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Abstract

It is known that the addition and elimination of suitable bubble functions
can result in a stabilized scheme of the SUPG-type. Residual-Free Bubbles
(RFB), in particular, can assure a quasi-optimal stabilized scheme, but they
are difficult to compute in one dimension and nearly impossible to compute
in 2 and 3 dimensions, unless in special limit cases. Strongly convection-
dominated problems (without reaction terms) are one of these cases, where it
is possible to find reasonably simple computable bubbles that provide a stabi-
lizing effect as good as that of true RFB. Here, although in a one-dimensional
framework, we analyze the case in which a non-negligible reaction term is
present, and we provide a simple recipe for spotting a suitable bubble space
(adding two bubbles per element) that provides a very good stabilizing effect.
The method adapts very well to all regimes with continuous transitions from
one regime to another. It is clear that the one-dimensional case, in itself, has
no real interest. We believe, however, that the discussion can cast some light
on the interaction between convection and reaction that could be useful in
future works dealing with multidimensional, more realistic problems.

1. Introduction

We will present in this paper a new stabilization method for one-dimensional
convection-diffusion-reaction problems, particularly designed to treat the (most
interesting) case of small diffusion, but able to adapt naturally from the
diffusion-dominated regime to the convection-dominated and/or to the re-

action dominated regime in a very simple way.
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The case treated corresponds to that of the positive-definite operator,
which physically corresponds to a dissipative or absorbing reacting term.
Therefore, exponential boundary and internal layers can appear at the inflow
or outflow boundaries and at the discontinuities of coeflicients and forcing
terms. It is known that, in the presence of under-resolved layers, the plain
Galerkin method will produce oscillations that pollute the whole domain. Sev-
eral approaches have been proposed to cure this problem within the framework
of Galerkin Finite Element Methods, mostly for advection-dominated equa-

tions.

The early attempts have been directed to change the shape of the test
and/or trial functions (Petrov-Galerkin methods) in order to reproduce the
classical upwind correction widely used in Finite Differences. Typically one
used exponential functions that were local solutions of the homogeneous dif-

2114 and the references

ferential equation as test functions (see, for instance,
therein) but it was far from clear how to adapt these ideas in multidimensional

problems.

A much more general approach was found in the use of stabilized meth-
ods, where the variational formulation is augmented in order to gain control of
the derivatives of the solution. Typical stabilized formulations are the SUPG
method®'%, and variations, such as GLS'®. The great advantage of this ap-
proach is its great generality, together with the fact that in many cases it
is possible to analyze it and derive quasi-optimal error bounds'®2%2%25  Tts
main drawback consists in the presence af a stabilizing parameter that needs
to be properly chosen. This problem was partly addressed in the variational
multiscale method and the SGS method!”. Application of the SGS method to
the advective-diffusive-reactive equation was explored in various papers (see,
e.g., 16:15

Another approach consists of enriching the finite element spaces by bubble

and the references therein).

functions. For advective-diffusive problems the relationships between the use
of bubble funcions and stabilized methods were first studied in 2. The possi-
bility of using special bubbles (called Residual-Free-Bubbles or RFB) in order
to find a suitable value for the stabilizing parameter in SUPG methods was
first introduced in ®, and the equivalence of this approach with the variational
multiscale method was pointed out in 2. The method also allows to prove

quasi optimal error bounds 722

and can be generalized to a much wider vari-
ety of problems (see e.g.'?). Its main drawback is that it requires the solution
of a local PDE. Although only a limited precision is needed in the solution
of these local problems, a suitable strategy to obtain a cheap approximate
solution has to be designed for each type of problem®?'** Close connections
were also found between the RFB approach and the earlier Petrov-Galerkin
methods using exponential test functions *®.

Yet another way of stabilizing the Galerkin method has been long pursued
and defended by several authors. The idea was to stabilize by means of a
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proper choice of the grid. This includes the possibility of using a suitable
refinement near the outflow boundary so that, actually, the stabilization is

24 and the references

not needed anymore, like in the Shishkin meshes (see
therein). This includes as well the simpler use of suitable nodes near the
outflow boundary as advocated by Gresho and others'®: for instance for the
one-dimensional convection-diffusion problem, the Galerkin method can be
stabilized by the solely correct placement of the first node within the bound-
ary layers of the flow. The drawback of these methodologies resides in that
they require a priori knowledge of the flow physics and the placement of the
boundary layers.

