu)=f inf; uw=0 ondf2
V = Hi(2); L(u,v) ::/ a(z)Vu - Vudz; < fyv >::/ fudz
L(u,v) i< frv> Yv eV ’

(where a(x) > ag > 0 might have a very fine structure).

Ex 2.3: Composite materials in mixed form, i.e., the same problem of the previous example, but now with:
o=—aVy in (2 V-o=f in (2 ¥ =0 on 91
V=X x& X := H(div; 2); = L*(N)

ao(o,T) :=/Qa_1cr-7'da:, b(T, ) :=/QV-T<pda:

L((o,1), (T.9) = ao(0,7) — b ) +bo.p); < f.(r,p) >:= /Q fode
L((a,1),(T,0) =< f,(T,90) > V(r,p) eV

Ex 2.4: Stokes problem for viscous incompressible fluids:
—Au+Vp=1£f in 2 V-u=0 in {2 u=0 on 92
Vi=UxQ; U:=(Hy(2), Q:=Lj)

ar(u,v) = /Vu:Vvdac b(v,q) /V vqdx

L((w,p), (v,0) == ar(,v) —b(v,p) + b(w,q); < fo(v.q) >:= /Q £ovde
L((u,p), (v,q) =< f,(v,q) > V(v,q) eV



3 From the discrete problem to the augmented problem

Let Tp be a decomposition of the computational domain (2, with the usual nondegeneracy conditions [12], and
let Vi, C V be a finite element space. The original discrete problem is then:

find up €'V} h that
{ nda up h Suc a (31)

L’(uh,vh) =< f,vp > Yo € V.

Note that we do not assume that (3.1) has a unique solution. Indeed, the stabilization that we are going to
introduce can, in some cases, take care of problems originally ill-posed. Our aim is, essentially, to solve in the
end a final linear system having as many equations as the number of degrees of freedom of V},. Apart from that,
we are ready to pay some extra work, in order to have a better method. In some cases, the total amount of
additional work will be small. In other cases, it can be huge. However, we want to be able to perform the extra
work independently in each element so that we can do it, as a pre-processor, in parallel. This implies that we are
ready to add as many degrees of freedom as we want at the interior of each element. For that, to V' and 7j, we
associate the maximal space of bubbles

B(V;Tw) =[[ Bv(K),  with By(K)={veV: supp(v) CK}.
K

Let us give some examples of the dependence of By (K) on V.
e if V = H}(12) then By (K) = H(K)
o if V= H'() then By (K) ={ve H(K),v=0on 0K N N2}
o if V = L2(2) then By (K) = L*(K)
oif V = L2(R) then By (K) = L3(K)
e if V = H3(12) then By(K) = HZ(K)
e if V = Hy(div; 2) then By (K) = Hp(div; K)
o if V = H(div; 2) then By (K) ={r € H(div; K), 7-n =0 on 0K N 2}
Similar definitions and properties hold for the spaces H(curl; Q), but we are not going to use them here.

Let us now turn to the choice of the local bubble space B (K). If possible, we would like to augment the
space V}, by adding, in each element K, the whole By (K). This would change V}, into V}, + B(V; T3,). However,
some conditions are needed, as we shall see below. This might forbid, in some cases, to take the whole By (K) in
the augmentation process: some components of By (K) have to be discarded. This will become more clear in the
examples below. At this very abstract and general level, we assume that, in each K € T}, we choose a subspace
By, (K) C By (K) and, for the moment, “the bigger the better”. A first condition that we require is that, for every
g € V', the auxiliary problem

(3.2)

find wp x € Bp(K) such that
L(wp,Kk,v) =< g,v > Vv € B(K)

has a unique solution. We point out that the choice “the bigger the better” for By (K) is made (so far) in order
to understand the full potential of the method. As we shall see, in practice we will need to solve (3.2) a few times
in each K. This implies that a finite dimensional choice for B, (K) will be, in the end, necessary.

Having chosen By (K), we can now write the augmented problem. For that, let

Vai=Vi+ HKBh(K). (33)

Two requirements have to be fulfilled: first of all, in (3.3) we must have a direct sum, and, second, for every
f € V' the augmented problem

find eV, h that
{ nd ug A suc a (3.4)

L(ug,va) =< fyva > Yoa € Vi
must have a unique solution. To summarize, in the augmentation process three conditions have to be fulfilled:
1) the local problems (3.2) must have a unique solution;
2) in (3.3) we must have a direct sum;

3) the augmented problem (3.4) must have a unique solution.



These are then the requirements that can guide us in choosing By, (K) in the various cases.
Examples of choices of B, (K).

