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Abstra
t. In re
ent times, several attempts have been made to re
over some information from the subgrid s
ales and

transfer them to the 
omputational s
ales. Many stabilizing te
hniques 
an also be 
onsidered as part of this e�ort. We

dis
uss here a framework in whi
h some of these attempts 
an be set and analyzed.

1 Introdu
tion

In the numeri
al simulation of a 
ertain number of problems, there are physi
al e�e
ts that take pla
e on a s
ale

whi
h is mu
h smaller than the smallest one representable on the 
omputational grid, but have a strong impa
t on

the larger s
ales, and, therefore, 
annot be negle
ted without jeopardizing the overall quality of the �nal solution.

In other 
ases, the dis
rete s
heme la
ks the ne
essary stability properties be
ause it does not treat in a proper

way the smallest s
ales allowed by the 
omputational grid. As a 
onsequen
e, some "smallest s
ale mode" appears

as abnormally ampli�ed in the �nal numeri
al results. Most types of numeri
al instabilities are produ
ed in this

way, as the 
he
kerboard pressure mode for nearly in
ompressible materials, or the �ne-grid spurious os
illations

in 
onve
tion-dominated 
ows. See for instan
e [19℄ and the referen
es therein for a 
lassi
al overview of several

types of these and other instabilities of this nature.

In the last de
ade it has be
ome 
lear that several attempts to re
over stability, in these 
ases, 
ould be

interpreted as a way of improving the simulation of the e�e
ts of the smallest s
ales on the larger ones. By doing

that, the small s
ales 
an be seen by the numeri
al s
heme and therefore be kept under 
ontrol.

These two situations are quite di�erent, in nature and s
ale. Nevertheless it is not unreasonable to hope that

some te
hniques that have been developed for dealing with the latter 
lass of phenomena might be adapted to

deal with the former one. In this sense, one of the most promising te
hnique seems to be the use of Residual-

Free Bubbles (see e.g. [10℄, [18℄.) In the following se
tions, we are going to summarize the general idea behind

it, trying to underline its potential and its limitations. In Se
tion 2 we present the 
ontinuous problems in an

abstra
t setting, and provide examples of appli
ations, related to adve
tion dominated 
ows, 
omposite materials,

and vis
ous in
ompressible 
ows. For appli
ation of these 
on
epts to other problems we refer, for instan
e, to

[13℄, [14℄, [16℄, [18℄, [24℄. In Se
tion 3 we introdu
e the basi
 features of the RFB method. Starting from a given

dis
retization (that might possibly be unstable), we dis
uss the suitable bubble spa
e that 
an be added to the

original �nite element spa
e. In
reasing the spa
e with bubbles leads to the augmented problem, usually in�nite

dimensional, whi
h, in the end, will have to be solved in some suitable approximate way. In Se
tion 4 we give

an idea of how error estimates 
an be dedu
ed for the augmented problem. In Se
tion 5 we dis
uss the related


omputational aspe
ts, and we present several strategies that 
an be used to deal with the augmented problem,

in order to minimize the 
omputational 
ost. We shall see in parti
ular that several other methods that are

known in the literature 
an a
tually be seen as variants of the RFB pro
edure, in whi
h one or another of the

above strategies is employed. This in
ludes, for adve
tion dominated problems, the 
lassi
al SUPG methods (as

it was already well known, see, e.g., [4℄) as well as the older Petrov-Galerkin methods based on suitable operator

dependent 
hoi
es of test and trial fun
tions [25℄. For 
omposite materials, this in
ludes both the multis
ale

methods of [22℄, [23℄, and the ups
aling methods of [1℄, [2℄. Finally, in Se
tion 6 we draw some 
on
lusions.

2 The 
ontinuous problem

We 
onsider the following 
ontinuous problem

(

�nd u 2 V su
h that

L(u; v) =< f; v > 8v 2 V;

(2.1)



where V is a Hilbert spa
e, and V

0

its dual spa
e, L(u; v) is a 
ontinuous bilinear form on V � V , and f 2 V

0

is the for
ing term. We assume that, for all f 2 V

0

, problem (2.1) has a unique solution. Various problems of

interest for the appli
ations 
an be written in the variational form (2.1), a

ording to di�erent 
hoi
es of the

spa
e V and the bilinear form L. Typi
al 
hoi
es for V , when V is a spa
e of s
alar fun
tions, are the following:

if O � R

d

; (d = 1; 2; 3) denotes a generi
 domain, V 
ould be, for instan
e, L

2

(O); H

1

(O); H

1

0

(O); H

2

(O) or

L

2

0

(O), the last one being the spa
e of L

2

�fun
tions having zero mean value. In the 
ase where V is a spa
e of

ve
tor valued fun
tions, a �rst 
hoi
e 
ould be to take the 
artesian produ
t of the previous s
alar spa
es. Other

typi
al 
hoi
es for V 
an be:

H(div;O) := f� 2 (L

2

(O))

d

su
h that r � � 2 L

2

(O)g;

H

0

(div;O) := f� 2 H(div;O) su
h that � � n = 0 on �Og;

or also, for a generi
 domain O � R

3

,

H(
url;O) := f� 2 (L

2

(O))

3

su
h that r ^ � 2 (L

2

(O))

3

g

H

0

(
url;O) := f� 2 H(
url;O) su
h that � ^ n = 0 on �Og:

Produ
t spa
es are also used quite often: for instan
e, H(div;O) � L

2

(O), or (H

1

0

(O))

d

� L

2

0

(O), et
. Next, we

provide some 
lassi
al examples of problems and we indi
ate the 
orresponding spa
e V , the bilinear form L, and

the variational formulation.

Ex 2.1: Adve
tion-dominated s
alar equations:

�"�u+ 
 � ru = f in 
; u = 0 on �


V := H

1

0

(
); L(u; v) :=

Z




"ru � rv dx+

Z





 � ru v dx; < f; v > :=

Z




fv dx

L(u; v) =< f; v > 8v 2 V

Ex 2.2: Linear ellipti
 problems with 
omposite materials:

�r � (�(x)ru) = f in 
; u = 0 on �


V := H

1

0

(
); L(u; v) :=

Z




�(x)ru � rv dx; < f; v > :=

Z




fv dx

L(u; v) =< f; v > 8v 2 V

(where �(x) � �

0

> 0 might have a very �ne stru
ture).

Ex 2.3: Composite materials in mixed form, i.e., the same problem of the previous example, but now with:

� = ��r in 
; r � � = f in 
;  = 0 on �


V := � � �; � := H(div;
); � := L

2

(
)

a

0

(�; � ) :=

Z




�

�1

� � � dx; b(� ; ') :=

Z




r � � 'dx

L((�;  ); (� ; ')) := a

0

(�; � )� b(� ;  ) + b(�; '); < f; (� ; ') > :=

Z




f' dx

L((�;  ); (� ; ')) =< f; (� ; ') > 8(� ; ') 2 V

Ex 2.4: Stokes problem for vis
ous in
ompressible 
uids:

��u+rp = f in 
; r � u = 0 in 
; u = 0 on �


V := U�Q; U := (H

1

0

(
))

d

; Q := L

2

0

(
)

a

1

(u;v) :=

Z




ru : rv dx b(v; q) :=

Z




r � v q dx

L((u; p); (v; q)) := a

1

(u;v) � b(v; p) + b(u; q); < f; (v; q) > :=

Z




f � v dx

L((u; p); (v; q)) =< f; (v; q) > 8(v; q) 2 V



3 From the dis
rete problem to the augmented problem

Let T

h

be a de
omposition of the 
omputational domain 
, with the usual nondegenera
y 
onditions [12℄, and

let V

h

� V be a �nite element spa
e. The original dis
rete problem is then:

(

�nd u

h

2 V

h

su
h that

L(u

h

; v

h

) =< f; v

h

> 8v

h

2 V

h

:

(3.1)

Note that we do not assume that (3.1) has a unique solution. Indeed, the stabilization that we are going to

introdu
e 
an, in some 
ases, take 
are of problems originally ill-posed. Our aim is, essentially, to solve in the

end a �nal linear system having as many equations as the number of degrees of freedom of V

h

. Apart from that,

we are ready to pay some extra work, in order to have a better method. In some 
ases, the total amount of

additional work will be small. In other 
ases, it 
an be huge. However, we want to be able to perform the extra

work independently in ea
h element so that we 
an do it, as a pre-pro
essor, in parallel. This implies that we are

ready to add as many degrees of freedom as we want at the interior of ea
h element. For that, to V and T

h

we

asso
iate the maximal spa
e of bubbles

B(V ; T

h

) =

Y

K

B

V

(K); with B

V

(K) = fv 2 V : supp(v) � Kg:

Let us give some examples of the dependen
e of B

V

(K) on V .

