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ABSTRACT — It is well known that the solutions of Reissner-Mindlin equations can have, for
small thickness ¢, severe boundary layers. In particular, near the part of the boundary where the
so-called free plate boundary conditions are prescribed, the layer can be so strong that rotations
are not uniformly bounded in H?, for ¢+ — 0. This is clearly a major drawback for numerical
methods, as one cannot achieve error estimates of order A uniformly in ¢t. Here we propose a new
model for free plate boundary conditions that has less severe layers, and we propose a numerical
method that provides a priori error estimates of order O(h) uniformly in ¢.
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RIASSUNTO — E ben noto che le soluzioni delle equazioni di Reisser-Mindlin possono presentare forti strati
limite vicino ai bordi della piastra. Tali strati limite sono particolarmente severi vicino a quelle parti della frontiera
dove sono state assegnate condizioni ai limiti cosiddette di piastra libera. In tali casi si sa che le rotazioni non sono
uniformemente limitate in H?, e questo impedisce di avere stime dell’errore dell’ordine di h che siano uniformi
nello spessore t. Qui proponiamo una diversa formulazione delle condizioni di piastra libera, che presentano strati
limiti meno severi, e proponiamo anche un metodo numerico per il quale si possono dimostrare stime dell’ordine
di O(h) uniformemente in t.

1. INTRODUCTION

In the last twenty years several good and reliable elements have been presented for the solution
of Reissner-Mindlin plate equations. We just recall, for instance, [7], [9], [10], [3], [12], [4], [5]. See
also [11], [13], [6] and the references therein. All the elements proposed in the above papers have
been proved to be completely free from locking. In particular their convergence properties have
been proved to be independent of the thickness ¢, and to be optimal compared to interpolation
estimates. This implies optimal error estimates (in terms of powers of h), uniform in ¢, whenever
the solution is regular enough, uniformly in ¢.

On the other hand, it has been proved by Arnold and Falk ([2]) that in general the solution of
the Reissner Mindlin equations exhibits a strong boundary layer when ¢ goes to zero. In particular
for the simplest case of clamped boundary conditions one has that the rotations 6(¢) are uniformly
bounded in H"() only for » < 5/2. This implies that only the lowest order elements can have
optimal estimates, of order O(h) in the energy norm, uniformly in ¢.

Always following Arnold-Falk [2], the same bound on the regularity holds for the so-called
hard simply supported boundary conditions, while for soft simply supported and for free boundary
conditions the regularity bound goes down to r < 3/2. This puts an upper bound to error estimates
in energy to O(h"™') so that no element can have even the “minimal” estimate O(h).

It is not clear whether there are cases in which one must use soft simply supported boundary
conditions instead of the hard ones. Hence using systematically the hard version one can think
that, as far as regularity is concerned, simply supported boundary conditions are not worse than
the (most studied) clamped ones.

The situation is different for free boundary conditions. There, traditionally, a single version is
found in the literature (instead of a hard one and a soft one), and there seems to be no viable
choice.

In the present paper we propose a different way of modeling the free boundary conditions for
Reissner-Mindlin plates (that could be called, possibly, hard free). Roughly speaking it corresponds
to minimizing the usual Reissner-Mindlin energy functional under the condition that the tangential
component of rotations 65 equals the tangential derivative w/, of the transversal displacement.
We recall that in the limit for £ — 0 the solution will satisfy the Kirchhoff condition 8 = Vw, so
that the condition 65 = w/, will always be true.
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From the general asymptotic analysis of [2] it can be easily obtained that with our hard-free
boundary conditions the regularity bound goes back to r < 5/2, thus allowing, in principle, an
O(h) bound for the lowest order elements.

In particular we show here how it is possible to enforce the new boundary conditions for a
particular choice of one of the classical low order elements, namely the Duran-Liebermann element
[12]. We introduce a minor modification of this element, to be used near the boundary, that is
very easy to implement. We show that such modification allows an easy treatment of hard-free
boundary conditions, and we prove O(h) a priori estimates in energy that are uniform in ¢.

An outline of the paper is as follows. In the next section we recall the Reissner-Mindlin equa-
tions, we introduce the hard-free boundary conditions and we analyze them from the regularity
point of view. In Section 3 we introduce our example of discretization, and we prove the corre-
sponding error bounds in Section 4. Some conclusions are drawn in Section 5.