Ex 3.1 - Referring to Examples 2.1 and 2.2 of the previous section, suppose that V}, is made of continuous
piecewise linear functions. In this case it is easy to check that the choice B, (K) = By (K) = H}(K) verifies all
of the three conditions.

Ex 3.2 - Suppose now that, always referring to Examples 2.1 and 2.2, V}, is made of continuous piecewise cubic
functions. The choice By (K) = By (K) is not viable anymore, as clearly condition 2) is violated: V}, contains
functions of By (K). In situations like this we should then choose a different By, (K), but we could also reduce the
original space V. This is actually the simplest strategy, and we are going to follow it. Here, for instance, we can
just remove the cubic bubble from V}, x and take a reduced space, still denoted by Vj, with an abuse of notation,
as a space of any serendipity cubic element (see, for instance, the element described in [12], page 50). Or we might
take V}, as the space of functions vy, that are polynomials of degree < 3 at the interelement boundaries and verify
Lvy, = 0 separately in each K. Notice that these two choices produce the same augmented space V4, and hence
the same solution u4 to (3.4).

Ex 3.3 - Let us consider the problem of Example 2.3, and assume that V}, = X}, x U, is made by lowest order
Raviart-Thomas elements (see for instance [3]). For this problem we have

By(K)={r € H(div;K), 7-n=0 on 0K N2} x L*(K).

we notice now that taking Bp(K) = By (K) would not guarantee that problems (3.2) have a unique solution.
Indeed, for internal elements K, the Inf-sup condition is not verified, since [ e divtrvdz = 0 forall v constant on
K. Condition 2) would also be violated by the choice B (K) = By (K): in fact, Uy, being the space of piecewise
constants, Uy, |k contains bubbles of L*(K). A possible remedy in this case is to take

B (K) = Hy(div; K) x L3(K) C By(K).

With this choice V}, remains the same, and Bj, is the space of all pairs (7,v) € V such that 7 has zero normal
component at the boundary of each element, and v has zero mean value in each element. The same choice for By,
would be suitable also in the case of higher order Raviart-Thomas spaces (or, say, for BDM spaces; see always
[3]), but then V}, should lose all internal degrees of freedom, apart from the piecewise constant scalars.

Ex 3.4 - Let us now examine the Stokes problem of Example 2.4, and assume that V}, is made of piecewise
quadratic velocities in (Hg (£2))¢, and discontinuous piecewise linear pressures in L3({2), a choice which is known
not to be stable, but can be stabilized with the present technique. Actually, in this case one can see that By (K) =
(H} (K)) x L3(K). Taking By, (K) = By (K) would violate condition 2), but we can reduce the space V}, taking
it to be the space of quadratic velocities and constant pressures. It is easy to check that with this last choice we
have a direct sum in (3.3). Moreover, problem (3.4) has a unique solution, because the Inf-sup condition is now
verified in Vy.

Ex 3.5 - Let us consider again the Stokes problem of Example 2.4, but now with V}, = Up x @ made of piecewise
linear continuous velocities in (Hg(12))9, and piecewise constant pressures in L2(£2). It is well known that for this
choice the Inf-sup condition does not hold. Moreover, if we augment V}, with bubble functions, no matter how,
the augmented problem (3.4) will never verify the Inf-sup condition. To see that, augment as much as you can
the velocity space: Us = Uy + ITx (H (K))?, and augment as little as you can the pressure space: Q4 = Qp, + {0}.
For every v € (H}(K))? and for every constant g in K, we clearly have (divwv, ) = 0. Hence, for ¢ € Qp:

(divw, q) (divwv,q)

)

veva Pl et Il

and we know that the last quantity cannot bound [|q||o for all ¢ € Qp. We clearly see that, in cases like this, our
strategy is totally useless, and should not be applied.

4 An example of error estimates

To give an idea of how to proceed to obtain error estimates, let us consider, as an example, a general singular
perturbation problem where
L(u,v) :=eay(u,v) + ag(u,v)



with
a@o) > allly WweV,  ai(uv) <lullv lllly Vu,veV (4.1)

ap(v,v) >0 Yv eV, aop(u,v) < Mu||lv ||v||lg Yu,v eV (4.2)

where H is a space such that V' C H with continuous embedding. We set e := v —u4 and n :=u — uy, us being
some interpolant of v in V3. Proceeding as usual we have

eallel[i < L(e,e) = L(e,n) = car(e,n) + ao(e,n), (4.3)

and the term ag(e,n) is the source of all difficulties, since it does not contain ¢ as an explicit factor. In order to
estimate it, let n = np + ng be any decomposition of n with ng € By, and ng € H. Notice that ng € B C Va,
so that, by Galerkin orthogonality,

eai(e,np) = —ao(e,np)- (4.4)
Using this and the bounds (4.1)-(4.2) we can proceed as in [9] and deduce:

ao(e,n) = ao(e,nB) + aole,ni) = —cai(e,np) + aole, Nm)
<ellellviingllv + M|lellv|nm|lx

<222 lellv lpllv + M= el v lInnllr) (4.5)

<21+ M) lelly (=2 lnsllv +=7 2 lnulln).