Finally, the method that is proposed in this paper emanates from merging
the concepts of Gresho and bubble stabilization. Within each element, follow-
ing 5 we choose a suitable subgrid (here made of two points), and we take the
bubbles which are piecewise linear on the subgrid. The strategy for choosing
the subgrid is as follows. Near each endpoint we look for the location of the
node that would make the solution of the local RFB problem insensitive to
the boundary value, as done by Gresho for advection-diffusion problems. If
such position is close enough to the corresponding endpoint (here we took one
third of the interval length) we take it, guessing that the local problem has
a boundary layer. Otherwise, we put the node in a “neutral” position inside
(the details will be given in Section 4). Hence we can perform our choice
without requiring a priori knowledge of the flow physics.

The layout of the paper is the following. First, the augmented space strat-
egy based on subgrid scales is reviewed in Section 2 and next particularized
into two bubble functions in Section 3. The choice of the the bubble func-
tions and subgrid nodes is presented in Section 4 and the resulting method is
analyzed for the various regimes in Section 5.

2. The augmented space strategy

We will consider, for the sake of simplicity, the following linear elliptic
convection-diffusion-reaction problem in an interval I that, for simplicity, we
scale to I =] —1,1[:

Lu=fin], u(—1) =u(l) =0, (2.1)

where

Lu=—cu" + pu + ou. (2.2)

Let 7, = {K} be a decomposition of I into subintervals K. For the sake of
simplicity, we shall also assume that the decomposition is uniform, so that we
can call h the (common) length of the intervals in the subdivision. However,
all our discussions will take place at the element level. Hence they will be
valid for a general decomposition, just assuming that, in deciding what to do
in a particular element, we take h as the length of that element.

3
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We assume that the diffusion coeflicient ¢ is a positive constant, and that
the convection field 3, the reaction field o, and the right-hand side f are
piecewise constant with respect to the decomposition 7. We also assume
that the reaction field o is nonnegative, and that the convective field 3 is
nonincreasing and does not change sign (that means, more precisely, that we
assume that either 8 > 0 in the whole I, or 8 < 0 in the whole I). So,
unless 3 = 0 (pure reaction case), we can speak of inflow and outflow. When
£ < |B| h+a h? the solution of the problem will (for a generic f) have boundary
layers, that can be either "only at the outflow” (if any), or "at both ends of
I”, depending on the reciprocal values of |3| h and o h? (see also the discussion
below). Internal layers may also occur (in the reaction-dominated regime, see
Subsection 5.3). In these cases, the pure Galerkin method will typically fail,
showing strong oscillations near the boundary layers, and some stabilization
is needed.

Here we will consider stabilizations based on the augmented space idea®,
which includes the RFB strategy, and can be summarized as follows.

We start by recalling the classical variational formulation of problem (2.1):

{ find u € HE(I) such that

(2.3)
a(u,v) = (f,v) for all v € Hg(I)

where
a (u,v) zs/u' v dm+/(ﬁu')vdm+/auvdm (2.4)
I I I

is a continuous and coercive bilinear form on the Hilbert space Hg (I), and
(f,v) denotes the scalar product of f and v in L?(I). A Galerkin approxi-
mation of problem (2.1) consists in taking a finite-dimensional subspace V3, of
Hg(I), and then solving the variational problem (2.3) in V3. For the sake of
simplicity, from now on we will restrict ourselves to the case of continuous,

piecewise linear elements, i.e., we will consider the finite element space
Vi = {v € Hy(I), vk linear for all K € T3}, (2.5)
so that the approximation of (2.3) reads
find uz, € Vi such that
(2.6)
a(ur,vr) = (f,vr) for all vy, € V.