� if V = H

1

0

(
) then B

V

(K) = H

1

0

(K)

� if V = H

1

(
) then B

V

(K) = fv 2 H

1

(K); v = 0 on �K \
g

� if V = L

2

(
) then B

V

(K) = L

2

(K)

� if V = L

2

0

(
) then B

V

(K) = L

2

0

(K)

� if V = H

2

0

(
) then B

V

(K) = H

2

0

(K)

� if V = H

0

(div;
) then B

V

(K) = H

0

(div;K)

� if V = H(div;
) then B

V

(K) = f� 2 H(div;K); � � n = 0 on �K \
g

Similar de�nitions and properties hold for the spa
es H(
url;O), but we are not going to use them here.

Let us now turn to the 
hoi
e of the lo
al bubble spa
e B

h

(K). If possible, we would like to augment the

spa
e V

h

by adding, in ea
h element K, the whole B

V

(K). This would 
hange V

h

into V

h

+ B(V ; T

h

). However,

some 
onditions are needed, as we shall see below. This might forbid, in some 
ases, to take the whole B

V

(K) in

the augmentation pro
ess: some 
omponents of B

V

(K) have to be dis
arded. This will be
ome more 
lear in the

examples below. At this very abstra
t and general level, we assume that, in ea
h K 2 T

h

, we 
hoose a subspa
e

B

h

(K) � B

V

(K) and, for the moment, \the bigger the better". A �rst 
ondition that we require is that, for every

g 2 V

0

, the auxiliary problem

(

�nd w

B;K

2 B

h

(K) su
h that

L(w

B;K

; v) =< g; v > 8v 2 B

h

(K)

(3.2)

has a unique solution. We point out that the 
hoi
e \the bigger the better" for B

h

(K) is made (so far) in order

to understand the full potential of the method. As we shall see, in pra
ti
e we will need to solve (3.2) a few times

in ea
h K. This implies that a �nite dimensional 
hoi
e for B

h

(K) will be, in the end, ne
essary.

Having 
hosen B

h

(K), we 
an now write the augmented problem. For that, let

V

A

:= V

h

+�

K

B

h

(K): (3.3)

Two requirements have to be ful�lled: �rst of all, in (3.3) we must have a dire
t sum, and, se
ond, for every

f 2 V

0

, the augmented problem

(

�nd u

A

2 V

A

su
h that

L(u

A

; v

A

) =< f; v

A

> 8v

A

2 V

A

(3.4)

must have a unique solution. To summarize, in the augmentation pro
ess three 
onditions have to be ful�lled:

1) the lo
al problems (3:2) must have a unique solution;

2) in (3:3) we must have a dire
t sum;

3) the augmented problem (3:4) must have a unique solution:



These are then the requirements that 
an guide us in 
hoosing B

h

(K) in the various 
ases.

Examples of 
hoi
es of B

h

(K).

Ex 3.1 - Referring to Examples 2.1 and 2.2 of the previous se
tion, suppose that V

h

is made of 
ontinuous

pie
ewise linear fun
tions. In this 
ase it is easy to 
he
k that the 
hoi
e B

h

(K) = B

V

(K) � H

1

0

(K) veri�es all

of the three 
onditions.

Ex 3.2 - Suppose now that, always referring to Examples 2.1 and 2.2, V

h

is made of 
ontinuous pie
ewise 
ubi


fun
tions. The 
hoi
e B

h

(K) = B

V

(K) is not viable anymore, as 
learly 
ondition 2) is violated: V

h


ontains

fun
tions of B

V

(K). In situations like this we should then 
hoose a di�erent B

h

(K), but we 
ould also redu
e the

original spa
e V

h

. This is a
tually the simplest strategy, and we are going to follow it. Here, for instan
e, we 
an

just remove the 
ubi
 bubble from V

hjK

and take a redu
ed spa
e, still denoted by V

h

with an abuse of notation,

as a spa
e of any serendipity 
ubi
 element (see, for instan
e, the element des
ribed in [12℄, page 50). Or we might

take V

h

as the spa
e of fun
tions v

h

that are polynomials of degree � 3 at the interelement boundaries and verify

Lv

h

= 0 separately in ea
h K. Noti
e that these two 
hoi
es produ
e the same augmented spa
e V

A

, and hen
e

the same solution u

A

to (3.4).

Ex 3.3 - Let us 
onsider the problem of Example 2.3, and assume that V

h

= �

h

� U

h

is made by lowest order

Raviart-Thomas elements (see for instan
e [3℄). For this problem we have

B

V

(K) = f� 2 H(div;K); � � n = 0 on �K \
g � L

2

(K):

we noti
e now that taking B

h

(K) = B

V

(K) would not guarantee that problems (3.2) have a unique solution.