Taking now the supremum over all possible decompositions n = np + 7, and then over £ > 0 we obtain

ao(e,n) <P+ M)llellvsup [ sup  (2nlly += 2 |nalln)|. (4.6)
e>0 +

NBT+NH=M

By definition (see [7]) the double supremum is the norm of 7 in a suitable interpolation space, usually denoted
by [Bh, H] ., that for brevity we shall denote by F'. Hence, (4.6) becomes

ao(e,n) < '2(L+ M)|lellv|[nllF- (4.7)
Inserting (4.7) in (4.3) gives
eallel§ < earle,n) +ao(e,n) < e[lellv (€2 |nlly + (L + M)lnllr),

and finally
e 2allu — ually < eY?||u — ur|lv + (1 + M)|Ju — ug]|r. (4.9)

Notice that an estimate for €'/2||u —u4||y is not as bad as we are used to. For instance, with an argument similar
to the one used before, using (4.4)-(4.5), from (4.9) we can see that

ao(u —ua,
4ot — wa)l s = sup L= 1A 9)

o 1%

— sup ap(u —ua,pr) +ao(u —ua, pm)
o llellF

~aup —sal(u - UA,QOB) + ao(u - UA,¢H)
v el F

e 2||psllv + e ?|lonlln
el r
< (L+ M)e?|ju — ually < C (" |Ju —urlly + ||u — url|F),

<1 +M)51/2||u — ual|lysup
%)

which is a typical estimate that can be obtained with stabilized methods (see, e.g., [22], [27]). We refer to [6], [9],
[28] for the error analysis for residual-free bubbles methods for advection dominated problems.



5 Computational aspects

Let us now examine the structure of the abstract augmented problem (3.4). Since we constructed the space V4
as a direct sum:

Vi = HKBh(K) oV

we have then the unique splittings: ug = up +up, v4 = vp +vp. The augmented problem can then be written as

(5.1)

find uqa = up + up € V4 such that
K(UB + up, VB +’Uh) =< f,up +vp > Yvg € By, Yu, € Vj,.

The associated system will therefore have the form:

LepLen)\(us\ _ [fB ) ‘
(Lh7B Lh,h) (Uh> = (fh with Lg g block diagonal.

There are different strategies for solving the (still infinite dimensional) problem (5.1). All of them are based on
the (approximate) solution of the problems

find wl € By, such that (5.2)
L(w},v) = L(vi,vB) =< Lv;,vp > Yvg € By, ’
where the {v;}’s are a basis for V},, plus, if necessary, the solution of the problem
find w]’; € By, such that (5.3)
E(wéavB) =< faUB > Yvg € Bjy,. )

As we shall see, what is actually needed, for all strategies, is the computation (for i,j = 1,...,dim(V})) of the
quantities
S;i = L(wg,vj) =< wy, L v; >, and T; = ,C(wé,vj) =< w};,L*vj >, (5.4)

where L* is the adjoint operator of L. In turn, the computation of the solution of the problems (5.2) amounts to
solve, in each K, the local bubble problem

find w’ € By, (K) such that
{ B.K r(K) (5.5)

L(wl g, b) =< Lv;,b > Vb € By (K).

The same is obviously true for (5.3). Moreover, f can often be approximated, in each K, by elements of LV},
so that the solution of (5.3) can be easily obtained from the solutions of the problems (5.2).
A careful inspection of the local problems (5.5) suggests several observations that are computationally relevant.

e For each v;, the computation of w can be done in parallel.

e In each element K, the dimension of span{Lv; k} will be small. In general, it will be less than or equal to the
number of degrees of freedom of V}, in K.

e Finally, as we already pointed out, only the quantities S;; =< wg,L*vj > are actually needed. Hence, only
some averages of wy will be used, and therefore a rough approximation might often be sufficient.

e The same considerations clearly hold for the contributions T} to the right-hand side.