The idea behind the augmented space strategy is to enlarge the finite
element space Vi in the following way. For each element K, we define a
suitable space of bubbles Bx C H} (K), to be chosen later on, and then we

enlarge the space Vi to
V=V & Vg, where Ve = @k Bk. (2.7)
The approximate problem in the enlarged space reads then

{ find up € V4, such that

(2.8)
a (un,vr) = (f,vy) for all vy, € Vj,.
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The RFB method®'? would correspond to the choice Bx = Hg(K), so
that, in one dimension, V3, = Hj(I) and the solution in V};, will actually be

the exact solution.
By (2.7) we have that any v, € V}, can be split into a linear part vz € Vi,
and a bubble part vp € VB in a unique way:

vy =vr +vp € VL ® V5, (2.9)
while the bubble part itself can be uniquely split element by element:

UB :ZUB’K’ vB,k € Brk. (2.10)
K

Then, the variational problem (2.8) in V), can be written as follows:

find u, =ur +up € Vi, @ Vg such that
a(ur +us,vr) = F(vr) VYur € Vi and (2.11)
a(ur +us,x,vB,K)r = (f,vB,xk)k VK €Ty, and Yup,x € Bk

where the subscript (-)x indicates that the integrals involved are restricted to
the element K.

The second equation of (2.11) can, in each K, be written as
a(up,k,vB,x) g = (f — LuL ,vB,K)K, Vvp,k € Bk. (2.12)

We denote now by My the linear operator that to every g € L?(I) associates
the unique solution w = Mk (g) € Bk of the problem

a(w,vB,K)K = (g,UB,K)K V’UB,K € BK, (2.13)
so that (2.12) gives up,x = Mk (f — Lur). Substituting up = > up,x in the

first equation of (2.11) we have then

a(ur,vr) + Y a(Mi(f — Lur),vr) e = (f,00). (2.14)

We introduce now, for every K, the formal adjoint L% of £ on K, defined by
Liv=—ev" — (Bv) + ov, and we end up with the stabilized scheme:

a(ur,vr) +» (M (Lur — f),Licvr) g = (f,vr) Yoo € Vi,  (2.15)
K

where the term (Mg (Lur — f),L¥kvr), represents the (stabilizing) effect,
on the linear scheme, of the bubble part.

Remark 1 As we already pointed out, by choosing Bx = H{(I) as in the
residual-free bubble method, the solution ur +up would coincide with the exact
solution w, so that the linear part ur would be nodally exact. On the other

hand, the solution of the local problems (2.12) would require the exact solution

5
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of a differential equation of the same type as the original one (2.1). Indeed, if
By = H§(I) then the local bubble problem (2.12) can also be written as

Lup,k = f— Lur n K, (2.16)

which has clearly the same structure of (2.1). Notice in particular that from
(2.16) we immediately have that inside each element K the solution u, =

up + ur, satisfies Lup, = f, whence the name Residual Free.

3. The case of two-bubble subgrid

In this section we shall consider in more detail the case in which each
bubble space Bk is spanned by two functions, both piecewise linear inside
K. To fix the ideas, we consider a typical element K =|z1,z2[ (so that h =
xz2 — z1). All the following discussion will take place in K, and therefore, at
most occurrencies, we shall drop the index K in the notation. In K we choose

two points, z1, 22, satisfying
T < z1<z22< T2, (31)

that will define the subgrid in K. The criteria for the choice of z; and z» as
functions of ¢, 3,0 and h will be given in the next section, together with the
analysis of the corresponding scheme at the various regimes.

For the moment, we construct the bubble b;, (i = 1,2) as the function
which is continuous and piecewise linear on the subgrid (3.1), has value 1 at
z; and value 0 at the other points of the subgrid (3.1). We then set Bx =
span{bi,b2}. The corresponding local bubble problem (2.12) can now be
written using as unknowns the values of up at the points z1 and z3. Indeed,
setting u’h := up(z) (i = 1,2), we have from (2.12)

2

D uha(by,bi) = (f = Lur,bi)k, =12 (3:2)
j=

Clearly the operator Mg defined in (2.13) can be identified with the inverse

matriz of the subgrid stiffness matriz S given by
Siji=a(bj,bi)y - (3.3)

Reintroducing in our notation the dependence on K of the u/’s and of the

functions b;’s, the final scheme can then be written as

2
a(ur,vr) + ZZUJ{B,K (bK,j,[,;(UL)K = (f,vr) VvL € Vi, (3.4)

K j=1

where the u%,K’s are the solutions, in each K, of the problem (3.2), and
therefore depend on u; and f. When analyzed for the particular choices of
the subgrid, according with the different regimes, the formulation (3.4) will
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show in detail the stabilizing effect that our procedure has on the original
piecewise linear scheme on the coarse grid.