Throughout the paper we shall use the following notation. H"(O) will denote the usual Sobolev
space W™2(0) of order r on the domain O. For r = 0 we will often use the notation L?(O) as
well. With an abuse of notation we shall use | - |, o, or simply | - |, (when no confusion can
arise) to denote the H" norm of both scalar or vector-valued functions. The scalar product in
HY(0) = L?*(0) will also be denoted by (-,)o,0, or (-,)o, or even (-,-), both for scalar and
vector-valued functions.

Acknowledgment: we are thankful to G. Geymonat and F. Krasucki for several very inspiring
conversations.

2. THE REISSNER-MINDLIN EQUATIONS

Let Q be an open bounded domain in R? and let g be given, say, in L?(); the Reissner-Mindlin
equations require to find (@, w,~) such that

(2.1) —divCe(@)—y=0 inQ,
(2.2) —divy=g¢ inQ,
(2.3) y=X *(Vw-0) inQ.

In (2.1)-(2.3), C is the tensor of bending moduli, 8 represents the rotations, w the transversal dis-
placement, and -« the scaled shear stresses. Moreover, € is the usual symmetric gradient operator,
A(=5/6) is the shear correction factor, and ¢ is the thickness.

Equations (2.1)- (2.3) have to be supplied by suitable boundary conditions. In order to introduce
them, we set

(2.4) M:=Ce(f), M,:=M-n
and
(2.5) My := My n, My, := M, s,

where n and s are, respectively, the outward unit normal and counterclockwise unit tangent
vector to 0f). We then assume that the boundary 99 is split in three nonoverlapping parts
00 = .UX,UXy, corresponding to clamped, (hard) simply supported and free boundary conditions,
that we make precise as follows. We require (formally)

(2.6) 6 =0, w =70 on X,

(2.7) 0;,=0, w=0, My,=0 on X,

and

(2.8) My, =0, M,s=0, ~v,=-(divM),, =0 on Xy,

where, here and in all the sequel, we adopt the following notation: for every vector valued function
7 and for every scalar function v

Ov v
(2.9) Nn =M+, Ng:=1N-8, U= o U s
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We shall make only minor assumptions on the splitting of 9Q: we assume that every part is the
union of a finite number of connected components, and that every rigid movement r satisfying
r =0on X, and r; = 0 on X, is necessarily 0. This, together with the usual ellipticity assumptions
on C will give us the well known Korn inequality: there exists a constant a > 0 such that for
every n € (H'(Q))? satisfying 7 = 0 on . and 1, = 0 on ¥ we have

(2.10) Al e < /Q Ce(n) : 2(n)dz.

It is known that, keeping g fixed, and letting ¢+ — 0, the solution (8°,w’,~*) of (2.1)-(2.3) with
the boundary conditions (2.6)-(2.8) tends to a finite limit (#°,w®) such that #° = Vw®, and w® is
the solution of the Kirchhoff model with the boundary conditions

(2.11) w=0 and w;,, =0 on3,,
(2.12) w=0 and M,,=0 onX,,
(2.13) Mpp =0 and  Myg/e + (divM), =0 on 3y,

where in the definition of M (2.4) we obviously have to replace 8 by Vw. It is also known,
however, that the convergence takes place only in Sobolev spaces of rather low order (see [2]). In
particular, if ¥ is not empty, we have that

(2.14) 0@l <C

holds, with C independent of ¢, only for r < 3/2. This is essentially due to the fact that the
Reissner-Mindlin solution satisfies for every ¢ > 0 the boundary condition M,s; = 0 which does not
hold in the limit, hence causing a boundary layer in the first derivatives of 8 that forbids them to
belong to H"(Q2) for r > 1/2.

This is the reason why we propose to change (2.8) into
(2.15) 0s =wss, Mp,=0 and My, —7 =0 onX;.

Introducing the space
(2.16) V= {(0,w) e (H'(Q))? x HY(Q) such that # = 0,w =0 on X,

' s =w=0on X, andf; =w/; on Ty}
we have the following result.

Proposition 2.1. For every t > 0, any smooth solution of (2.1)-(2.8), with the boundary condi-
tions (2.6), (2.7), (2.15) coincides with the unique minimizing argument on V' of the functional

(217) Tn,0) = Saln,m) + 190~ nlR 0~ (9,0),
where
(2.18) a(@,n) := /QCE(B) ze(m)de = /QM se(m)de.

Conversely, the unique minimizing argument of (2.17) satisfies (2.1)-(2.3) in the distributional
sense, and if it is smooth enough it also satisfies the boundary conditions (2.6), (2.7), (2.15).

