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ABSTRACT | It is well known that the solutions of Reissner-Mindlin equations 
an have, for

small thi
kness t, severe boundary layers. In parti
ular, near the part of the boundary where the

so-
alled free plate boundary 
onditions are pres
ribed, the layer 
an be so strong that rotations

are not uniformly bounded in H

2

, for t ! 0. This is 
learly a major drawba
k for numeri
al

methods, as one 
annot a
hieve error estimates of order h uniformly in t. Here we propose a new

model for free plate boundary 
onditions that has less severe layers, and we propose a numeri
al

method that provides a priori error estimates of order O(h) uniformly in t.
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E ben noto 
he le soluzioni delle equazioni di Reisser-Mindlin possono presentare forti strati

limite vi
ino ai bordi della piastra. Tali strati limite sono parti
olarmente severi vi
ino a quelle parti della frontiera

dove sono state assegnate 
ondizioni ai limiti 
osiddette di piastra libera. In tali 
asi si sa 
he le rotazioni non sono

uniformemente limitate in H

2

, e questo impedis
e di avere stime dell'errore dell'ordine di h 
he siano uniformi

nello spessore t. Qui proponiamo una diversa formulazione delle 
ondizioni di piastra libera, 
he presentano strati

limiti meno severi, e proponiamo an
he un metodo numeri
o per il quale si possono dimostrare stime dell'ordine

di O(h) uniformemente in t.

1. Introdu
tion

In the last twenty years several good and reliable elements have been presented for the solution

of Reissner-Mindlin plate equations. We just re
all, for instan
e, [7℄, [9℄, [10℄, [3℄, [12℄, [4℄, [5℄. See

also [11℄, [13℄, [6℄ and the referen
es therein. All the elements proposed in the above papers have

been proved to be 
ompletely free from lo
king. In parti
ular their 
onvergen
e properties have

been proved to be independent of the thi
kness t, and to be optimal 
ompared to interpolation

estimates. This implies optimal error estimates (in terms of powers of h), uniform in t, whenever

the solution is regular enough, uniformly in t.

On the other hand, it has been proved by Arnold and Falk ([2℄) that in general the solution of

the Reissner Mindlin equations exhibits a strong boundary layer when t goes to zero. In parti
ular

for the simplest 
ase of 
lamped boundary 
onditions one has that the rotations �(t) are uniformly

bounded in H

r

(
) only for r < 5=2. This implies that only the lowest order elements 
an have

optimal estimates, of order O(h) in the energy norm, uniformly in t.

Always following Arnold-Falk [2℄, the same bound on the regularity holds for the so-
alled

hard simply supported boundary 
onditions, while for soft simply supported and for free boundary


onditions the regularity bound goes down to r < 3=2. This puts an upper bound to error estimates

in energy to O(h

r�1

) so that no element 
an have even the \minimal" estimate O(h).

It is not 
lear whether there are 
ases in whi
h one must use soft simply supported boundary


onditions instead of the hard ones. Hen
e using systemati
ally the hard version one 
an think

that, as far as regularity is 
on
erned, simply supported boundary 
onditions are not worse than

the (most studied) 
lamped ones.

The situation is di�erent for free boundary 
onditions. There, traditionally, a single version is

found in the literature (instead of a hard one and a soft one), and there seems to be no viable


hoi
e.

In the present paper we propose a di�erent way of modeling the free boundary 
onditions for

Reissner-Mindlin plates (that 
ould be 
alled, possibly, hard free). Roughly speaking it 
orresponds

to minimizing the usual Reissner-Mindlin energy fun
tional under the 
ondition that the tangential


omponent of rotations �

s

equals the tangential derivative w

=s

of the transversal displa
ement.

We re
all that in the limit for t! 0 the solution will satisfy the Kir
hho� 
ondition � = rw, so

that the 
ondition �

s

= w

=s

will always be true.

�

Nella seduta del

1



2

From the general asymptoti
 analysis of [2℄ it 
an be easily obtained that with our hard-free

boundary 
onditions the regularity bound goes ba
k to r < 5=2, thus allowing, in prin
iple, an

O(h) bound for the lowest order elements.

