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ABSTRACT | It is well known that the solutions of Reissner-Mindlin equations an have, for

small thikness t, severe boundary layers. In partiular, near the part of the boundary where the

so-alled free plate boundary onditions are presribed, the layer an be so strong that rotations

are not uniformly bounded in H

2

, for t ! 0. This is learly a major drawbak for numerial

methods, as one annot ahieve error estimates of order h uniformly in t. Here we propose a new

model for free plate boundary onditions that has less severe layers, and we propose a numerial

method that provides a priori error estimates of order O(h) uniformly in t.
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RIASSUNTO |

�

E ben noto he le soluzioni delle equazioni di Reisser-Mindlin possono presentare forti strati

limite viino ai bordi della piastra. Tali strati limite sono partiolarmente severi viino a quelle parti della frontiera

dove sono state assegnate ondizioni ai limiti osiddette di piastra libera. In tali asi si sa he le rotazioni non sono

uniformemente limitate in H

2

, e questo impedise di avere stime dell'errore dell'ordine di h he siano uniformi

nello spessore t. Qui proponiamo una diversa formulazione delle ondizioni di piastra libera, he presentano strati

limiti meno severi, e proponiamo anhe un metodo numerio per il quale si possono dimostrare stime dell'ordine

di O(h) uniformemente in t.

1. Introdution

In the last twenty years several good and reliable elements have been presented for the solution

of Reissner-Mindlin plate equations. We just reall, for instane, [7℄, [9℄, [10℄, [3℄, [12℄, [4℄, [5℄. See

also [11℄, [13℄, [6℄ and the referenes therein. All the elements proposed in the above papers have

been proved to be ompletely free from loking. In partiular their onvergene properties have

been proved to be independent of the thikness t, and to be optimal ompared to interpolation

estimates. This implies optimal error estimates (in terms of powers of h), uniform in t, whenever

the solution is regular enough, uniformly in t.

On the other hand, it has been proved by Arnold and Falk ([2℄) that in general the solution of

the Reissner Mindlin equations exhibits a strong boundary layer when t goes to zero. In partiular

for the simplest ase of lamped boundary onditions one has that the rotations �(t) are uniformly

bounded in H

r

(
) only for r < 5=2. This implies that only the lowest order elements an have

optimal estimates, of order O(h) in the energy norm, uniformly in t.

Always following Arnold-Falk [2℄, the same bound on the regularity holds for the so-alled

hard simply supported boundary onditions, while for soft simply supported and for free boundary

onditions the regularity bound goes down to r < 3=2. This puts an upper bound to error estimates

in energy to O(h

r�1

) so that no element an have even the \minimal" estimate O(h).

It is not lear whether there are ases in whih one must use soft simply supported boundary

onditions instead of the hard ones. Hene using systematially the hard version one an think

that, as far as regularity is onerned, simply supported boundary onditions are not worse than

the (most studied) lamped ones.

The situation is di�erent for free boundary onditions. There, traditionally, a single version is

found in the literature (instead of a hard one and a soft one), and there seems to be no viable

hoie.

In the present paper we propose a di�erent way of modeling the free boundary onditions for

Reissner-Mindlin plates (that ould be alled, possibly, hard free). Roughly speaking it orresponds

to minimizing the usual Reissner-Mindlin energy funtional under the ondition that the tangential

omponent of rotations �

s

equals the tangential derivative w

=s

of the transversal displaement.

We reall that in the limit for t! 0 the solution will satisfy the Kirhho� ondition � = rw, so

that the ondition �

s

= w

=s

will always be true.

�
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From the general asymptoti analysis of [2℄ it an be easily obtained that with our hard-free

boundary onditions the regularity bound goes bak to r < 5=2, thus allowing, in priniple, an

O(h) bound for the lowest order elements.

In partiular we show here how it is possible to enfore the new boundary onditions for a

partiular hoie of one of the lassial low order elements, namely the Duran-Liebermann element

[12℄. We introdue a minor modi�ation of this element, to be used near the boundary, that is

very easy to implement. We show that suh modi�ation allows an easy treatment of hard-free

boundary onditions, and we prove O(h) a priori estimates in energy that are uniform in t.

An outline of the paper is as follows. In the next setion we reall the Reissner-Mindlin equa-

tions, we introdue the hard-free boundary onditions and we analyze them from the regularity

point of view. In Setion 3 we introdue our example of disretization, and we prove the orre-

sponding error bounds in Setion 4. Some onlusions are drawn in Setion 5.