There is however a different way of writing the augmented problem with
the present choice of bubbles. Indeed we can consider an enriched grid Kj,
having both the original grid nodes and the added subgrid nodes all together.
We can easily see that the augmented space V}, is the space of piecewise linear
continuous functions on K. Hence, we might consider that we are just using
plain Galerkin on the enriched grid Kj. Then (in particular in two and three-
dimensional problems) we can still choose to perform a static condensation of
the bubble degrees of freedom, but this time just for computational reasons.
We can consider, in a sense, that the stabilizing effect is just due to the
enrichment of the grid by means of a suitably chosen subgrid®.

In this case, we can think of a different representation of the stabilized
scheme. Indeed, if we have in mind a solution u, that is piecewise linear on
the enriched subgrid, it would not be convenient to present it in the splitting
(2.9), (2.10). We can still, if we like, make a distinction between i) the values
of the discrete solution uy, at the old nodes of the decomposition 7y, and %)
the values of up at the new nodes added with the role of stabilizing subgrid.
In the previous notation, these will be the values of u; at the nodes x1,z2,
and at the nodes z1, 22, respectively. However, the former will still coincide
with uz, because, for instance, up (1) = ur(x1), as up(z1) will always be zero
(it’s a bubble!). But the latter will not anymore be the u%,K’s: indeed, for
instance, us(21) = ur(21) + uB(21), and up(21) = up g, but ur(z1) will not,
in general, be zero (why should it?). In certain regimes, it will be much more
convenient to analyze the schemes looking first at the values up(z;) of the full
solution up at the added (subgrid) nodes, and then looking at its values at
the nodes of the original 7.

The two different approaches discussed above would correspond to two
different choices for the basis of the augmented space V},. Restricting to the

interval |z, z2[ (i.e., to the grid (3.1)) we introduce the notation

vi(7) = (z — 22) /(71 — 72), va(x) := (z — 1) /(22 — 1),

o1(@) = [(& — =) /(@1 — )], @ale) = [(@ — 22) /(s — )] T, D)

(where, as usual, [ |7 represents the positive part); we see that the space of
piecewise linear continuous functions on the grid (3.1) can be taken either
as span{vi, b1, bz, vz} (first approach followed here) or as span{p1,b1,b2, p2}
(second approach). Indeed, the first choice implies a splitting u, = ur + un,
while the second one is basically like looking globally at the refined grid.

We shall see in the next section that both approaches are convenient,

according to the different regimes.

4. The choice of the subgrid nodes

As we have seen in the previous section, we decided to take two bubbles

7
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per element. The number of bubbles has been suggested by the dimension
of the space spanned by the residual Lur — f when uy is piecewise linear
and f piecewise constant. Moreover, the shape of the two subgrid bubbles
in the typical interval ]z1,x2[ has been chosen to be piecewise linear on the
subgrid (3.1), and depends therefore only on the choice of the subgrid points
z1,22. Hence we are left with the problem of choosing z1, z2 as functions of
the parameters ¢, 3,0 and h = x5 — x; that is the size of the interval.

The main guideline for our choice will be the link-cutting strategy: the
idea is that, when ¢ is small (in a sense that we will make precise in a while)
the bubble problem that would come out of the RFB approach (see (2.16))

Lup = f — Lur in |z1, 2|, with up(z1) = up(z2) =0 (4.1)

can have boundary layers. As we want to solve it, in an approximate way, on a
subgrid having just two nodes, it seems convenient (and, in a sense, necessary)
to “forget” the Dirichlet boundary condition whenever we have a boundary

layer there. This, with the notation (3.5), amounts to chose z1, z2 such that
e the coefficient a(¢1,b1) = 0 when we have a boundary layer near z1,
e the coefficient a(p2,b2) = 0 when we have a boundary layer near z».

Let us see how the above conditions can be enforced. We set
£:=2z1 —x, n:=x2— 22, and 0:=22— 2. (4.2)

To simplify the exposition, we shall assume, from now on, that the convection
coefficient B is > 0. It is clear that the whole discussion that follows will
apply to the case 8 < 0 as well, just exchanging the roles of z; and z» (and
consequently of z; and z»). With an easy computation we see now that