5.1 First strategy

Let us see in more detail how the whole procedure can be applied in practice. For this, consider problem (5.1)
and note that up is the solution of

L(up,vp) = —L(up,vB)+ < f,up > Yvp € By,



and can be seen as an (affine) function of uj, and f:
up = LE,}B(f — Luy,).
Substituting into (5.1), and taking now v, as a test function, gives
L(up,vp) + L’(LEB(f — Lup),vp)) =< f,op > Yo € Vi, (5.6)
which is an equation in terms of uy alone, where the additional term
L(LY(f — Lun),vn) = Llup,vn) (5.7)

represents the effect of the small scales onto the coarse ones. To see how to compute the additional term (5.7) let
us write up, := Y, U;v; and take v; as a test function. We have

L(up,v;) = L(L5'5(f = Lun),v;) = L(L5' 5 f,v5) Zﬁ (Lp,pLvi,v;)U;
wB,v] ZE wh,v)U; = Tj — ZS]ZU“

that clearly shows the use of the auxiliary terms T); and S; ;. Indeed, setting
K;;= L’(vi,vj), and F; =< 7 v >, (5.8)
we have from (5.6) that the U;’s can be obtained as the solution of the following linear system of equations:

S (K= Sia)Ui=F;—=T;  j=1,..,dim(V}). (5.9)
i
Ezample - To see how this strategy can be applied, let us go back to the advection-dominated equation, that we

recall here:
—eAu+c-Vu=f inf2; wu=0 ondf,
Vo= Hy(2); L(u,v) := / eVu - Voudzr + / c-Vuvdz.
Q Q
Assume that the original finite element space V}, is made of piecewise linear continuous functions. Assume moreover
that both the source term f and the convective term c are piecewise constant. Then, it is easy to see that for all

v; the terms Lv; and L*v; are constant in each K. Consequently, all the w’ can be computed by solving a single
problem in each K, that is

find by € H}(K) such that (5.10)
L(bg,b) =< 1,b> Vb € H}(K). '
With some computations, the problem becomes now (see, e.g., [4]):
find uy, € V3 such that, for all vy, € V}, :
bk dz (5.11)

L(up,vp) ZIK|K| /Kf—c-Vuh)c-Vvhd:U=<f,vh>.

beKdiL”

This coincides with the SU PG method with 7 = K]

(see [11], [16]).

5.2 Alternative computational strategies

Another possibility is to change the space V},: for every basis function v; € V},, define

Ui =0 —wh, (5.12)



and remember that wi was defined by
L(wp,vp) = L(vi,vp) Vup € Bh. (5.13)

Therefore,
L’(Gi,vB) =0 Yvg € Bjy,. (5.14)

Set now Vj, = span {v;}, and notice that, again, V4 = Vi @ By,. Split then uy as ua = uy, + up, with wy in ‘7}“
and upg in By. Then, thanks to (5.14), upg is the solution of

ﬁ(ﬁB,’UB) = L’(uA,vB) =<< f, vg > Vv € By,. (5.15)

Hence up equals waB, solution of (5.3), and can be computed before knowing uy. Finally, u;, can be computed
as the solution of
L(up,vn) + L(up,vn) =< foop > Yop € Vi, (5.16)

with the same number of unknowns and equations as the dimension of V3. It is interesting to observe that the
difference between this and the first strategy is mainly psycological. Indeed, setting uj, := ), U;0;, we have from
(5.12), (5.8), and (5.4)

ﬁ(ﬂh,’l)]’) = Zﬁ(ﬁl,’l)])ﬁl = Zﬁ(vl — wfg,vj)ﬁi = Z(Kj’i — S]'7i) ﬁi,

(5.17)
L(ig,vj) = L(wh,v;) =T}
so that, inserting (5.17) into (5.16) we obtain
Z(Kj7i - Sjﬂ‘) [71 = F]' - T]' ] = 1, ceny dzm(Vh), (518)

i
which is exactly (5.9).

A third possibility would be, assuming that the adjoint problem of (5.13) is uniquely solvable, to define W
solution of

[:(UB,If}iB) = L(vp,v;) Yuvp € By, (5.19)

and to associate to any v;, basis function in V4, the function
b = v; — . (5.20)
Therefore, 0; is the solution of
L(vg, ;) =< vp,L*0; >=0 Yvg € By, (5.21)

Set then V;* = span {0;}, and notice that, in general, V;* will be different from Vi, unless the bilinear form £ is
symmetric. We have again V4 = V;* + By, always with a direct sum. Take now in (5.1) for u4 the same splitting
as before, that is, ug = up + up, with uj € I7h, up € By, and for vy take instead the splittig v4 = 05, + vp, with
o € V), vp € By, always without changing the final solution w4. Substituting in (5.1) shows that up is again
the solution of (5.15). Hence, as before, up equals waB, and can be computed before knowing wy,. Finally, uj can
be computed as the solution of