Throughout the paper we shall use the following notation. H

r

(O) will denote the usual Sobolev

spae W

r;2

(O) of order r on the domain O. For r = 0 we will often use the notation L

2

(O) as

well. With an abuse of notation we shall use jj � jj

r;O

, or simply jj � jj

r

(when no onfusion an

arise) to denote the H

r

norm of both salar or vetor-valued funtions. The salar produt in

H

0

(O) � L

2

(O) will also be denoted by (� ; �)

0;O

, or (� ; �)

0

, or even (� ; �), both for salar and

vetor-valued funtions.

Aknowledgment: we are thankful to G. Geymonat and F. Krasuki for several very inspiring

onversations.

2. The Reissner-Mindlin equations

Let 
 be an open bounded domain in R

2

and let g be given, say, in L

2

(
); the Reissner{Mindlin

equations require to �nd (�; w;) suh that

(2.1) � divC

"

(�)�  = 0 in 
;

(2.2) � div  = g in 
;

(2.3)  = �t

�2

(rw � �) in 
:

In (2.1)-(2.3), C is the tensor of bending moduli, � represents the rotations, w the transversal dis-

plaement, and  the saled shear stresses. Moreover,

"

is the usual symmetri gradient operator,

�(= 5=6) is the shear orretion fator, and t is the thikness.

Equations (2.1)- (2.3) have to be supplied by suitable boundary onditions. In order to introdue

them, we set

(2.4) M := C

"

(�); M

n

:=M � n

and

(2.5) M

nn

:=M

n

� n; M

ns

:=M

n

� s;

where n and s are, respetively, the outward unit normal and ounterlokwise unit tangent

vetor to �
. We then assume that the boundary �
 is split in three nonoverlapping parts

�
 = �



[�

s

[�

f

, orresponding to lamped, (hard) simply supported and free boundary onditions,

that we make preise as follows. We require (formally)

(2.6) � = 0; w = 0 on �



;

(2.7) �

s

= 0; w = 0; M

nn

= 0 on �

s

;

and

(2.8) M

nn

= 0; M

ns

= 0; 

n

� �(divM)

n

= 0 on �

f

;

where, here and in all the sequel, we adopt the following notation: for every vetor valued funtion

� and for every salar funtion v

(2.9) �

n

:= � � n; �

s

:= � � s; v

=n

:=

�v

�n

; v

=s

:=

�v

�s

:
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We shall make only minor assumptions on the splitting of �
: we assume that every part is the

union of a �nite number of onneted omponents, and that every rigid movement r satisfying

r = 0 on �



and r

s

= 0 on �

s

is neessarily 0. This, together with the usual elliptiity assumptions

on C will give us the well known Korn inequality: there exists a onstant � > 0 suh that for

every � 2 (H

1

(
))

2

satisfying � = 0 on �



and �

s

= 0 on �

s

we have

(2.10) �jj�jj

2

(H

1

(
))

2

�

Z




C

"

(�) :

"

(�)dx:

It is known that, keeping g �xed, and letting t ! 0, the solution (�

t

; w

t

;

t

) of (2.1)-(2.3) with

the boundary onditions (2.6)-(2.8) tends to a �nite limit (�

0

; w

0

) suh that �

0

= rw

0

, and w

0

is

the solution of the Kirhho� model with the boundary onditions

(2.11) w = 0 and w

=n

= 0 on �



;

(2.12) w = 0 and M

nn

= 0 on �



;

(2.13) M

nn

= 0 and M

ns

=s

+ (divM)

n

= 0 on �

f

;

where in the de�nition of M (2.4) we obviously have to replae � by rw. It is also known,

however, that the onvergene takes plae only in Sobolev spaes of rather low order (see [2℄). In

partiular, if �

f

is not empty, we have that

(2.14) jj�(t)jj

r

� C

holds, with C independent of t, only for r < 3=2. This is essentially due to the fat that the

Reissner-Mindlin solution satis�es for every t > 0 the boundary onditionM

ns

= 0 whih does not

hold in the limit, hene ausing a boundary layer in the �rst derivatives of � that forbids them to

belong to H

r

(
) for r � 1=2.