Indeed, for internal elements K, the Inf-sup 
ondition is not veri�ed, sin
e

R

K

div� v dx = 0 forall v 
onstant on

K. Condition 2) would also be violated by the 
hoi
e B

h

(K) = B

V

(K): in fa
t, U

h

being the spa
e of pie
ewise


onstants, U

hjK


ontains bubbles of L

2

(K). A possible remedy in this 
ase is to take

B

h

(K) = H

0

(div;K)� L

2

0

(K) � B

V

(K):

With this 
hoi
e V

h

remains the same, and B

h

is the spa
e of all pairs (�; v) 2 V su
h that � has zero normal


omponent at the boundary of ea
h element, and v has zero mean value in ea
h element. The same 
hoi
e for B

h

would be suitable also in the 
ase of higher order Raviart-Thomas spa
es (or, say, for BDM spa
es; see always

[3℄), but then V

h

should lose all internal degrees of freedom, apart from the pie
ewise 
onstant s
alars.

Ex 3.4 - Let us now examine the Stokes problem of Example 2.4, and assume that V

h

is made of pie
ewise

quadrati
 velo
ities in (H

1

0

(
))

d

, and dis
ontinuous pie
ewise linear pressures in L

2

0

(
), a 
hoi
e whi
h is known

not to be stable, but 
an be stabilized with the present te
hnique. A
tually, in this 
ase one 
an see that B

V

(K) =

(H

1

0

(K))

d

�L

2

0

(K). Taking B

h

(K) = B

V

(K) would violate 
ondition 2), but we 
an redu
e the spa
e V

h

, taking

it to be the spa
e of quadrati
 velo
ities and 
onstant pressures. It is easy to 
he
k that with this last 
hoi
e we

have a dire
t sum in (3.3). Moreover, problem (3.4) has a unique solution, be
ause the Inf-sup 
ondition is now

veri�ed in V

A

.

Ex 3.5 - Let us 
onsider again the Stokes problem of Example 2.4, but now with V

h

= U

h

�Q

h

made of pie
ewise

linear 
ontinuous velo
ities in (H

1

0

(
))

d

, and pie
ewise 
onstant pressures in L

2

0

(
). It is well known that for this


hoi
e the Inf-sup 
ondition does not hold. Moreover, if we augment V

h

with bubble fun
tions, no matter how,

the augmented problem (3.4) will never verify the Inf-sup 
ondition. To see that, augment as mu
h as you 
an

the velo
ity spa
e: U

A

= U

h

+�

K

(H

1

0

(K))

d

, and augment as little as you 
an the pressure spa
e: Q

A

= Q

h

+f0g.

For every v 2 (H

1

0

(K))

d

and for every 
onstant q in K, we 
learly have (div v; q) = 0. Hen
e, for q 2 Q

h

:

sup

v2V

A

(div v; q)

jjvjj

1

= sup

v2U

h

(div v; q)

jjvjj

1

;

and we know that the last quantity 
annot bound jjqjj

0

for all q 2 Q

h

. We 
learly see that, in 
ases like this, our

strategy is totally useless, and should not be applied.

4 An example of error estimates

To give an idea of how to pro
eed to obtain error estimates, let us 
onsider, as an example, a general singular

perturbation problem where

L(u; v) := "a

1

(u; v) + a

0

(u; v)



with

a

1

(v; v) � �jjvjj

2

V

8v 2 V; a

1

(u; v) � jjujj

V

jjvjj

V

8u; v 2 V (4.1)

a

0

(v; v) � 0 8v 2 V; a

0

(u; v) �M jjujj

V

jjvjj

H

8u; v 2 V (4.2)

where H is a spa
e su
h that V � H with 
ontinuous embedding. We set e := u� u

A

and � := u� u

I

, u

I

being

some interpolant of u in V

h

. Pro
eeding as usual we have

"�jjejj

2

V

� L(e; e) = L(e; �) = "a

1

(e; �) + a

0

(e; �); (4.3)

and the term a

0

(e; �) is the sour
e of all diÆ
ulties, sin
e it does not 
ontain " as an expli
it fa
tor. In order to

estimate it, let � = �

B

+ �

H

be any de
omposition of � with �

B

2 B

h

and �

H

2 H . Noti
e that �

B

2 B

h

� V

A

,

so that, by Galerkin orthogonality,

"a

1

(e; �

B

) = �a

0

(e; �

B

): (4.4)

Using this and the bounds (4.1)-(4.2) we 
an pro
eed as in [9℄ and dedu
e:

a

0

(e; �) = a

0

(e; �

B

) + a

0

(e; �

H

) = �"a

1

(e; �

B

) + a

0

(e; �

H

)

� "jjejj

V

jj�

B

jj

V

+M jjejj

V

jj�

H

jj

H

� "

