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Abstra
t. We present an overview of some re
ent approa
hes to deal with instabilities

of numeri
al s
hemes and/or subgrid phenomena. The basi
 idea is that of enlarging (as

mu
h as one 
an) the �nite element spa
e, then to do an element-by element prepro
essing,

and �nally solve a problem with the same number of unknowns as the one we started with,

but having better numeri
al properties.

1. Introdu
tion

In a number of appli
ations, subgrid s
ales 
annot be negle
ted. Sometimes, they are just

a spurious by-produ
t of a dis
retised s
heme that la
ks the ne
essary stability properties.

In other 
ases, they are related to physi
al phenomena that a
tually take pla
e on a very

small s
ale but still have an important e�e
t on the solution.

In re
ent times, it was dis
overed that some mathemati
al tri
ks to deal with these

problems 
an help in both situations. One of these tri
ks is based on the so-
alled Residual

Free Bubbles (RFB). In what follows, we are going to dis
uss its appli
ation, by 
onsidering

two typi
al examples, one for ea
h 
ategory: the 
ase of adve
tion di�usion problems and

the 
ase of 
omposite materials. For dealing with these problems, in a typi
al mathemati
al

fashion, we shall 
hoose very simple toy problems that will however still retain some of the

basi
 diÆ
ulties of their bigger industrial 
ounterparts. In parti
ular we 
onsider:

Ex 1: Adve
tion-dominated s
alar equations: �nd u in V := H

1

0

(
) su
h that

(1.1) Lu := �"�u+ 
 � ru = f in 
; u = 0 on �
:

Here 
 is, say, a 
onvex polygon, 
 a given ve
tor-valued smooth fun
tion (
onve
tive term),

f a given smooth for
ing term, and " a positive s
alar ( di�usion 
oeÆ
ient). Clearly,

x = (x

1

; x

2

). The numeri
al approximation of the problem be
omes nontrivial when the

produ
t of " times a 
hara
teristi
 length of the problem (for instan
e, the diameter of 
)

is mu
h smaller than j
j in a nonnegligible part of the domain. The variational formulation

of (1.1) is

(1.2)

�

find u 2 V su
h that

L(u; v) :=

R




"ru � rv dx+

R





 � ru v dx =

R




f v dx 8v 2 V:

1991 Mathemati
s Subje
t Classi�
ation. 65N30, 65N15, 65N50.

Key words and phrases. Residual free bubbles, stabilisations.

1



2 FRANCO BREZZI

Ex 2: Linear ellipti
 problems with 
omposite materials: �nd u in V := H

1

0

(
)

su
h that:

(1.3) Lu := �r � (�(x)ru) = f in 
; u = 0 on �
:

As before, 
 is, say, a 
onvex polygon, and f a given smooth for
ing term. The (given)

s
alar fun
tion �(x) is assumed to be grater than a given positive 
onstant �

0

in the

whole domain 
, and represents, somehow, the 
hara
teristi
s of a 
omposite material.

The numeri
al approximation of (1.3) be
omes nontrivial when � has a �ne stru
ture,

exhibiting sharp 
hanges on a s
ale that is mu
h smaller than the diameter of 
. The

variational formulation of (1.3) is

(1.4)

�

find u 2 V su
h that

L(u; v) :=

R




�(x)ru � rv dx =

R




f v dx 8v 2 V:

The �rst example 
orresponds to problems where an unsuited numeri
al s
heme 
an

generate spurious os
illations in the numeri
al solution, whi
h are not present in the exa
t

solution (that in general, will just exhibit a boundary layer near the part of the boundary

where 
 � n � 0, where n is the outward unit ve
tor normal to �
.

On the 
ontrary, the se
ond example 
orresponds to problems where a �ne stru
ture is

already present, all over the domain, and needs to be 
aptured by the numeri
al s
heme,

at an a�ordable 
ost.

In the sequel, we are going to give the basi
 idea of a general strategy that 
an prove

useful, possibly in di�erent ways, for both types of problems.

2. The residual free bubbles approa
h

We noti
e, to start with, that the two problems presented in the Introdu
tion have

variational formulations sharing the same stru
ture:

(2.1)

�

find u 2 V su
h that

L(u; v) = (f; v) 8v 2 V;

where, in both 
ases, V := H

1

0

(
) and, from now on, ( ; ) denotes the inner produ
t in

L

2

(
). The di�eren
e is just in the type of bilinear form L(u; v) to be used for ea
h

problem.

Fixing our ideas on either one of the abstra
t formulations (2.1), we assume now that

we are given a de
omposition T

h

of 
 into triangles, with the usual nondegenera
y require-

ments. For the sake of simpli
ity we assume that we start with �nite element spa
es V

h

made of pie
ewise linear 
ontinuous fun
tions vanishing on �
. We also play the game that

the dimension of V

h

is the biggest one we are ready to a�ord, in the end, when we solve

the �nal system of linear equations. However, we are ready to a�ord some extra work, as a

pre-pro
essor before building the sti�ness matrix, provided that su
h work 
ould be done

in parallel, and in parti
ular element-by-element.
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Under these assumptions (that is given these rules) we 
an pro
eed as follows. We start

by 
onsidering the spa
e of bubbles

(2.2) B

h

:= �

K

B

h

(K); B

h

(K) := H

1

0

(K) 8K 2 T

h

:

We 
onsider now the augmented spa
e

(2.3) V

A

:= V

h

�B

h

;

and the 
orresponding augmented problem

(2.4)

�

find u 2 V

A

su
h that

L(u

A

; v

A

) = (f; v

A

) 8v

A

2 V

A

:

Noti
e that (2.4) is in�nite dimensional, and therefore unsolvable. Still we 
an 
onsider

it, for the moment at the level of an abstra
t spe
ulation. We then noti
e that, a

ording

to (2.3), we 
an split u

A

as u

A

= u

h

+ u

B

. In its turn, u

B

will be a sum of lo
al bubble

fun
tions u

K

B

, that is: u

B

=

P

K

u

K

B

. Therefore, in ea
h K 2 T

h

we 
an take v 2 B

h

(K)

and obtain, from (2.4) that the restri
tion u

K

B

of u

B

to K is the unique solution of the

following lo
al bubble equation:

(2.5)

�

find u

K

B

2 B

h

(K) su
h that

L(u

K

B

; v) = �L(u

h

; v) + (f; v) 8v 2 B

h

(K):

Equation (2.5), if solvable, would allow to express ea
h u

K

B

in terms of u

h

. At the formal

level, we 
an introdu
e the solution operator S

K

, that asso
iates to every fun
tion g (for

instan
e in L

2

(K)) the solution S

K

(g) 2 H

1

0

(K) of

(2.6) L(S

K

(g); v) = (g; v) 8v 2 H

1

0

(K)

and write the solution u

K

B

of (2.5) as u

K

B

= S

K

(f � Lu

h

). We are now ready to go ba
k

to (2.4), take v = v

h

, and substitute in u

A

= u

h

+ u

B

its expression as given by (2.5) and

(2.6) to obtain

(2.7) L(u

h

; v

h

)�

X

K

L(S

K

(Lu

h

); v

h

) = (f; v

h

)�

X

K

L(S

K

(f); v

h

) 8v

h

2 V

h

:

This is the linear system that, in the end, we are going to solve. It 
an be seen (see

e.g. [2℄, [7℄, [3℄, [4℄, [6℄) that, for the �rs t example, this 
orresponds to 
lassi
al stabilized

methods like SUPG (see e.g. [8℄, [9℄). For the se
ond exampl e, this would 
orrespond

to a two-level method of the type of the ones studied, for instan
e, in [13℄, [14℄. Clearly,

the major diÆ
ulty is in the a
tual solution of the lo
al problems (2.5) that, in prin
iple,

present diÆ
ulties that look similar to solving the original problems. However, looking at

(2.7), we noti
e that, in pra
ti
e, we have to evaluate only terms of the type L(S

K

(g); v

h

)

that, in turn, 
an be written as (S

K

(g); L

�

v

h

), where L

�

is the adjoint operator of L. In

our two examples we have L

�

v = �"�u � 
 � ru for the �rst one, and L� � L for the

se
ond one (where L is self-adjoint). An important observation is now that, 
onsidering

for instan
e the �rst example, L

�

v

h

will be 
onstant in ea
h element. Hen
e, only the mean

value of S

K

(g) is needed. This implies that a rough approximate solution of (2.5) 
ould

still be a

eptable. This will not be the 
ase for our se
ond example, where S

K

(g) will be
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integrated against a term depending on �(x). This term however will have a very de�nite

stru
ture, that we might think of to exploit. It is also possible to 
he
k that, in order

to 
ompute the terms depending on S

K

appearing in (2.7), it is suÆ
ient to 
ompute the

quantities

(2.8) S

K

i;j

:= (S

K

(v

j

h

); L

�

v

i

h

) and F

i

:= L

�

(S

K

(f); v

i

h

) 8i; j 8K 2 T

h

;

where the v

i

h

are the usual nodal basis for V

h

. Clearly the terms appearing in (2.8) have

to be 
omputed in some approximate way, ; see for instan
e [7℄, [5℄, [10℄.

However, the implementation 
ould also follow a path that is apparently quite di�erent.

Indeed, to every basis fun
tion v

i

h

2 V

h

we 
an asso
iate two other fun
tions w

i

and w

�

i

that, in ea
h K, are solutions of the problems

(2.9) Lw

i

= 0 in K w

i

= v

i

h

on �K;

and

(2.10) L

�

w

�

i

= 0 in K w

�

i

= v

i

h

on �K:

Clearly w

i

= w

�

i

whenever L is selfadjoint. It 
an be 
he
ked that the nodal values of the

solution u

A

of (2.4) 
oin
ide with the nodal values of the solution of the problem: �nd w

h

,

linear 
ombination of the w

j

's, su
h that

(2.11) L(w

h

; w

�

i

) = (f; w

�

i

) 8i = 1; :::; dim(V

h

):

On the other hand, the 
omputation of the solution in the form (2.11) requires essentially

the same amount of work as the 
omputation in the form (2.7). It is also interesting to

noti
e that, for the �rst example, this 
orresponds to the use of suitable basis fun
tions

(adapted to the operator) in the

Petrov-Galerkin formulation, as dis
ussed, for instan
e, in [15℄. For the se
ond example,

(2.11) is a
tually the original formulation of [13℄. For appli
ations of these 
on
epts to

di�erent problems see for instan
e [11℄, [12℄, [10℄, [1℄.
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