This is the reason why we propose to hange (2.8) into

(2.15) �

s

= w

=s

; M

nn

= 0 and M

ns=s

� 

n

= 0 on �

f

:

Introduing the spae

(2.16)

V := f(�; w) 2 (H

1

(
))

2

�H

1

(
) suh that � = 0; w = 0 on �



;

�

s

= w = 0 on �

s

; and �

s

= w

=s

on �

f

g

we have the following result.

Proposition 2.1. For every t > 0, any smooth solution of (2.1)-(2.3), with the boundary ondi-

tions (2.6), (2.7), (2.15) oinides with the unique minimizing argument on V of the funtional

(2.17) J

t

(�; v) =

1

2

a(�;�) +

�t

�2

2

jjrv � �jj

2

0;


� (g; v);

where

(2.18) a(�;�) :=

Z




C

"

(�) :

"

(�)dx �

Z




M :

"

(�)dx:

Conversely, the unique minimizing argument of (2.17) satis�es (2.1)-(2.3) in the distributional

sense, and if it is smooth enough it also satis�es the boundary onditions (2.6), (2.7), (2.15).

Proof. The proof is rather standard, and we do not detail it here. Essentially, we �rst remark

that if (�; w) is the minimizing argument of (2.17), then setting  = �t

�2

(rw � �) we have that

(�; w;) veri�es the following variational problem:

(2.19)

8

>

<

>

:

Find ((�; w);)) 2 V � (L

2

(
))

2

suh that :

a(�;�) + (;rv � �) = (g; v) (�; v) 2 V ;

�

�1

t

2

(; Æ)� (rw; Æ) + (�; Æ) = 0 Æ 2 (L

2

(
))

2

;

whih implies learly equations (2.1)-(2.3) in the distributional sense. We just have to hek the

boundary onditions on �

f

, as the others are lassial. For this we proeed more or less as usual.

Let �rst (�; w) be a minimizer of (2.17): for every (�; v) 2 V we multiply (2.1) times � and we
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integrate over 
, then we multiply (2.2) times v and we integrate over 
, and �nally we take the

sum of the two. If the minimizer is smooth enough we an integrate by parts, ompare with the

�rst equation of (2.19), and obtain

(2.20)

Z

�

s

[�

f

M

nn

�

n

d� +

Z

�

f

M

ns

�

s

+ 

n

v d� = 0 8(�; v) 2 V :

ConditionM

nn

= 0 on �

s

[�

f

follows immediately. Realling that �

s

= v

=s

on �

f

and integrating

by parts along �

f

we easily get the last equation in (2.15). With similar arguments we prove the

�rst part of the statement: if (�; w;) is a smooth solution of (2.1)-(2.3) with the boundary

onditions (2.6), (2.7), (2.15) we an easily see that it satis�es the variational problem (2.19) and

hene it is a minimizer of (2.17). �

Remark 2.1. Assuming, for simpliity, that the material is homogeneous (and hene the system

has onstant oeÆients), that the load g is in C

1

(

�


), and that 
 is a polygon (or that the boundary

�
 is pieewise C

1

), it is not diÆult to prove, with the usual tehniques (see for instane [14℄),

that for every t > 0 eah omponent of the solution belongs to C

1

(D) where D is any open subset

of 
 suh that D that does not ontain any vertex nor points where the boundary onditions hange

from one type to another. We do not address here the problem of the global regularity in 
, as

we are more interested in the question of the uniform regularity (in t) in domains that satisfy the

same assumptions as the domain D above.

Conerning the uniform regularity (in t) we have the following result.

Proposition 2.2. In the same assumptions of Remark 2.1, and for every subdomain D (always

as in Remark 2.1) there exists a onstant C, independent of t, suh that

(2.21) jj�jj

2;D

+ jjwjj

2;D

+ tjjjj

1;D

+ jjjj

0;D

� Cjjgjj

0;


Proof. The proof an be easily obtained by adapting the analysis of [2℄ to the present situation

near �

f

. We see that the most irregular term in the expansion of the solution (as omputed by

[2℄) drops, leaving for � a limit regularity of order r < 5=2. �

In the sequel we are going to assume that the solution (�; w;) satis�es

(2.22) jj�jj

2;


+ jjwjj

2;


+ tjjjj

1;


+ jjjj

0;


� Cjjgjj

0;


uniformly in t. In order to show that the assumption is realisti, we onsider a ase in whih


 =℄0; L

1

[�℄0; L

2

[ and where �

s

= fx = 0g [ fx = L

1

g while �

f

= �
 n �

s

. Assume that the

material obeys the lassial Hooke's law. Reeting g \odd" around fx = 0g (and observing that

�

1

and 

1

reet \even" and �

2

; w and 

2

\odd"), we prove regularity in the neighborhood of

(0; 0) and (0; L

2

). In a similar way one proves regularity in the neighborhood of the other two

verties.