1=2

�

"

1=2

jjejj

V

jj�

B

jj

V

+M"

�1=2

jjejj

V

jj�

H

jj

H

�

� "

1=2

(1 +M)jjejj

V

�

"

1=2

jj�

B

jj

V

+ "

�1=2

jj�

H

jj

H

�

:

(4.5)

Taking now the supremum over all possible de
ompositions � = �

B

+ �

H

, and then over " > 0 we obtain

a

0

(e; �) � "

1=2

(1 +M)jjejj

V

sup

">0

h

sup

�

B

+�

H

=�

�

"

1=2

jj�

B

jj

V

+ "

�1=2

jj�

H

jj

H

�i

: (4.6)

By de�nition (see [7℄) the double supremum is the norm of � in a suitable interpolation spa
e, usually denoted

by [B

h

; H ℄

1

2

;1

, that for brevity we shall denote by F . Hen
e, (4.6) be
omes

a

0

(e; �) � "

1=2

(1 +M)jjejj

V

jj�jj

F

: (4.7)

Inserting (4.7) in (4.3) gives

"�jjejj

2

V

� "a

1

(e; �) + a

0

(e; �) � "

1=2

jjejj

V

("

1=2

jj�jj

V

+ (1 +M)jj�jj

F

);

and �nally

"

1=2

�jju� u

A

jj

V

� "

1=2

jju� u

I

jj

V

+ (1 +M)jju� u

I

jj

F

: (4.9)

Noti
e that an estimate for "

1=2

jju�u

A

jj

V

is not as bad as we are used to. For instan
e, with an argument similar

to the one used before, using (4.4)-(4.5), from (4.9) we 
an see that

jjA

0

(u� u

A

)jj

F

0

:= sup

'

a

0

(u� u

A

; ')

jj'jj

F

= sup

'

a

0

(u� u

A

; '

B

) + a

0

(u� u

A

; '

H

)

jj'jj

F

= sup

'

�"a

1

(u� u

A

; '

B

) + a

0

(u� u

A

; '

H

)

jj'jj

F

� (1 +M)"

1=2

jju� u

A

jj

V

sup

'

"

1=2

jj'

B

jj

V

+ "

�1=2

jj'

H

jj

H

jj'jj

F

� (1 +M)"

1=2

jju� u

A

jj

V

� C ("

1=2

jju� u

I

jj

V

+ jju� u

I

jj

F

);

whi
h is a typi
al estimate that 
an be obtained with stabilized methods (see, e.g., [22℄, [27℄). We refer to [6℄, [9℄,

[28℄ for the error analysis for residual-free bubbles methods for adve
tion dominated problems.



5 Computational aspe
ts

Let us now examine the stru
ture of the abstra
t augmented problem (3.4). Sin
e we 
onstru
ted the spa
e V

A

as a dire
t sum:

V

A

:= �

K

B

h

(K) � V

h

we have then the unique splittings: u

A

= u

B

+u

h

; v

A

= v

B

+ v

h

. The augmented problem 
an then be written as

(

�nd u

A

= u

B

+ u

h

2 V

A

su
h that

L(u

B

+ u

h

; v

B

+ v

h

) =< f; v

B

+ v

h

> 8v

B

2 B

h

; 8v

h

2 V

h

:

(5.1)

The asso
iated system will therefore have the form:

 

L

B;B

L

B;h

L

h;B

L

h;h

! 

u

B

u

h

!

=

 

f

B

f

h

!

with L

B;B

blo
k diagonal:

There are di�erent strategies for solving the (still in�nite dimensional) problem (5.1). All of them are based on

the (approximate) solution of the problems

(

�nd w

i

B

2 B

h

su
h that

L(w

i

B

; v

B

) = L(v

i

; v

B

) �< Lv

i

; v

B

> 8v

B

2 B

h

;

(5.2)

where the fv

i

g's are a basis for V

h

, plus, if ne
essary, the solution of the problem

(

�nd w

f

B

2 B

h

su
h that

L(w

f

B

; v

B

) =< f; v

B

> 8v

B

2 B

h

:

(5.3)

As we shall see, what is a
tually needed, for all strategies, is the 
omputation (for i; j = 1; :::; dim(V

h

)) of the

quantities

S

j;i

:= L(w

i

B

; v

j

) �< w

i

B

; L

�

v

j

>; and T

j

:= L(w

f

B

; v

j

) �< w

f

B

; L

�

v

j

>; (5.4)

where L

�

is the adjoint operator of L. In turn, the 
omputation of the solution of the problems (5.2) amounts to

solve, in ea
h K, the lo
al bubble problem

(

�nd w

i

B;K

2 B

h

(K) su
h that

L(w

i

B;K

; b) =< Lv

i

; b > 8b 2 B

h

(K):

(5.5)

The same is obviously true for (5.3). Moreover, f 
an often be approximated, in ea
h K, by elements of LV

h

jK

,

so that the solution of (5.3) 
an be easily obtained from the solutions of the problems (5.2).

