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ABSTRACT. We present an overview of some recent approaches to deal with instabilities
of numerical schemes and/or subgrid phenomena. The basic idea is that of enlarging (as
much as one can) the finite element space, then to do an element-by element preprocessing,
and finally solve a problem with the same number of unknowns as the one we started with,
but having better numerical properties.

1. INTRODUCTION

In a number of applications, subgrid scales cannot be neglected. Sometimes, they are just
a spurious by-product of a discretised scheme that lacks the necessary stability properties.
In other cases, they are related to physical phenomena that actually take place on a very
small scale but still have an important effect on the solution.

In recent times, it was discovered that some mathematical tricks to deal with these
problems can help in both situations. One of these tricks is based on the so-called Residual
Free Bubbles (RFB). In what follows, we are going to discuss its application, by considering
two typical examples, one for each category: the case of advection diffusion problems and
the case of composite materials. For dealing with these problems, in a typical mathematical
fashion, we shall choose very simple toy problems that will however still retain some of the
basic difficulties of their bigger industrial counterparts. In particular we consider:

Ex 1: Advection-dominated scalar equations: find v in V := H{ () such that
(1.1) Lu:=—Au+c-Vu=f inQ; wu=0 on oS

Here (Q is, say, a convex polygon, ¢ a given vector-valued smooth function (convective term),
[ a given smooth forcing term, and £ a positive scalar ( diffusion coefficient). Clearly,
x = (x1,22). The numerical approximation of the problem becomes nontrivial when the
product of £ times a characteristic length of the problem (for instance, the diameter of Q)
is much smaller than |c| in a nonnegligible part of the domain. The variational formulation
of (1.1) is

(1.2) find u €V such that
' L(u,v) = [,eVu-Vvdr+ [c-Vuvde = [, fode YveV.
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Ex 2: Linear elliptic problems with composite materials: find v in V := Hj(Q)
such that:

(1.3) Lu:= -V (a(x)Vu)=f inQ; wu=0 on Q.

As before, () is, say, a convex polygon, and f a given smooth forcing term. The (given)
scalar function a(x) is assumed to be grater than a given positive constant ag in the
whole domain €2, and represents, somehow, the characteristics of a composite material.
The numerical approximation of (1.3) becomes nontrivial when « has a fine structure,
exhibiting sharp changes on a scale that is much smaller than the diameter of 2. The
variational formulation of (1.3) is

(1.4) find uw €V such that
' L(u,v) = [qa(z)Vu-Vvder = [, fode YveV.

The first example corresponds to problems where an unsuited numerical scheme can
generate spurious oscillations in the numerical solution, which are not present in the exact
solution (that in general, will just exhibit a boundary layer near the part of the boundary
where ¢ -n > 0, where n is the outward unit vector normal to 0S2.

On the contrary, the second example corresponds to problems where a fine structure is
already present, all over the domain, and needs to be captured by the numerical scheme,
at an affordable cost.

In the sequel, we are going to give the basic idea of a general strategy that can prove
useful, possibly in different ways, for both types of problems.

2. THE RESIDUAL FREE BUBBLES APPROACH

We notice, to start with, that the two problems presented in the Introduction have
variational formulations sharing the same structure:

{ find u €V such that

(2.1) L(u,0) = (f,0) YoeV,

where, in both cases, V := H}(Q) and, from now on, (, ) denotes the inner product in
L?*(Q2). The difference is just in the type of bilinear form L(u,v) to be used for each
problem.

Fixing our ideas on either one of the abstract formulations (2.1), we assume now that
we are given a decomposition 7, of €2 into triangles, with the usual nondegeneracy require-
ments. For the sake of simplicity we assume that we start with finite element spaces V},
made of piecewise linear continuous functions vanishing on 9€2. We also play the game that
the dimension of V}, is the biggest one we are ready to afford, in the end, when we solve
the final system of linear equations. However, we are ready to afford some extra work, as a
pre-processor before building the stiffness matrix, provided that such work could be done
in parallel, and in particular element-by-element.
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Under these assumptions (that is given these rules) we can proceed as follows. We start
by considering the space of bubbles

(2.2) By, :=TIgBy(K),  Bu(K):=Hy(K) VK €T,
We consider now the augmented space

(2.3) Vai=V, & By,

and the corresponding augmented problem

(2.4) find u € Vy such that
' [,(UA,UA) = (f, UA) Yvs € Vy.