In parti
ular we show here how it is possible to enfor
e the new boundary 
onditions for a

parti
ular 
hoi
e of one of the 
lassi
al low order elements, namely the Duran-Liebermann element

[12℄. We introdu
e a minor modi�
ation of this element, to be used near the boundary, that is

very easy to implement. We show that su
h modi�
ation allows an easy treatment of hard-free

boundary 
onditions, and we prove O(h) a priori estimates in energy that are uniform in t.

An outline of the paper is as follows. In the next se
tion we re
all the Reissner-Mindlin equa-

tions, we introdu
e the hard-free boundary 
onditions and we analyze them from the regularity

point of view. In Se
tion 3 we introdu
e our example of dis
retization, and we prove the 
orre-

sponding error bounds in Se
tion 4. Some 
on
lusions are drawn in Se
tion 5.

Throughout the paper we shall use the following notation. H

r

(O) will denote the usual Sobolev

spa
e W

r;2

(O) of order r on the domain O. For r = 0 we will often use the notation L

2

(O) as

well. With an abuse of notation we shall use jj � jj

r;O

, or simply jj � jj

r

(when no 
onfusion 
an

arise) to denote the H

r

norm of both s
alar or ve
tor-valued fun
tions. The s
alar produ
t in

H

0

(O) � L

2

(O) will also be denoted by (� ; �)

0;O

, or (� ; �)

0

, or even (� ; �), both for s
alar and

ve
tor-valued fun
tions.

A
knowledgment: we are thankful to G. Geymonat and F. Krasu
ki for several very inspiring


onversations.

2. The Reissner-Mindlin equations

Let 
 be an open bounded domain in R

2

and let g be given, say, in L

2

(
); the Reissner{Mindlin

equations require to �nd (�; w;
) su
h that

(2.1) � divC

"

(�)� 
 = 0 in 
;

(2.2) � div 
 = g in 
;

(2.3) 
 = �t

�2

(rw � �) in 
:

In (2.1)-(2.3), C is the tensor of bending moduli, � represents the rotations, w the transversal dis-

pla
ement, and 
 the s
aled shear stresses. Moreover,

"

is the usual symmetri
 gradient operator,

�(= 5=6) is the shear 
orre
tion fa
tor, and t is the thi
kness.

Equations (2.1)- (2.3) have to be supplied by suitable boundary 
onditions. In order to introdu
e

them, we set

(2.4) M := C

"

(�); M

n

:=M � n

and

(2.5) M

nn

:=M

n

� n; M

ns

:=M

n

� s;

where n and s are, respe
tively, the outward unit normal and 
ounter
lo
kwise unit tangent

ve
tor to �
. We then assume that the boundary �
 is split in three nonoverlapping parts

�
 = �




[�

s

[�

f

, 
orresponding to 
lamped, (hard) simply supported and free boundary 
onditions,

that we make pre
ise as follows. We require (formally)

(2.6) � = 0; w = 0 on �




;

(2.7) �

s

= 0; w = 0; M

nn

= 0 on �

s

;

and

(2.8) M

nn

= 0; M

ns

= 0; 


n

� �(divM)

n

= 0 on �

f

;

where, here and in all the sequel, we adopt the following notation: for every ve
tor valued fun
tion

� and for every s
alar fun
tion v

(2.9) �

n

:= � � n; �

s

:= � � s; v

=n

:=

�v

�n

; v

=s

:=

�v

�s

:
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We shall make only minor assumptions on the splitting of �
: we assume that every part is the

union of a �nite number of 
onne
ted 
omponents, and that every rigid movement r satisfying

r = 0 on �




and r

s

= 0 on �

s

is ne
essarily 0. This, together with the usual ellipti
ity assumptions

on C will give us the well known Korn inequality: there exists a 
onstant � > 0 su
h that for

every � 2 (H

1

(
))

2

satisfying � = 0 on �




and �

s

= 0 on �

s

we have

(2.10) �jj�jj

2

(H

1

(
))