D% o ST

_ 2 24
apnb) =0 & —S4B8400_g o o Z3EVIE Ao
n 26 20

where in both cases we took the positive root of the algebraic equation. We

a(p,b1) =0 < —

| o

also point out that the final expression in (4.4) has to be changed into its limit
n = 2¢/ when o = 0, while all the equations in (4.3) will have no solution

for o = 0 (in a sense, they give £ = +oo for o = 0). Hence we set

£/982 + 24
£ = 3B+ 92ﬁ + 280 forc#0 and & :=+4oco foro =0, (4.5)
o

-3 £/982% + 24
e 1= s Qﬂ +2de0 foro#0 and n.:=2/8 foro=0. (4.6)
o
It is also clear that the values £ = ¢ and n = n. dictated by (4.3) and (4.4)
cannot be taken as such, in a blind way, for all regimes. To start with, from

(4.2) and (3.1) we see that we have to require £ + 1 < h. Hence we are going
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to need a cut-off in the choice of ¢ and 7, whenever £, and 7. are too big. At
the same time, we do not want § to be too small either (when compared with

& and n). For simplicity we can decide that we want, say,
5 > min{é, n}. (4.7)

We also notice that we always have . < & (from (4.5) and (4.6)). As our
strategy will be of cut-off type, we can decide to choose n < £, so that (4.7)
becomes & > 1. Hence 7 will always be the smallest of the three sublenghts.
As the sum of the three is h, we end up with the (very reasonable) condition

n < h/3. (4.8)

We notice now that 7e, as given by (4.6), will always tend to 0 when & — 0
(unless both B and ¢ are zero, a case that we already discarded.) In particular
we shall have that (4.8) holds true whenever

6c < Bh + oh’/9. (4.9)

This is the first “bifurcation” in our strategy. Indeed, if (4.9) does not hold,
we consider that our problem (in the given interval) is diffusion dominated,
and we set n = h/3, (which implies then £ = § = h/3 as well.) Hence:

e if 6 > Bh + oh®/9, then ) = h/3.

The interesting cases, however, occur when (4.9) does hold. In that case, we
take for 7 the value coming out of (4.4), that is 7. given by (4.6):

e if 6 < Bh + oh®/9 then n = 1.

We made our choice for i. It remains to chose £. Applying (4.7) we see that
we cannot choose & > h — 2n, otherwise 6 =h — & —n < n. Hence

e in all cases we take £ = min{h — 2n, .},

where & is given by (4.5).

5. Analysis of the scheme in various regimes

We have now fully defined our subgrid scheme. The corresponding subgrid
stiffness matrix introduced in (3.3) can be specialized as

e o e  ob e B ob
S, =242 4,8,92 S, =_S4 B 90
1,1 §+3+6+3 1,2 5+2+6 5.1)
S- __E_E+O'_(5 S- _§+0'_(5+£+0'_77 .
T TS 276 o5 T3 T3

In order to study the behavior of the scheme at various regimes, we will
follow the steps of our algorithm.

5.1. Diffusion dominated regime

In our algorithm, this will occur when 5. > n = h/3, that is when 6¢ >
Bh + ah?/9. Our choices imply £ = § = n = h/3. Indeed, in this regime, the
stabilization is not needed, and a uniform subgrid seems appropriate.
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5.2. Conwvection dominated regime

This will occur when 5. = n < h/3 and & > &€ = h — 2n. In this case we
will also have § = n = 1., so that the subgrid stiffness matrix (5.1) will verify

e B ol e B  on
s=alby,b)=—S+o4+ 28 =S40, % 2
S1,2 = a(b2,b1) 6+2+6 77+2+6 0 (5.2)
More precisely, we have
51,1=§+G—€+£+0—n; S1,2=0;
&€ 3 0 3 (5.3)
2 20m
S2.1 = =P S =— 4+ —".
n 3

We can solve the local system (3.2) and insert the solution into (3.4). The
stabilizing term, to be added to the original scheme as in (2.15), becomes now

Ry R> Sa,1R1

=L (b, L7vL) + (E 51150

o )(bg,ﬁ*vL), (5.4)

where R; := (f — Lur,b;) (i = 1,2). We can now analyze the resulting scheme
in the limit for £ — 0. Assuming, for simplicity, that 33 > ch, it is not difficult
to see that the problem will stay in the convection-dominated regime for all
e. Since, for € small, § = n ~ 2¢/, we easily see that for £ — 0

5—) h, 51,1 — %h + g, 52,2 — ,3, (55)
and
by — w2, ba—0 in L*(I), (5.6)

where vy = (z — z1)/h is the basis function defined in (3.5). Consequently,
Ry =0, (b2, L vr) = 0, and R1 — (f — Lur, L v2), so that (5.4) becomes

6 *
m/}((f—[,uL)vg dx/szf, v dz. (5.7)

Notice that this is the same limit that we would get by using a single bubble,
piecewise linear on the subgrid 1 < z2 < z2. Hence, in this regime, and for
¢ “small enough”, a single bubble (suitably located) will suffice.