A 
areful inspe
tion of the lo
al problems (5.5) suggests several observations that are 
omputationally relevant.

� For ea
h v

i

, the 
omputation of w

i

B


an be done in parallel.

� In ea
h element K, the dimension of spanfLv

i

jK

g will be small. In general, it will be less than or equal to the

number of degrees of freedom of V

h

in K.

� Finally, as we already pointed out, only the quantities S

j;i

=< w

i

B

; L

�

v

j

> are a
tually needed. Hen
e, only

some averages of w

i

B

will be used, and therefore a rough approximation might often be suÆ
ient.

� The same 
onsiderations 
learly hold for the 
ontributions T

j

to the right-hand side.

5.1 First strategy

Let us see in more detail how the whole pro
edure 
an be applied in pra
ti
e. For this, 
onsider problem (5.1)

and note that u

B

is the solution of

L(u

B

; v

B

) = �L(u

h

; v

B

)+ < f; v

B

> 8v

B

2 B

h

;



and 
an be seen as an (aÆne) fun
tion of u

h

and f :

u

B

= L

�1

B;B

(f � Lu

h

):

Substituting into (5.1), and taking now v

h

as a test fun
tion, gives

L(u

h

; v

h

) + L(L

�1

B;B

(f � Lu

h

); v

h

)) =< f; v

h

> 8v

h

2 V

h

; (5.6)

whi
h is an equation in terms of u

h

alone, where the additional term

L(L

�1

B;B

(f � Lu

h

); v

h

) � L(u

B

; v

h

) (5.7)

represents the e�e
t of the small s
ales onto the 
oarse ones. To see how to 
ompute the additional term (5.7) let

us write u

h

:=

P

i

U

i

v

i

and take v

j

as a test fun
tion. We have

L(u

B

; v

j

) = L(L

�1

B;B

(f � Lu

h

); v

j

) = L(L

�1

B;B

f; v

j

)�

X

i

L(L

�1

B;B

Lv

i

; v

j

)U

i

= L(w

f

B

; v

j

)�

X

i

L(w

i

B

; v

j

)U

i

= T

j

�

X

i

S

j;i

U

i

;

that 
learly shows the use of the auxiliary terms T

j

and S

j;i

. Indeed, setting

K

j;i

= L(v

i

; v

j

); and F

j

=< f; v

j

>; (5.8)

we have from (5.6) that the U

i

's 
an be obtained as the solution of the following linear system of equations:

X

i

(K

j;i

� S

j;i

)U

i

= F

j

� T

j

j = 1; :::; dim(V

h

): (5.9)

Example - To see how this strategy 
an be applied, let us go ba
k to the adve
tion-dominated equation, that we

re
all here:

�"�u+ 
 � ru = f in 
; u = 0 on �
;

V := H

1

0

(
); L(u; v) :=

Z




"ru � rv dx+

Z





 � ru v dx:

Assume that the original �nite element spa
e V

h

is made of pie
ewise linear 
ontinuous fun
tions. Assume moreover

that both the sour
e term f and the 
onve
tive term 
 are pie
ewise 
onstant. Then, it is easy to see that for all

v

i

the terms Lv

i

and L

�

v

i

are 
onstant in ea
h K. Consequently, all the w

i

B


an be 
omputed by solving a single

problem in ea
h K, that is

(

�nd b

K

2 H

1

0

(K) su
h that

L(b

K

; b) =< 1; b > 8b 2 H

1

0

(K):

(5.10)

With some 
omputations, the problem be
omes now (see, e.g., [4℄):

8

>

<

>

:

�nd u

h

2 V

h

su
h that, for all v

h

2 V

h

:

L(u

h

; v

h

)�

X

K

R

K

b

K

dx

jKj

Z

K

(f � 
 � ru

h

)
 � rv

h

dx =< f; v

h

> :

(5.11)

This 
oin
ides with the SUPG method with �

K

=

R

K

b

K

dx

jKj

(see [11℄, [16℄).