2

�

Z




C

"

(�) :

"

(�)dx:

It is known that, keeping g �xed, and letting t ! 0, the solution (�

t

; w

t

;


t

) of (2.1)-(2.3) with

the boundary 
onditions (2.6)-(2.8) tends to a �nite limit (�

0

; w

0

) su
h that �

0

= rw

0

, and w

0

is

the solution of the Kir
hho� model with the boundary 
onditions

(2.11) w = 0 and w

=n

= 0 on �




;

(2.12) w = 0 and M

nn

= 0 on �




;

(2.13) M

nn

= 0 and M

ns

=s

+ (divM)

n

= 0 on �

f

;

where in the de�nition of M (2.4) we obviously have to repla
e � by rw. It is also known,

however, that the 
onvergen
e takes pla
e only in Sobolev spa
es of rather low order (see [2℄). In

parti
ular, if �

f

is not empty, we have that

(2.14) jj�(t)jj

r

� C

holds, with C independent of t, only for r < 3=2. This is essentially due to the fa
t that the

Reissner-Mindlin solution satis�es for every t > 0 the boundary 
onditionM

ns

= 0 whi
h does not

hold in the limit, hen
e 
ausing a boundary layer in the �rst derivatives of � that forbids them to

belong to H

r

(
) for r � 1=2.

This is the reason why we propose to 
hange (2.8) into

(2.15) �

s

= w

=s

; M

nn

= 0 and M

ns=s

� 


n

= 0 on �

f

:

Introdu
ing the spa
e

(2.16)

V := f(�; w) 2 (H

1

(
))

2

�H

1

(
) su
h that � = 0; w = 0 on �




;

�

s

= w = 0 on �

s

; and �

s

= w

=s

on �

f

g

we have the following result.

Proposition 2.1. For every t > 0, any smooth solution of (2.1)-(2.3), with the boundary 
ondi-

tions (2.6), (2.7), (2.15) 
oin
ides with the unique minimizing argument on V of the fun
tional

(2.17) J

t

(�; v) =

1

2

a(�;�) +

�t

�2

2

jjrv � �jj

2

0;


� (g; v);

where

(2.18) a(�;�) :=

Z




C

"

(�) :

"

(�)dx �

Z




M :

"

(�)dx:

Conversely, the unique minimizing argument of (2.17) satis�es (2.1)-(2.3) in the distributional

sense, and if it is smooth enough it also satis�es the boundary 
onditions (2.6), (2.7), (2.15).

Proof. The proof is rather standard, and we do not detail it here. Essentially, we �rst remark

that if (�; w) is the minimizing argument of (2.17), then setting 
 = �t

�2

(rw � �) we have that

(�; w;
) veri�es the following variational problem:

(2.19)

8

>

<

>

:

Find ((�; w);
)) 2 V � (L

2

(
))

2

su
h that :

a(�;�) + (
;rv � �) = (g; v) (�; v) 2 V ;

�

�1

t

2

(
; Æ)� (rw; Æ) + (�; Æ) = 0 Æ 2 (L

2

(
))

2

;

whi
h implies 
learly equations (2.1)-(2.3) in the distributional sense. We just have to 
he
k the

boundary 
onditions on �

f

, as the others are 
lassi
al. For this we pro
eed more or less as usual.

Let �rst (�; w) be a minimizer of (2.17): for every (�; v) 2 V we multiply (2.1) times � and we
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integrate over 
, then we multiply (2.2) times v and we integrate over 
, and �nally we take the

sum of the two. If the minimizer is smooth enough we 
an integrate by parts, 
ompare with the

�rst equation of (2.19), and obtain

(2.20)

Z

�

s

[�

f

M

nn

�

n

d� +

Z

�

f

M

ns

�

s

+ 


n

v d� = 0 8(�; v) 2 V :