3. Disretization

In this setion we are going to set the disretized problem. For this we onsider �rst some

�nite element spaes. We assume therefore that we are given, as usual, a regular sequene of

deompositions fT

h

g

h

, satisfying the minimum angle ondition. We denote by L

r

k

the set of

pieewise polynomials of degree � k that are globally in H

r

(
). For every triangle T 2 T

h

we also

de�ne

(3.1) TR(T ) := fÆj Æ

1

= a+ by; Æ

2

= � bx; a; b;  2 Rg

to be the usual rotated Raviart-Thomas element of lowest order. We also de�ne a set of quadrati

edge bubbles in the following way: for every edge e we denote by p

e

the (unique) polynomial of

degree 2 having value 1 at the midpoint of e and vanishing on the other two edges of T . Then we

denote by �

e

the vetor valued funtion �

e

= s

e

p

e

where s

e

is the tangent ounterlokwise unit
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vetor on e. Finally, we denote by B

T

the spae spanned by the three (vetor valued) \bubbles"

�

e

obtained in that way in orrespondene with the three edges of T . We an now set

(3.2) B

h

:=

 

M

T2T

h

B

T

!

\ (H

1

(
))

2

;

(3.3) �

h

:= (L

1

1

)

2

�B

h

;

(3.4) W

h

:= L

1

1

;

(3.5) �

h

:=

X

T2T

h

TR(T ):

Finally we de�ne an interpolation operator �

h

from V to �

h

as follows

(3.6)

Z

e

�

h

� � sds =

Z

e

� � sds 8 edge e:

Owing to the basi properties of Raviart-Thomas spaes (and their \rotated" ounterpart) we

have that (3.6) de�nes �

h

in a unique way. We also remark that, in partiular, we have

(3.7) rW

h

� �

h

so that �

h

(rv

h

) =rv

h

8v

h

2W

h

:

Using the above de�nitions of �

h

, W

h

, and �

h

we then set

(3.8)

V

h

:= f(�

h

; v

h

) 2 �

h

�W

h

suh that �

h

= 0; v

h

= 0 on �



;

(�

h

)

s

= v

h

= 0 on �

s

; and (�

h

�

h

)

s

= (v

h

)

=s

on �

f

g:

Note that the last boundary ondition an be imposed by means of a simple ondensation of the

\tangential bubbles" whih are di�erent from zero on the external edges; therefore the spae V

h

an be used in pratie without partiular diÆulties.

We an now de�ne the disrete solution (�

h

; w

h

) as the unique minimizer of the funtional

(3.9) J

t

h

(�

h

; v

h

) =

1

2

a(�

h

;�

h

) +

�t

�2

2

jjrv

h

��

h

�

h

jj

2

0;


� (g; v

h

)

over the disrete spae V

h

. It is then elementary to see that, setting

(3.10) 

h

:= �t

�2

(rw

h

��

h

�

h

);

the triple (�

h

; w

h

;

h

) oinides with the unique solution of the variational problem

(3.11)

8

>

<

>

:

Find ((�

h

; w

h

);

h

)) 2 V

h

� �

h

suh that :

a(�

h

;�

h

)� (

h

;�

h

�

h

�rv

h

) = (g; v

h

) (�

h

; v

h

) 2 V

h

;

�

�1

t

2

(

h

; Æ

h

)� (rw

h

; Æ

h

) + (�

h

�

h

; Æ

h

) = 0 Æ

h

2 �

h

:

4. A priori error estimates

In this setion we shall prove a priori bounds for the error (� � �

h

; w � w

h

; � 

h

). As a �rst

step we de�ne suitable interpolants of � and w:

(4.1) �

I

(P ) = �(P ) for all vertex P and

Z

e

(� � �

I

) � s ds = 0 for all edge e;

(4.2) w

I

(P ) = w(P ) for all vertex P:

It is easy to hek that both �

I

and w

I

are well de�ned. We reall that, on �

f

, we have �

s

= w

=s

.

We also note that for every element in �

h

its tangential omponent on every edge is onstant.