ﬁ(ﬂh,’ﬁh) =< f, vp > Vo, € Vh*- (5.22)

The matrix associated with (5.22) is however given by
L(ﬁl,ﬁ]) = ﬁ(ﬁi,’l)]’ - ’lf)]B) = ﬁ(ﬁi,’l)]’) = K]'7i - S]'7i (523)

(having used (5.20), (5.14), and (5.17)). On the other hand,

< [0y >=< fuj — iy >= Fj— < f il >, (5.24)



and, using (5.3), (5.19), and (5.4),
< frly >= L(wh,wl) = L(wh,v;) =Ty (5.25)

We are therefore back to the system (5.18). It is somehow remarkable that the solution of (5.22) can be computed
without actually computing the functions ;.

Remark Although the above strategies, as we have seen, do coincide in practice, this is not often recognized in the
literature. For instance, formulations (5.16) and (5.22), when applied to advection dominated problems coincide
with the classical so-called Petrov-Galerkin methods in which suitable trial and test functions, depending on the
operator, were used (see [25], and see, in Fig. 1, the typical shape of the basis functions in V}, and V}*). The above
computation shows that these methods coincide with SUPG when the choice of the stabilization parameter 7x is
made as in (5.11). On the other hand, when applied to problems related to composite materials, as in Example
2.2 (respectively, Example 2.3), the formulation (5.22) reproduces the multiscale methods of [22], [23] and the
upscaling method of [1], [2], respectively.

Safat

Fig. 1. Typical shape of the basis functions in Vi, and Vi

So far, we assumed that we were able to compute the solutions of the local bubble problems (5.2). As anticipated,
these solutions cannot be computed exactly, but require some suitable approximation. Let us see, in the particular
case of advection dominated problems, how this approximate solutions can be carried out in practice.
We recall that, in this case, solving (5.15) amounts in practice to compute, in each K, the “unitary bubble”
bk, solution of
—cAbg +¢-Vbg =1 ineach K. (5.26)

Actually, what we really need is its mean value in each K (see (5.11)).
Several tricks can be used to compute fK bg dx.
e A possibility is to solve by hand the pure convective problem, as advocated in [10]:
find by € H'(K) such that
c - Vbx =1 in K,
bx =0 on &K~ (= inflow)
Notice that the integral of bx on K is just the volume of a pyramid, as shown in Fig. 2.
e Another possibility is to solve (5.26) on a subgrid with very few degrees of freedom, but well chosen (e.g., Pseudo

RFB [8], Shishkin [17], etc, see Fig. 3). Typically few nodes in the element boundary layer are needed.
e As an alternative, one could use subgrid artificial viscosity; that means solving, instead of (5.26), the problem

—(e+e4)Abg +¢-Vbg =1 ineach K

on a very rough grid (typically, one node), where €4 is a suitably chosen artificial viscosity, in general ~ hy (see
[20]). Unfortunately, the problem of the optimal choice for € 4 is rather delicate. Indeed, using a one-dimensional
space By (K) = span {fx(x)} results in an SUPG method with

(g Bday
(K| +24) [ VAP da”

TK

as shown in [5]. This implies that the bigger is € 4 the smaller is 7k, that is, we add artificial viscosity for stabilizing
and we decrease the stabilization parameter.



Fig. 2. Possible shapes of bx; here ¢ = (1,0)

PSEUDO RFB SHISHKIN

Fig. 3. Example of meshes

6 Conclusions

The Residual Free Bubble approach offers a unified framework for setting and analyzing several two-level and/or
stabilized methods. It consists, essentially, in augmenting a given finite element space with spaces of functions
having support in a single element. The necessary requirements for this augmentation process have been introduced
and discussed for several examples. The split nature of the bubble space allows to eliminate the additional
unknowns with an element by element procedure, that can be carried out in parallel. The elimination process
involves in general the approximate solution of a partial differential equation in each element. We have seen
however that in many cases a rough approximation can be sufficient.

The use of this type of approach for stabilizing unstable finite element formulations were already well known.
Here we presented the method in a very general setting, and this allowed us to show that several other methods
for stabilizing and, mostly, for dealing with subgrid phenomena, can actually be seen as a particular case of the
RFB approach. This includes, on one side, old methods like the Petrov Galerkin methods with special, operator
dependent, trial and test functions for advection dominated problems, as well as more recent approaches like the
multiscale method or the upscaling method for problems with composite materials.

Other developments and applications to different problems are surely worth further investigations, as well
as some recent variants like the use of non-conforming bubbles, the possibility of adding edge-bubbles, or the
connections with domain decomposition methods.
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