ConditionM

nn

= 0 on �

s

[�

f

follows immediately. Re
alling that �

s

= v

=s

on �

f

and integrating

by parts along �

f

we easily get the last equation in (2.15). With similar arguments we prove the

�rst part of the statement: if (�; w;
) is a smooth solution of (2.1)-(2.3) with the boundary


onditions (2.6), (2.7), (2.15) we 
an easily see that it satis�es the variational problem (2.19) and

hen
e it is a minimizer of (2.17). �

Remark 2.1. Assuming, for simpli
ity, that the material is homogeneous (and hen
e the system

has 
onstant 
oeÆ
ients), that the load g is in C

1

(

�


), and that 
 is a polygon (or that the boundary

�
 is pie
ewise C

1

), it is not diÆ
ult to prove, with the usual te
hniques (see for instan
e [14℄),

that for every t > 0 ea
h 
omponent of the solution belongs to C

1

(D) where D is any open subset

of 
 su
h that D that does not 
ontain any vertex nor points where the boundary 
onditions 
hange

from one type to another. We do not address here the problem of the global regularity in 
, as

we are more interested in the question of the uniform regularity (in t) in domains that satisfy the

same assumptions as the domain D above.

Con
erning the uniform regularity (in t) we have the following result.

Proposition 2.2. In the same assumptions of Remark 2.1, and for every subdomain D (always

as in Remark 2.1) there exists a 
onstant C, independent of t, su
h that

(2.21) jj�jj

2;D

+ jjwjj

2;D

+ tjj
jj

1;D

+ jj
jj

0;D

� Cjjgjj

0;


Proof. The proof 
an be easily obtained by adapting the analysis of [2℄ to the present situation

near �

f

. We see that the most irregular term in the expansion of the solution (as 
omputed by

[2℄) drops, leaving for � a limit regularity of order r < 5=2. �

In the sequel we are going to assume that the solution (�; w;
) satis�es

(2.22) jj�jj

2;


+ jjwjj

2;


+ tjj
jj

1;


+ jj
jj

0;


� Cjjgjj

0;


uniformly in t. In order to show that the assumption is realisti
, we 
onsider a 
ase in whi
h


 =℄0; L

1

[�℄0; L

2

[ and where �

s

= fx = 0g [ fx = L

1

g while �

f

= �
 n �

s

. Assume that the

material obeys the 
lassi
al Hooke's law. Re
e
ting g \odd" around fx = 0g (and observing that

�

1

and 


1

re
e
t \even" and �

2

; w and 


2

\odd"), we prove regularity in the neighborhood of

(0; 0) and (0; L

2

). In a similar way one proves regularity in the neighborhood of the other two

verti
es.

3. Dis
retization

In this se
tion we are going to set the dis
retized problem. For this we 
onsider �rst some

�nite element spa
es. We assume therefore that we are given, as usual, a regular sequen
e of

de
ompositions fT

h

g

h

, satisfying the minimum angle 
ondition. We denote by L

r

k

the set of

pie
ewise polynomials of degree � k that are globally in H

r

(
). For every triangle T 2 T

h

we also

de�ne

(3.1) TR(T ) := fÆj Æ

1

= a+ by; Æ

2

= 
� bx; a; b; 
 2 Rg

to be the usual rotated Raviart-Thomas element of lowest order. We also de�ne a set of quadrati


edge bubbles in the following way: for every edge e we denote by p

e

the (unique) polynomial of

degree 2 having value 1 at the midpoint of e and vanishing on the other two edges of T . Then we

denote by �

e

the ve
tor valued fun
tion �

e

= s

e

p

e

where s

e

is the tangent 
ounter
lo
kwise unit
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ve
tor on e. Finally, we denote by B

T

the spa
e spanned by the three (ve
tor valued) \bubbles"

�

e

obtained in that way in 
orresponden
e with the three edges of T . We 
an now set

(3.2) B

h

:=

 

M

T2T

h

B

T

!