Using this, (3.6), (4.1) and �

s

= w

=s

we easily get, on every edge e 2 �

f

(4.3) (�

h

�

I

) � s

je

=

1

jej

Z

e

(�

h

�

I

) � sds =

1

jej

Z

e

(�

I

� s) ds =

1

jej

Z

e

�

s

ds =

1

jej

Z

e

w

=s

ds:
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If P

1

and P

2

are the endpoints of e we an use (4.2), and the fat that w

I

is pieewise linear, to

ontinue (4.3) as follows

(4.4) (�

h

�

I

) � s

je

=

1

jej

Z

e

w

=s

ds =

(w(P

2

)� w(P

1

))

jP

2

� P

1

j

=

(w

I

(P

2

)� w

I

(P

1

))

jP

2

� P

1

j

= (w

I

)

=s

on e;

so that atually (�

I

; w

I

) 2 V

h

, as the other requirements are obviously satis�ed as well. We point

out that, arguing as in (4.3) and using (3.6) we easily have

(4.5) (�

h

�

I

) � s

je

=

1

jej

Z

e

�

s

ds = (�

h

�) � s

je

;

that immediately implies

(4.6) �

h

�

I

= �

h

�:

Similarly we an reall the steps in (4.4)

(4.7)

1

jej

Z

e

w

=s

ds = (w

I

)

=s

on e;

and using again (3.6) and (3.7) we obtain

(4.8) rw

I

= �

h

rw

I

= �

h

rw:

We �nally set

(4.9) 

I

= �t

�2

(rw

I

��

h

�

I

)

Using (4.6) and(4.8) in (4.9) it is easy to hek that

(4.10) 

I

= �t

�2

(�

h

rw

I

��

h

�

I

) = �t

�2

(�

h

rw � �

h

�) � �

h

;

whih will play a fundamental role for our proof.

Before deriving the error equations we �rst notie that the spae V

h

, as de�ned in (3.8), is not

a subspae of V , de�ned in (2.16). As a onsequene, for (�; v) 2 V

h

we have, integrating by parts

and using (2.1)-(2.2), using boundary onditions (2.6), (2.7), then using (2.15), and �nally (3.8):

(4.11)

a(�;�) + (;rv � �)� (g; v) =

R

�

f

M

ns

�

s

+ 

n

v ds =

R

�

f

M

ns

(�

s

� v

=s

) ds =

R

�

f

M

ns

(� ��

h

�)

s

ds:

We ompare then (4.11) with the �rst equation of (3.11) to obtain, for (�; v) 2 V

h

,

(4.12) a(� � �

h

;�) + (;rv � �)� (

h

;rv ��

h

�) =

Z

�

f

M

ns

(� ��

h

�)

s

ds;

that an also be rewritten as

(4.13) a(� � �

h

;�) + ( � 

h

;rv ��

h

�) = (; (I ��

h

)�) +

Z

�

f

M

ns

((I ��

h

)�)

s

ds:

Using Korn inequality and adding and subtrating � and  we have

(4.14)

�jj�

I

� �

h

jj

2

1

+ �

�1

t

2

jj

I

� 

h

jj

2

0

= a(�

I

� �

h

;�

I

� �

h

) + �

�1

t

2

(

I

� 

h

;

I

� 

h

) =

a(�

I

� �;�

I

� �

h

) + a(� � �

h

;�

I

� �

h

)

+�

�1

t

2

(

I

� ;

I

� 

h

) + �

�1

t

2

( � 

h

;

I

� 

h

):

On the other hand, as 

I

�

h

= �t

�2

(r(w

I

�w

h

)��

h

(�

I

��

h

)) we have from the error equation

(4.13) (used with � = �

I

� �

h

and v = w

I

� w

h

):

(4.15)

a(� � �

h

;�

I

� �

h

) + �

�1

t

2

( � 

h

;

I

� 

h

) =

(; (I ��

h

)(�

I

� �

h

)) +

R

�

f

M

ns

(I ��

h

)(�

I

� �

h

)

s

ds:

Combining (4.14) and (4.15) we have then

(4.16) �jj�

I

� �

h

jj

2

1

+ �

�1

t

2

jj

I

� 

h

jj

2

0

= I + II + III + IV
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where

I = a(�

I

� �;�

I

� �

h

);(4.17)

II = �

�1

t

2

(

I

� ;

I

� 

h

);(4.18)

III = (; (I ��

h

)(�

I

� �

h

));(4.19)