Proof. The proof is rather standard, and we do not detail it here. Essentially, we first remark
that if (@,w) is the minimizing argument of (2.17), then setting v = At ~?(Vw — 0) we have that
(6, w,~) verifies the following variational problem:

Find ((0,w),~)) € V x (L*(Q2))? such that :
(2.19) a(8,m) + (v, Vv —n) = (9,0) (m,v) €V,
A2 (,8) — (Y, 8) + (6,6) = 0 5 e (L),
which implies clearly equations (2.1)-(2.3) in the distributional sense. We just have to check the

boundary conditions on I'¢, as the others are classical. For this we proceed more or less as usual.
Let first (0, w) be a minimizer of (2.17): for every (n,v) € V we multiply (2.1) times n and we



integrate over €2, then we multiply (2.2) times v and we integrate over (), and finally we take the
sum of the two. If the minimizer is smooth enough we can integrate by parts, compare with the
first equation of (2.19), and obtain

(2.20) / My nndX -I-/ Mus s +vn vdE =0 Y(n,v) € V.
ESUEf Ef

Condition M, = 0 on ¥;UX; follows immediately. Recalling that ns = v,; on ¥y and integrating
by parts along ¥ we easily get the last equation in (2.15). With similar arguments we prove the
first part of the statement: if (6, w,~) is a smooth solution of (2.1)-(2.3) with the boundary
conditions (2.6), (2.7), (2.15) we can easily see that it satisfies the variational problem (2.19) and
hence it is a minimizer of (2.17). O

Remark 2.1. Assuming, for simplicity, that the material is homogeneous (and hence the system
has constant coefficients), that the load g is in C*(Q), and that Q is a polygon (or that the boundary
00 is piecewise C*), it is not difficult to prove, with the usual techniques (see for instance [14]),
that for every t > 0 each component of the solution belongs to C>°(D) where D is any open subset
of Q such that D that does not contain any vertex nor points where the boundary conditions change
from one type to another. We do not address here the problem of the global regularity in Q, as
we are more interested in the question of the uniform regularity (in t) in domains that satisfy the
same assumptions as the domain D above.

Concerning the uniform regularity (in #) we have the following result.

Proposition 2.2. In the same assumptions of Remark 2.1, and for every subdomain D (always
as in Remark 2.1) there exists a constant C, independent of t, such that

(2.21) 1012,0 + |wl2,0 + t|¥[1,0 + |7lo,0 < Clglog

Proof. The proof can be easily obtained by adapting the analysis of [2] to the present situation
near Y. We see that the most irregular term in the expansion of the solution (as computed by
[2]) drops, leaving for O a limit regularity of order r < 5/2. O

In the sequel we are going to assume that the solution (0, w,~) satisfies

(2.22) 10120 + [wl2.0 + tlvl10 + [7loe < Clgloe

uniformly in #. In order to show that the assumption is realistic, we consider a case in which
Q2 =]0, L1[x]0, Ly[ and where ¥, = {2 = 0} U {z = L1} while ¥y = 00 \ £;. Assume that the
material obeys the classical Hooke’s law. Reflecting g “odd” around {z = 0} (and observing that
01 and ~; reflect “even” and 0, w and 72 “odd”), we prove regularity in the neighborhood of
(0,0) and (0, Ly). In a similar way one proves regularity in the neighborhood of the other two
vertices.

3. DISCRETIZATION

In this section we are going to set the discretized problem. For this we consider first some
finite element spaces. We assume therefore that we are given, as usual, a regular sequence of
decompositions {7}, satisfying the minimum angle condition. We denote by L} the set of
piecewise polynomials of degree < k that are globally in H"(Q2). For every triangle T € T, we also
define

(3.1 TR(T):={6] d1=a+by, dp=c—bzx, a,bceR}

to be the usual rotated Raviart-Thomas element of lowest order. We also define a set of quadratic
edge bubbles in the following way: for every edge e we denote by p. the (unique) polynomial of
degree 2 having value 1 at the midpoint of e and vanishing on the other two edges of 7. Then we
denote by 7, the vector valued function 1, = s, p. where s, is the tangent counterclockwise unit
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vector on e. Finally, we denote by Br the space spanned by the three (vector valued) “bubbles”
1, obtained in that way in correspondence with the three edges of T'. We can now set

(3.2) By = (@ BT> n(H'(92)),

TETs

(3.3) O, = (£})* & By,

(3.4) Wi, := L1,

(3.5) T,:= Y TR(T).
TETh

Finally we define an interpolation operator II;, from V to I', as follows

(3.6) /th-sds :/n-sds Y edge e.