From (5.7) it is not difficult to see that, for the case ¢ = 0 and f constant,
the stabilizing term (5.7) coincides with that given by the SUPG scheme:

TK/ (f — Lur)L vy da, (5.8)
K

with 7 = h/(28).

In Figure 1 we present the coarse-grid numerical solution ur,, the refined-
grid numerical solution u, and the exact solution u when ¢ = 1072, 8 =1,
o =1, f =1and h = 0.2, i.e., 10 elements are considered. In Figure 2
the results for ¢ = 10" are reported. Figure 3 shows the L' relative errors
for u — ur vs. h; the behaviour is O(h), as expected, also for big h; the
change of slope in the case ¢ = 1072 corresponds to the transition to the
diffusion-dominated regime.
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Figure 3: L-error vs. h for the test problems of Fig.1-2

5.3. Reaction dominated regime

This will occur when n. = n < h/3 and & = £ < h — 2n. In this regime,
we have both £ = £ and i = 7. so that our link-cutting strategy will be fully
operational, and in particular we have both

a(p1,b1) =0 and a(yp2,b2) =0. (5.9)

In order to analyze the scheme, it will be now more convenient to study
directly the resulting scheme on the refined grid K5, that is (2.8). Indeed
from (5.9) we have that the values of u;, at the subgrid points z; will solve the
following problem, (which is obtained by setting v, = b1 and then vy = b2 in
the refined-grid problem (2.8)):

Siun(z1) + St2un(z2) = (f,b1)

Sa1un(z1) + S2.0un(z2) = (f,b2) (5.10)

with Sj; given by (5.1). Hence, the solution at the subgrid nodes can be
computed by means of as many 2 x 2 systems as the number of intervals in
the coarse grid. Once the value of the solution at the subgrid points has
been computed, we can compute the value of the solution at the points of the
original coarse grid 75 by solving a diagonal system, whose right-hand side
depends only on f and on the values of the solution at the subgrid points.



Link-Cutting Bubbles for Convection-Diffusion-Reaction Problems

Before performing the analysis, it will be convenient, for notational pur-
poses, to set g := f/o. In our case g is hence assumed piecewise constant,

therefore constant on K =|z1,z2[, and one can easily get

a(g,b;) = /zz ogb; = (f,b;), i=1,2. (5.11)

Ty

From (5.9) we also have a(g,b;) = ga(1,b;) = ga(p1+b1+ba+p2,b;)= ga(bi+
ba,bi) = g (Si1+Si,2), using also the fact that a(p1,b2) = a(p2,b1) = 0, since
the supports intersect only in one point. This, together with (5.11), inserted

in (5.10) gives
un(z1) = un(22) = g. (5.12)
The general idea behind (5.12) is that any linear function satisfying the differ-
ential equation in the element coincides with up on the subgrid nodes. Indeed,
if g were linear, one could still apply this reasoning: ”g—3g'/o is a solution on
the element of the differential equation, and therefore us(2;) = g(z:)— B89’ /o”.
If we want now to evaluate u, = ur, for instance, at the coarse node z2, we
have to use the information from the two intervals having z» in common, say
K := K =]z1,2s[ and K" :=]x2,z3]. In the sequel the superscript indices r
and ¢ will refer to the ”right” and ”left” element respectively. We also extend
our notation to K": e.g., z3 < z4 will denote the two subgrid nodes, bs and bs
the corresponding basis functions, and so on. We know that us(z2) = ur(z2)
only depends on f°, f" and up(z:),i = 1,...,4, which, as we have seen,
depend only on f* and f” as well. Indeed, using (5.12) on both K* and K",

the equation for uj(z2) reads:
un(2) a(p2,p2) = (f,p2) — un(22) abz, p2) — un(23) a(bs, p2) (5.13)
= (f,p2) — g'albs, 2) — g"a(bs, p2). .