IV =

Z

�

f

M

ns

(I ��

h

)(�

I

� �

h

)

s

ds;(4.20)

that we shall bound separately. We start by notiing that

(4.21) jj� � �

I

jj

1

� C h jj�jj

2

;

and for every � 2 (H

1

(
))

2

(4.22) jj� ��

h

�jj

0

� C h jj�jj

1

:

Then we have �rst from (4.21)

(4.23) I = a(�

I

� �;�

I

� �

h

) � C h jj�jj

2

jj�

I

� �

h

jj

1

;

and from (4.10) and (4.22)

(4.24) II = �

�1

t

2

(

I

� ;

I

� 

h

) � C h t jjjj

1

t jj

I

� 

h

jj

0

:

Similarly we an bound the third term by

(4.25) III = (; (I ��

h

)(�

I

� �

h

)) � C h jjjj

0

jj�

I

� �

h

jj

1

:

In order to bound the last term, we �rst reall the well known Agmon inequality [1℄: if e is an edge

of a triangle T (with the usual minimum angle ondition), ' 2 H

1

(T ), and h

T

is the diameter of

T , then we have

(4.26) jj'jj

0;e

� C (h

�1=2

T

jj'jj

0;T

+ h

1=2

T

jj'jj

1;T

):

For the fourth term we notie now that (I � �

h

)(�

I

� �

h

) is orthogonal to onstants on every

edge. Hene for every boundary edge e belonging to a triangle T we an denote by M

ns

the mean

value of M

ns

on e, and using (4.26) and usual approximation theory we have

(4.27)

R

e

M

ns

(I ��

h

)(�

I

� �

h

)

s

ds � jjM

ns

�M

ns

jj

0;e

jj(I ��

h

)(�

I

� �

h

)

s

jj

0;e

� C(h

1=2

T

jjM

ns

jj

1;T

h

1=2

T

jj�

I

� �

h

jj

1;T

:

Using (4.27) on every edge, using (2.5) to see that jjM

ns

jj

1;T

� Cjj�jj

2;T

, and the usual Cauhy-

Shwarz inequality we have then

(4.28) IV =

Z

�

f

M

ns

(I ��

h

)(�

I

� �

h

)

s

ds � C h jj�jj

2

jj�

I

� �

h

jj

1

Finally, inserting (4.23)-(4.25) and (4.28) in (4.16), and the usual arithmeti-geometri inequality

we have

(4.29) �jj�

I

� �

h

jj

2

1

+ �

�1

t

2

jj

I

� 

h

jj

2

0

� C h

2

�

jj�jj

2

2

+ t

2

jjjj

2

1

+ jjjj

2

0

�

:

From (4.29) we an then obtain easily an estimate for r(w

I

� w

h

)

(4.30) jjr(w

I

� w

h

)jj

0

� �

�1

t

2

jj

I

� 

h

jj

0

+ jj�

I

� �

h

jj

0

:

Finally using (4.29), (4.30), the triangle inequality and absorbing � in the onstants, we an state

the �nal result:

jj� � �

h

jj

1

+ tjj � 

h

jj

0

+ jjr(w � w

h

)jj

0

� C h (jj�jj

2

+ tjjjj

1

+ jjjj

0

) :
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5. Conlusions

We presented an alternative model for the treatment of free boundary onditions for the

Reissner-Mindlin plate bending equations. It onsists of minimizing the usual energy funtional

under the kinemati onstraint �

s

= w

=s

. This ondition is already inluded in Kirhho� equation

� =rw that in the limit ase t = 0 holds all over the domain 
. For a thin plate, therefore, our

modi�ation is quite reasonable from the Mehanial point of view.

We have seen that with the new boundary onditions the boundary layer e�et beomes less

severe, reduing to the same order of the boundary layer that is present near the lamped part of

the boundary, or near the hard simply supported part.

We also showed that the treatment of these boundary onditions from the numerial point of

view requires some are, but an be done in a reasonably simple way. In partiular, we onsidered

the Duran-Liberman element, and we showed that the new boundary onditions for this element

an be imposed in a simple and heap way, namely by foring a priori (that is, in the �nite element

spae) that on eah edge the mean value of �

s

is equal to w

=s

. We also showed that in this way

we an obtain a priori error estimates that are uniform in t, that are optimal with respet to the

degree of the polynomial spaes, and that make use of the minimal regularity requirements.

A more extensive range of �nite elements able to grant optimal and t�uniform estimates for

this new free plate model will be treated in a future publiation (see [8℄).
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