Owing to the basic properties of Raviart-Thomas spaces (and their “rotated” counterpart) we
have that (3.6) defines IT;, in a unique way. We also remark that, in particular, we have

(3.7) VW, Cc Ty so that Hh(V’Uh) = Vo, VYo, € Wy.
Using the above definitions of @y, W}, and II;, we then set

Vi = {(n,vn) € O x W}, such that n,, = 0,v, =0 on ¥,

(38) ()2 = vn =0 on %y, and (Ilmy)s = (vn)5 on 57}

Note that the last boundary condition can be imposed by means of a simple condensation of the
“tangential bubbles” which are different from zero on the external edges; therefore the space Vp,
can be used in practice without particular difficulties.

We can now define the discrete solution (6, wy) as the unique minimizer of the functional

A2 2
5 [|Vor, —Oanyllo.0 — (9,vn)

(39) Tt 00) = Salmamy) +
over the discrete space V. It is then elementary to see that, setting
(3.10) Y = MT2(Vwy, — T1,04),
the triple (@, wp,y},) coincides with the unique solution of the variational problem
Find ((0n,wn),vp)) € Vi x T'y, such that :
(3.11) a(On,14) = (Yn Wamy, = Vor) = (g,vn) (Mhsvn) € Vi,
AT (V4o 0n) = (Vwp, 0) + (I1304,0,) =0 dp € Ty
4. A PRIORI ERROR ESTIMATES

In this section we shall prove a priori bounds for the error (8 — 0y, w — wp,y — ;). As a first
step we define suitable interpolants of @ and w:

(4.1) 0;(P) = O(P) for all vertex P and /(0 —0;5) -sds =0 for all edge e,

(4.2) wyr(P) = w(P) for all vertex P.

It is easy to check that both 87 and w; are well defined. We recall that, on ¥¢, we have 6; = w/,.
We also note that for every element in I'j, its tangential component on every edge is constant.
Using this, (3.6), (4.1) and 6; = w/,; we easily get, on every edge e € ¥y

1 1 1 1
(4.3) (HhGI)-se:—/(HhOI)-sds:—/(Gj-s)ds:—/Gsds:—/wsds.
" el J. el /. el /. el /.
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If P, and P» are the endpoints of e we can use (4.2), and the fact that wr is piecewise linear, to
continue (4.3) as follows

(w(P) —w(P)) _ (wi(P) —wi(P))
|P — P |P> — P

1
(4.4) (In0r) - 8 = el /w/s ds = = (wr)/s on e,

so that actually (@7, w;) € Vp, as the other requirements are obviously satisfied as well. We point
out that, arguing as in (4.3) and using (3.6) we easily have

(45) 0 5. = o5 [ 0uds = (W0) -,
that immediately implies

(4.6) 1,0, =11,6.

Similarly we can recall the steps in (4.4)

(4.7 |%/ﬁw/s ds = (wr)/s on e,

and using again (3.6) and (3.7) we obtain

(4.8) Vwr =, Vwr =11, Vw.

We finally set

(4.9) vr = M"3(Vwr —11,07)

Using (4.6) and(4.8) in (4.9) it is easy to check that

(4.10) v = M2, Vwr — ,07) = M 2(11, Vw — 11,0) = 1,9,

which will play a fundamental role for our proof.

Before deriving the error equations we first notice that the space V;, as defined in (3.8), is not
a subspace of V, defined in (2.16). As a consequence, for (1,v) € V), we have, integrating by parts
and using (2.1)-(2.2), using boundary conditions (2.6), (2.7), then using (2.15), and finally (3.8):

a@,m) + (v,Vv—n)—(g,v) =
fzf Mpsns +v,vds = fzf Mps(ns —vys)ds = fz, Mys(n — L), ds.

We compare then (4.11) with the first equation of (3.11) to obtain, for (n,v) € V4,

(4.11)

(4.12) a(@ — On,m) + (v, Vo —n) = (74, Vo = TIpn) = / My (n —Tpn)s ds,
Xy
that can also be rewritten as

(4.13) a(@ =6, m) + (v = v, Vo —IIun) = (v, (I =Ip)n) + | Mys((I —IDn)n)s ds.
g
Using Korn inequality and adding and subtracting 6 and « we have
(4.14)
al@r = Onlf + Xy =l = a(Or —0n,0r — 1) + XN (v — VYT —VR) =
a(01 — 0,0[ — Oh) + a(0 — 0h,01 — Bh)
AAT (v = v = YR) AT (Y = Yn v = Ta)-
On the other hand, as v; —v;, = M~2(V (w; —wp,) — 1, (01— 0},)) we have from the error equation
(4.13) (used with np =07 — 0, and v = wr — wy):
(0 = 60n, 01 — 01) + X2 (y — V3, Y1 — Vi) =
(’y, (I - Hh)(gj — Bh)) + fEf Mns([ - Hh)(01 - ah)s ds.