5.2 Alternative 
omputational strategies

Another possibility is to 
hange the spa
e V

h

: for every basis fun
tion v

i

2 V

h

, de�ne

ev

i

:= v

i

� w

i

B

; (5.12)



and remember that w

i

B

was de�ned by

L(w

i

B

; v

B

) = L(v

i

; v

B

) 8v

B

2 B

h

: (5.13)

Therefore,

L(ev

i

; v

B

) = 0 8v

B

2 B

h

: (5.14)

Set now

e

V

h

= span fev

i

g, and noti
e that, again, V

A

=

e

V

h

�B

h

. Split then u

A

as u

A

= eu

h

+ eu

B

, with eu

h

in

e

V

h

,

and eu

B

in B

h

. Then, thanks to (5.14), eu

B

is the solution of

L(eu

B

; v

B

) � L(u

A

; v

B

) =< f; v

B

> 8v

B

2 B

h

: (5.15)

Hen
e eu

B

equals w

f

B

, solution of (5.3), and 
an be 
omputed before knowing eu

h

. Finally, eu

h


an be 
omputed

as the solution of

L(eu

h

; v

h

) + L(eu

B

; v

h

) =< f; v

h

> 8v

h

2 V

h

; (5.16)

with the same number of unknowns and equations as the dimension of V

h

. It is interesting to observe that the

di�eren
e between this and the �rst strategy is mainly psy
ologi
al. Indeed, setting eu

h

:=

P

i

e

U

i

ev

i

, we have from

(5.12), (5.8), and (5.4)

L(eu

h

; v

j

) =

X

i

L(ev

i

; v

j

)

e

U

i

=

X

i

L(v

i

� w

i

B

; v

j

)

e

U

i

=

X

i

(K

j;i

� S

j;i

)

e

U

i

;

L(eu

B

; v

j

) = L(w

f

B

; v

j

) = T

j

;

(5.17)

so that, inserting (5.17) into (5.16) we obtain

X

i

(K

j;i

� S

j;i

)

e

U

i

= F

j

� T

j

j = 1; :::; dim(V

h

); (5.18)

whi
h is exa
tly (5.9).

A third possibility would be, assuming that the adjoint problem of (5.13) is uniquely solvable, to de�ne ŵ

i

B

solution of

L(v

B

; ŵ

i

B

) = L(v

B

; v

i

) 8v

B

2 B

h

; (5.19)

and to asso
iate to any v

i

, basis fun
tion in V

h

, the fun
tion

v̂

i

= v

i

� ŵ

i

B

: (5.20)

Therefore, v̂

i

is the solution of

L(v

B

; v̂

i

) �< v

B

; L

�

v̂

i

>= 0 8v

B

2 B

h

: (5.21)

Set then V

�

h

= span fv̂

i

g, and noti
e that, in general, V

�

h

will be di�erent from

e

V

h

, unless the bilinear form L is

symmetri
. We have again V

A

= V

�

h

+B

h

, always with a dire
t sum. Take now in (5.1) for u

A

the same splitting

as before, that is, u

A

= eu

h

+ eu

B

, with eu

h

2

e

V

h

; eu

B

2 B

h

, and for v

A

take instead the splittig v

A

= v̂

h

+ v

B

, with

v̂

h

2 V

�

h

; v

B

2 B

h

, always without 
hanging the �nal solution u

A

. Substituting in (5.1) shows that eu

B

is again

the solution of (5.15). Hen
e, as before, eu

B

equals w

f

B

, and 
an be 
omputed before knowing eu

h

. Finally, eu

h


an

be 
omputed as the solution of

L(eu

h

; v̂

h

) =< f; v̂

h

> 8v̂

h

2 V

�

h

: (5.22)

The matrix asso
iated with (5.22) is however given by

L(ev

i

; v̂

j

) = L(ev

i

; v

j

� ŵ

j

B

) = L(ev

i

; v

j

) = K

j;i

� S

j;i

(5.23)

(having used (5.20), (5.14), and (5.17)). On the other hand,

< f; v̂

j

>=< f; v

j

� ŵ

j

B

>= F

j

� < f; ŵ

j

B

>; (5.24)



and, using (5.3), (5.19), and (5.4),

< f; ŵ

j

B

>= L(w

f

B

; ŵ

j

B

) = L(w

f

B

; v

j

) = T

j

: (5.25)

We are therefore ba
k to the system (5.18). It is somehow remarkable that the solution of (5.22) 
an be 
omputed

without a
tually 
omputing the fun
tions v̂

j

.