Notice that (2.4) is infinite dimensional, and therefore unsolvable. Still we can consider
it, for the moment at the level of an abstract speculation. We then notice that, according
0 (2.3), we can split uy as ug = up + up. In its turn, up will be a sum of local bubble
functions ufy, that is: up = Y, uf. Therefore, in each K € T;, we can take v € By (K)
and obtain, from (2.4) that the restriction u% of up to K is the unique solution of the
following local bubble equation:

find v € By (K) such that
L(ug,v) = —L(un,v) + (f,v) Vv € By(K).

Equation (2.5), if solvable, would allow to express each uf¥ in terms of u;. At the formal

level, we can introduce the solution operator Sk, that associates to every function g (for
instance in L?(K)) the solution Sk (g) € H}(K) of

(2-6) L(Sk(9),v) = (9,v) Vv € Hy(K)

and write the solution u¥ of (2.5) as uf = Sg(f — Luy). We are now ready to go back
0 (2.4), take v = vy, and substitute in uy = uj, + up its expression as given by (2.5) and
(2.6) to obtain

(27) £(uh,vh) — ZE(SK(Luh),vh f vh Z,C 8[( Uh Yo, € Vi
K

(2.5)

This is the linear system that, in the end, we are going to solve. It can be seen (see
e.g. [2], [7], [3], [4], [6]) that, for the firs t example, this corresponds to classical stabilized
methods like SUPG (see e.g. [8], [9]). For the second exampl e, this would correspond
to a two-level method of the type of the ones studied, for instance, in [13], [14]. Clearly,
the major difficulty is in the actual solution of the local problems (2.5) that, in principle,
present difficulties that look similar to solving the original problems. However, looking at
(2.7), we notice that, in practice, we have to evaluate only terms of the type L£(Sk(g),vn)
that, in turn, can be written as (Sk(g), L*v;), where L* is the adjoint operator of L. In
our two examples we have L*v = —eAu — ¢ - Vu for the first one, and Lx = L for the
second one (where L is self-adjoint). An important observation is now that, considering
for instance the first example, L*v;, will be constant in each element. Hence, only the mean
value of Sk (g) is needed. This implies that a rough approximate solution of (2.5) could
still be acceptable. This will not be the case for our second example, where Sx (g) will be
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integrated against a term depending on «(z). This term however will have a very definite
structure, that we might think of to exploit. It is also possible to check that, in order
to compute the terms depending on Sk appearing in (2.7), it is sufficient to compute the
quantities

(2.8) SE = (Sk(v]),L*v}) and F;:= L*(Sk(f),v}) Vi,j VYK €Ty,

where the v} are the usual nodal basis for V},. Clearly the terms appearing in (2.8) have
to be computed in some approzimate way, ; see for instance [7], [5], [10].

However, the implementation could also follow a path that is apparently quite different.
Indeed, to every basis function v} € V,, we can associate two other functions w; and w}
that, in each K, are solutions of the problems

(2.9) Lw, =0 in K w; = vj, on 0K,
and
(2.10) L'w; =0 in K wi =v; on OK.

Clearly w; = w; whenever L is selfadjoint. It can be checked that the nodal values of the
solution u 4 of (2.4) coincide with the nodal values of the solution of the problem: find wy,
linear combination of the w;’s, such that

(2.11) L(wy,w]) = (f,w]) Vi=1,..,dim(V}).

On the other hand, the computation of the solution in the form (2.11) requires essentially
the same amount of work as the computation in the form (2.7). It is also interesting to
notice that, for the first example, this corresponds to the use of suitable basis functions
(adapted to the operator) in the

Petrov-Galerkin formulation, as discussed, for instance, in [15]. For the second example,
(2.11) is actually the original formulation of [13]. For applications of these concepts to
different problems see for instance [11], [12], [10], [1].
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