Combining (4.14) and (4.15) we have then
(4.16) al@r —O0nlT + XNy — s =T+ T+ IIT+ 1V

(4.15)



(4.17) I=a(0;—06,0;—06,),

(418) Il = /\_1t2(’71 — YV — 7h)7

(4.19) ITT = (v, (I = 1Ix)(01 — B4)),

(4.20) IV = / Mns([ - Hh)(of - eh)s dS’
Ly

that we shall bound separately. We start by noticing that

(4.21) |0 —6r]1 < Ch|6]2,

and for every n € (H(Q))?

(4.22) In —Trnlo < Chlnls-

Then we have first from (4.21)

(4.23) I'=a(0;—6,0; —0,) <Ch|6]: |60 — 6|1,
and from (4.10) and (4.22)

(4.24) IT=X""(v; = %71 = va) < Cht vl tlvr = Yalo-
Similarly we can bound the third term by

(4.25) ITT = (7, (I = T) (61 — 61)) < Ch |vlo 161 — B4]1.

In order to bound the last term, we first recall the well known Agmon inequality [1]: if e is an edge
of a triangle T (with the usual minimum angle condition), ¢ € H'(T), and hr is the diameter of
T, then we have

—1/2 1/2
(4.26) lelo,e < C (h'*lolor + by lelir).

For the fourth term we notice now that (I — II;)(0r — 6},) is orthogonal to constants on every
edge. Hence for every boundary edge e belonging to a triangle T' we can denote by M, the mean
value of M, on e, and using (4.26) and usual approximation theory we have

fe Miys(I = TIp) (01 = On)s ds < | Mps — MnSHO,e (1 = T0n)(0r — 0h)8"0,e

4.27
(4.27) < C(WY2| Mol B101 — bl 1

Using (4.27) on every edge, using (2.5) to see that |Mps|1,7 < C|0|2,1, and the usual Cauchy-
Schwarz inequality we have then

(4.28) IV = Ms(I —10,)(0r —6p)sds < Ch|B|2 |61 — 1
Xy

Finally, inserting (4.23)-(4.25) and (4.28) in (4.16), and the usual arithmetic-geometric inequality
we have

(4.29) al@r = Onl? + X7y — ulg < CB2 (Inl3 + 2 vIT + 117) -
From (4.29) we can then obtain easily an estimate for V(wr — wp,)
(4.30) IV (wr —wi)lo < A7 |y = valo + 181 — Onlo.

Finally using (4.29), (4.30), the triangle inequality and absorbing X in the constants, we can state
the final result:

10 = 6nli +tlv = vplo + [V (w —wn)lo < Ch (Inl2 + tlv] + 7o) -



5. CONCLUSIONS

We presented an alternative model for the treatment of free boundary conditions for the
Reissner-Mindlin plate bending equations. It consists of minimizing the usual energy functional
under the kinematic constraint s = w/,. This condition is already included in Kirchhoff equation
0 = Vw that in the limit case ¢ = 0 holds all over the domain (). For a thin plate, therefore, our
modification is quite reasonable from the Mechanical point of view.

We have seen that with the new boundary conditions the boundary layer effect becomes less
severe, reducing to the same order of the boundary layer that is present near the clamped part of
the boundary, or near the hard simply supported part.

We also showed that the treatment of these boundary conditions from the numerical point of
view requires some care, but can be done in a reasonably simple way. In particular, we considered
the Duran-Liberman element, and we showed that the new boundary conditions for this element
can be imposed in a simple and cheap way, namely by forcing a priori (that is, in the finite element
space) that on each edge the mean value of 65 is equal to w/,. We also showed that in this way
we can obtain a priori error estimates that are uniform in ¢, that are optimal with respect to the
degree of the polynomial spaces, and that make use of the minimal regularity requirements.

A more extensive range of finite elements able to grant optimal and t—uniform estimates for
this new free plate model will be treated in a future publication (see [8]).
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