\ (H

1

(
))

2

;

(3.3) �

h

:= (L

1

1

)

2

�B

h

;

(3.4) W

h

:= L

1

1

;

(3.5) �

h

:=

X

T2T

h

TR(T ):

Finally we de�ne an interpolation operator �

h

from V to �

h

as follows

(3.6)

Z

e

�

h

� � sds =

Z

e

� � sds 8 edge e:

Owing to the basi
 properties of Raviart-Thomas spa
es (and their \rotated" 
ounterpart) we

have that (3.6) de�nes �

h

in a unique way. We also remark that, in parti
ular, we have

(3.7) rW

h

� �

h

so that �

h

(rv

h

) =rv

h

8v

h

2W

h

:

Using the above de�nitions of �

h

, W

h

, and �

h

we then set

(3.8)

V

h

:= f(�

h

; v

h

) 2 �

h

�W

h

su
h that �

h

= 0; v

h

= 0 on �




;

(�

h

)

s

= v

h

= 0 on �

s

; and (�

h

�

h

)

s

= (v

h

)

=s

on �

f

g:

Note that the last boundary 
ondition 
an be imposed by means of a simple 
ondensation of the

\tangential bubbles" whi
h are di�erent from zero on the external edges; therefore the spa
e V

h


an be used in pra
ti
e without parti
ular diÆ
ulties.

We 
an now de�ne the dis
rete solution (�

h

; w

h

) as the unique minimizer of the fun
tional

(3.9) J

t

h

(�

h

; v

h

) =

1

2

a(�

h

;�

h

) +

�t

�2

2

jjrv

h

��

h

�

h

jj

2

0;


� (g; v

h

)

over the dis
rete spa
e V

h

. It is then elementary to see that, setting

(3.10) 


h

:= �t

�2

(rw

h

��

h

�

h

);

the triple (�

h

; w

h

;


h

) 
oin
ides with the unique solution of the variational problem

(3.11)

8

>

<

>

:

Find ((�

h

; w

h

);


h

)) 2 V

h

� �

h

su
h that :

a(�

h

;�

h

)� (


h

;�

h

�

h

�rv

h

) = (g; v

h

) (�

h

; v

h

) 2 V

h

;

�

�1

t

2

(


h

; Æ

h

)� (rw

h

; Æ

h

) + (�

h

�

h

; Æ

h

) = 0 Æ

h

2 �

h

:

4. A priori error estimates

In this se
tion we shall prove a priori bounds for the error (� � �

h

; w � w

h

;
 � 


h

). As a �rst

step we de�ne suitable interpolants of � and w:

(4.1) �

I

(P ) = �(P ) for all vertex P and

Z

e

(� � �

I

) � s ds = 0 for all edge e;

(4.2) w

I

(P ) = w(P ) for all vertex P:

It is easy to 
he
k that both �

I

and w

I

are well de�ned. We re
all that, on �

f

, we have �

s

= w

=s

.

We also note that for every element in �

h

its tangential 
omponent on every edge is 
onstant.

Using this, (3.6), (4.1) and �

s

= w

=s

we easily get, on every edge e 2 �

f

(4.3) (�

h

�

I

) � s

je

=

1

jej

Z

e

(�

h

�

I

) � sds =

1

jej

Z

e

(�

I

� s) ds =

1

jej

Z

e

�

s

ds =

1

jej

Z

e

w

=s

ds:
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If P

1

and P

2

are the endpoints of e we 
an use (4.2), and the fa
t that w

I

is pie
ewise linear, to


ontinue (4.3) as follows

(4.4) (�

h

�

I

) � s

je

=

1

jej

Z

e

w

=s

ds =

(w(P

2

)� w(P

1

))

jP

2

� P

1

j

=

(w

I

(P

2

)� w

I

(P

1

))

jP

2

� P

1

j

= (w

I

)

=s

on e;

so that a
tually (�

I

; w

I

) 2 V

h

, as the other requirements are obviously satis�ed as well. We point

out that, arguing as in (4.3) and using (3.6) we easily have

(4.5) (�

h

�

I

) � s

je

=

1

jej

Z

e

�

s

ds = (�

h

�) � s

je

;

that immediately implies

(4.6) �

h

�

I

= �

h

�:

Similarly we 
an re
all the steps in (4.4)

(4.7)

1

jej

Z

e

w

=s

ds = (w

I

)

=s

on e;

and using again (3.6) and (3.7) we obtain

(4.8) rw

I

= �

h

rw

I

= �

h

rw:

We �nally set

(4.9) 


I

= �t

�2

(rw

I

��

h

�

I

)

Using (4.6) and(4.8) in (4.9) it is easy to 
he
k that

(4.10) 


I

= �t

�2

(�

h

rw

I

��

h

�

I

) = �t

�2

(�

h

rw � �

h

�) � �

h


;

whi
h will play a fundamental role for our proof.