Remark Although the above strategies, as we have seen, do 
oin
ide in pra
ti
e, this is not often re
ognized in the

literature. For instan
e, formulations (5.16) and (5.22), when applied to adve
tion dominated problems 
oin
ide

with the 
lassi
al so-
alled Petrov-Galerkin methods in whi
h suitable trial and test fun
tions, depending on the

operator, were used (see [25℄, and see, in Fig. 1, the typi
al shape of the basis fun
tions in

e

V

h

and V

�

h

). The above


omputation shows that these methods 
oin
ide with SUPG when the 
hoi
e of the stabilization parameter �

K

is

made as in (5.11). On the other hand, when applied to problems related to 
omposite materials, as in Example

2.2 (respe
tively, Example 2.3), the formulation (5.22) reprodu
es the multis
ale methods of [22℄, [23℄ and the

ups
aling method of [1℄, [2℄, respe
tively.

c c

~ *Vh Vh

Fig. 1. Typi
al shape of the basis fun
tions in

e

V

h

and V

�

h

So far, we assumed that we were able to 
ompute the solutions of the lo
al bubble problems (5.2). As anti
ipated,

these solutions 
annot be 
omputed exa
tly, but require some suitable approximation. Let us see, in the parti
ular


ase of adve
tion dominated problems, how this approximate solutions 
an be 
arried out in pra
ti
e.

We re
all that, in this 
ase, solving (5.15) amounts in pra
ti
e to 
ompute, in ea
h K, the \unitary bubble"

b

K

, solution of

�"�b

K

+ 
 � rb

K

= 1 in ea
h K: (5.26)

A
tually, what we really need is its mean value in ea
h K (see (5.11)).

Several tri
ks 
an be used to 
ompute

R

K

b

K

dx.

� A possibility is to solve by hand the pure 
onve
tive problem, as advo
ated in [10℄:

8

>

>

<

>

>

:

�nd

e

b

K

2 H

1

(K) su
h that


 � r

e

b

K

= 1 in K;

e

b

K

= 0 on �K

�

(= in
ow)

Noti
e that the integral of

e

b

K

on K is just the volume of a pyramid, as shown in Fig. 2.

� Another possibility is to solve (5.26) on a subgrid with very few degrees of freedom, but well 
hosen (e.g., Pseudo

RFB [8℄, Shishkin [17℄, et
, see Fig. 3). Typi
ally few nodes in the element boundary layer are needed.

� As an alternative, one 
ould use subgrid arti�
ial vis
osity; that means solving, instead of (5.26), the problem

�("+ "

A

)�b

K

+ 
 � rb

K

= 1 in ea
h K

on a very rough grid (typi
ally, one node), where "

A

is a suitably 
hosen arti�
ial vis
osity, in general ' h

K

(see

[20℄). Unfortunately, the problem of the optimal 
hoi
e for "

A

is rather deli
ate. Indeed, using a one-dimensional

spa
e B

h

(K) = span f�

K

(x)g results in an SUPG method with

�

K

=

(

R

K

� dx)

2

jKj("+ "

A

)

R

K

jr�j

2

dx

;

as shown in [5℄. This implies that the bigger is "

A

the smaller is �

K

, that is, we add arti�
ial vis
osity for stabilizing

and we de
rease the stabilization parameter.



cc

Fig. 2. Possible shapes of

e

b

K

; here 
 = (1; 0)

C

PSEUDO  RFB SHISHKIN

C

Fig. 3. Example of meshes

6 Con
lusions

The Residual Free Bubble approa
h o�ers a uni�ed framework for setting and analyzing several two-level and/or

stabilized methods. It 
onsists, essentially, in augmenting a given �nite element spa
e with spa
es of fun
tions

having support in a single element. The ne
essary requirements for this augmentation pro
ess have been introdu
ed

and dis
ussed for several examples. The split nature of the bubble spa
e allows to eliminate the additional

unknowns with an element by element pro
edure, that 
an be 
arried out in parallel. The elimination pro
ess

involves in general the approximate solution of a partial di�erential equation in ea
h element. We have seen

however that in many 
ases a rough approximation 
an be suÆ
ient.

The use of this type of approa
h for stabilizing unstable �nite element formulations were already well known.

Here we presented the method in a very general setting, and this allowed us to show that several other methods

for stabilizing and, mostly, for dealing with subgrid phenomena, 
an a
tually be seen as a parti
ular 
ase of the

RFB approa
h. This in
ludes, on one side, old methods like the Petrov Galerkin methods with spe
ial, operator

dependent, trial and test fun
tions for adve
tion dominated problems, as well as more re
ent approa
hes like the

multis
ale method or the ups
aling method for problems with 
omposite materials.

Other developments and appli
ations to di�erent problems are surely worth further investigations, as well

as some re
ent variants like the use of non-
onforming bubbles, the possibility of adding edge-bubbles, or the


onne
tions with domain de
omposition methods.
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