The final expression for up(z2), solution of (5.13), will in general depend
on h, on g, and on the coefficients of the differential operator; in any case,
however, uy(z2) will stay in between up(z2) and up(23), as we are now going
to show. For this, we analyze first the contributions to (5.13) coming from

K': reasoning as in (5.11) yields

a(glaWQ)Ke = (flaQO?)Kea (5'14)

and then, using the fact that 1 — b> = @» in K' N supp{ps}

(f.02) ke — gla(ba, 92) = g (a(1, p2) e — a(ba, v2)) = g alpa, p2) e. (5.15)

A result similar to (5.15) clearly holds for K. Inserting into (5.14) we have

un(2) a(pa, p2) = glalpa, v2) e + g alps, p2) Kcr. (5.16)

We check now that both ”weights” a(p2, v2) ke and a(p2, p2)k+ are positive.
This is obvious for the first one. For the second one, using (4.3), we have

€ IBT U,rgr _ % U,rgr

&r 2 3 ¢ 6

> 0. (5.17)

13
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As both weights are positive, (5.16) implies that uy,(22) is between g¢ and g".
When 8 = 0, and o = 6", one gets up,(x2) = (un(22) +un(23))/2, as expected
by symmetry.

We can summarize the properties of the proposed scheme in the reaction
dominated regime as follows: away from layers, u is a very accurate approx-
imation of u & g = f/o; the boundary layers are not seen by the method,
while the internal layers, due to possible discontinuities in f/o and located
across the coarse grid nodes, do not produce spurious oscillations.

In Figure 4 we present the coarse-grid numerical solution ur,, the refined-
grid numerical solution u, and the exact solution u for ¢ = 1072, 8 = 1,
o =50, f = 50-sign(z) and h = 0.2. In Figure 5 the results for ¢ = 1075 are
reported. Figure 6 shows the L' relative errors for u — ur vs. h; the same

considerations as for Figure 3 hold.

1.5

0.5

I I I I I I
1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 4: Reaction dominated regime: ¢ = 1072

6. Conclusions

We wanted to stabilize a problem having both convection and reaction
terms (and a small diffusion coeflicient), starting from an original discretiza-
tion with piecewise linear continuous finite elements, and an original mesh
that was not especially suited to the problem (for instance, a uniform decom-
position). In particular we wanted to mimic the stabilizing effect of Residual
Free Bubbles, without actually computing them (that, in more than one di-
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Figure 5: Reaction dominated regime: ¢ = 10~°
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Figure 6: L'-error vs. h for the test problems of Fig.4-5
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mension, would be unfeasible). As the residual in each element is a polynomial
of degree <1, we took two bubbles per element. In dimension n we would need
n+ 1 bubbles per element, which is still affordable. We opted for bubbles that
are themselves piecewise linear, but on a suitable subgrid. As we know, the
choice of the shape of the bubbles is crucial in determining the stabilizing
effect of the final scheme. Here, with our premises, choosing the shape of the
bubbles means choosing the subgrid in each element, so that, actually, we can
treat the resulting scheme as doing plain Galerkin on the new, finer grid that
results adding the element subgrid to the original one.

The basic idea behind our choice of the subgrid has been the link cutting
strategy, which can be seen as an extension of a very old idea applied (for
purely convection-diffusion problems) in order to have good results adding
just one node suitably close to the outflow boundary. Here we can have
two boundary layers, plus some internal ones due to possible jumps in the
coefficients. Besides, we wanted a strategy that can operate without any a
priori knowledge of the flow physics. Hence, we added two nodes per element.

The location of our nodes depends on the regime that we have in each
subinterval K, that can be determined by looking only at the coefficients of
the local stiffnes matrix. If we are diffusion-dominated, we just take equally
spaced nodes (at 1/3 and 2/3 of the length of K). If convection dominates
(in a sense that has been made precise) we have one node close to the outflow
boundary of K, and the other close to it. When reaction takes the lead (again,
in a sense that has been made precise) the second node drifts continuously
toward the other endpoint of K, and for a pure reaction-diffusion problem we
have two points that are symmetrically close to the two endpoints of K. The
transition from one regime to another is continuous.

In the paper we described the formulae that rule the above choices, and
we analyzed the resulting schemes, with particular attention to the case of a
very small diffusion coefficient, and to its two subcases of strongly convection-
dominated and strongly reaction-dominated schemes.

It does not seem science fiction to hope to reproduce a similar strategy in
more than one dimension, and this makes, in our opinion, the main interest
of the paper.
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