Before deriving the error equations we �rst noti
e that the spa
e V

h

, as de�ned in (3.8), is not

a subspa
e of V , de�ned in (2.16). As a 
onsequen
e, for (�; v) 2 V

h

we have, integrating by parts

and using (2.1)-(2.2), using boundary 
onditions (2.6), (2.7), then using (2.15), and �nally (3.8):

(4.11)

a(�;�) + (
;rv � �)� (g; v) =

R

�

f

M

ns

�

s

+ 


n

v ds =

R

�

f

M

ns

(�

s

� v

=s

) ds =

R

�

f

M

ns

(� ��

h

�)

s

ds:

We 
ompare then (4.11) with the �rst equation of (3.11) to obtain, for (�; v) 2 V

h

,

(4.12) a(� � �

h

;�) + (
;rv � �)� (


h

;rv ��

h

�) =

Z

�

f

M

ns

(� ��

h

�)

s

ds;

that 
an also be rewritten as

(4.13) a(� � �

h

;�) + (
 � 


h

;rv ��

h

�) = (
; (I ��

h

)�) +

Z

�

f

M

ns

((I ��

h

)�)

s

ds:

Using Korn inequality and adding and subtra
ting � and 
 we have

(4.14)

�jj�

I

� �

h

jj

2

1

+ �

�1

t

2

jj


I

� 


h

jj

2

0

= a(�

I

� �

h

;�

I

� �

h

) + �

�1

t

2

(


I

� 


h

;


I

� 


h

) =

a(�

I

� �;�

I

� �

h

) + a(� � �

h

;�

I

� �

h

)

+�

�1

t

2

(


I

� 
;


I

� 


h

) + �

�1

t

2

(
 � 


h

;


I

� 


h

):

On the other hand, as 


I

�


h

= �t

�2

(r(w

I

�w

h

)��

h

(�

I

��

h

)) we have from the error equation

(4.13) (used with � = �

I

� �

h

and v = w

I

� w

h

):

(4.15)

a(� � �

h

;�

I

� �

h

) + �

�1

t

2

(
 � 


h

;


I

� 


h

) =

(
; (I ��

h

)(�

I

� �

h

)) +

R

�

f

M

ns

(I ��

h

)(�

I

� �

h

)

s

ds:

Combining (4.14) and (4.15) we have then

(4.16) �jj�

I

� �

h

jj

2

1

+ �

�1

t

2

jj


I

� 


h

jj

2

0

= I + II + III + IV
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where

I = a(�

I

� �;�

I

� �

h

);(4.17)

II = �

�1

t

2

(


I

� 
;


I

� 


h

);(4.18)

III = (
; (I ��

h

)(�

I

� �

h

));(4.19)

IV =

Z

�

f

M

ns

(I ��

h

)(�

I

� �

h

)

s

ds;(4.20)

that we shall bound separately. We start by noti
ing that

(4.21) jj� � �

I

jj

1

� C h jj�jj

2

;

and for every � 2 (H

1

(
))

2

(4.22) jj� ��

h

�jj

0

� C h jj�jj

1

:

Then we have �rst from (4.21)

(4.23) I = a(�

I

� �;�

I

� �

h

) � C h jj�jj

2

jj�

I

� �

h

jj

1

;

and from (4.10) and (4.22)

(4.24) II = �

�1

t

2

(


I

� 
;


I

� 


h

) � C h t jj
jj

1

t jj


I

� 


h

jj

0

:

Similarly we 
an bound the third term by

(4.25) III = (
; (I ��

h

)(�

I

� �

h

)) � C h jj
jj

0

jj�

I

� �

h

jj

1

:

In order to bound the last term, we �rst re
all the well known Agmon inequality [1℄: if e is an edge

of a triangle T (with the usual minimum angle 
ondition), ' 2 H

1

(T ), and h

T

is the diameter of

T , then we have

(4.26) jj'jj

0;e

� C (h

�1=2

T

jj'jj

0;T

+ h

1=2

T

jj'jj

1;T

):

For the fourth term we noti
e now that (I � �

h

)(�

I

� �

h

) is orthogonal to 
onstants on every

edge. Hen
e for every boundary edge e belonging to a triangle T we 
an denote by M

ns

the mean

value of M

ns

on e, and using (4.26) and usual approximation theory we have

(4.27)

R

e

M

ns

(I ��

h

)(�

I

� �

h

)

s

ds � jjM

ns

�M

ns

jj

0;e

jj(I ��

h

)(�

I

� �

h

)

s

jj

0;e

� C(h

1=2

T

jjM

ns

jj

1;T

h

1=2

T

jj�

I

� �

h

jj

1;T

:

Using (4.27) on every edge, using (2.5) to see that jjM

ns

jj

1;T

� Cjj�jj

2;T

, and the usual Cau
hy-

S
hwarz inequality we have then

(4.28) IV =

Z

�

f

M

ns

(I ��

h

)(�

I

� �

h

)

s

ds � C h jj�jj

2

jj�

I

� �

h

jj

1

Finally, inserting (4.23)-(4.25) and (4.28) in (4.16), and the usual arithmeti
-geometri
 inequality

we have

(4.29) �jj�

I

� �

h

jj

2

1

+ �

�1

t

2

jj


I

� 


h

jj

2

0

� C h

2

�

jj�jj

2

2

+ t

2

jj
jj

2

1

+ jj
jj

2

0

�

:

From (4.29) we 
an then obtain easily an estimate for r(w

I

� w

h

)

(4.30) jjr(w

I

� w

h

)jj

0

� �

�1

t

2

jj


I

� 


h

jj

0

+ jj�

I

� �

h

jj

0

:

Finally using (4.29), (4.30), the triangle inequality and absorbing � in the 
onstants, we 
an state

the �nal result:

jj� � �

h

jj

1

+ tjj
 � 


h

jj

0

+ jjr(w � w

h

)jj

0

� C h (jj�jj

2

+ tjj
jj

1

+ jj
jj

0

) :
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5. Con
lusions

We presented an alternative model for the treatment of free boundary 
onditions for the

Reissner-Mindlin plate bending equations. It 
onsists of minimizing the usual energy fun
tional

under the kinemati
 
onstraint �

s

= w

=s

. This 
ondition is already in
luded in Kir
hho� equation

� =rw that in the limit 
ase t = 0 holds all over the domain 
. For a thin plate, therefore, our

modi�
ation is quite reasonable from the Me
hani
al point of view.

We have seen that with the new boundary 
onditions the boundary layer e�e
t be
omes less

severe, redu
ing to the same order of the boundary layer that is present near the 
lamped part of

the boundary, or near the hard simply supported part.

We also showed that the treatment of these boundary 
onditions from the numeri
al point of

view requires some 
are, but 
an be done in a reasonably simple way. In parti
ular, we 
onsidered

the Duran-Liberman element, and we showed that the new boundary 
onditions for this element


an be imposed in a simple and 
heap way, namely by for
ing a priori (that is, in the �nite element

spa
e) that on ea
h edge the mean value of �

s

is equal to w

=s

. We also showed that in this way

we 
an obtain a priori error estimates that are uniform in t, that are optimal with respe
t to the

degree of the polynomial spa
es, and that make use of the minimal regularity requirements.

A more extensive range of �nite elements able to grant optimal and t�uniform estimates for

this new free plate model will be treated in a future publi
ation (see [8℄).
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