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Abstract. Stabilisation methods are often used to circumvent the difficulties associated with the
stability of mixed finite element methods. Stabilisation however also means an excessive amount
of dissipation or the loss of nice conservation properties. It would thus be desirable to reduce these
disadvantages to a minimum. We present a general framework, not restricted to mixed methods,
that permits to introduce a minimal stabilising term and hence a minimal perturbation with respect
to the original problem. To do so, we rely on the fact that some part of the problem is stable and
should not be modified. Sections 2 and 3 present the method in an abstract framework. Section 4
and 5 present two classes of stabilisations for the inf-sup condition in mixed problems. We present
many examples, most arising from the discretisation of flow problems. Section 6 presents examples
in which the stabilising terms is introduced to cure coercivity problems.

1 Introduction

This paper will be devoted primarily to the stabilisation of mixed finite element methods.
However, we shall introduce a general setting which might be applied to other situations.
Let us thus consider, to fix ideas, the standard problem: find (u,p) € V' x @ such that,

(11 b(u,q) = (g, q) Vg € Q,

{a(u,m +b(v,p) = (f,0) Vo €V,

where [ and g are given elements in V' and @' respectively. Throughout all the paper, we
shall always assume that V" and @ are Hilbert spaces and that a(, ) and b(, ) are continuous
bilinear forms on V x V and V X @ respectively. Let then B denote the linear operator
defined by

(1.2) (Bv,q)givg = b(v,q) Yo eV, VgeQ.
The kernel of B,
(1.3) ker B = {vy € V| b(vg,q) =0 Vq € Q}

will also play a fundamental role. For this problem, which has been the object of intensive
studies, the classical theory (e.g. [8], [9]) states that one gets a unique solution provided the
following conditions hold:

— coercivity on the kernel of B, that is



(1.4) Jap >0 s.t. alvy,ve) > apllvolli Vv € ker B,

— inf-sup condition

(1.5) dky >0 s.t. sup bv, 9)
w0 [[vllv

Let us introduce a discrete problem: find (uy, pn) € Vi, X Qpn, Vi, CV, Q) C @, such that:

> kollqllq Vg e Q.

(1.6) {a(uh,vh) + b(vn, pn) = (f,vp) Yoy, € Vi,

b(un, qn) = (9, an) Va, € Q.

The bilinear form b(-,-) now defines a discrete operator By, from V}, into @)} and we must
consider its kernel,

(17) ker B;, = {U()h € Vb| b(UOh,qh) =0 th & Qh}

To get existence and uniqueness of the discrete problem, we must have conditions corre-
sponding to (1.4) and (1.5), that is,

(1.8) Jay, > 0 5.t alvon, von) > anllvent Yoon € ker By,

b
(1.9) dky, >0 s.t.  sup (vn, 1)

A2 Gh) ko Nawllo-
SUP oy = Fellanlle

To obtain error estimates, we must also assume the stability conditions:
(1.10) ap > ay > 0.

(1.11) kp > ko > 0.

Problems may arise with both of these conditions. For (1.8) and (1.10) the trouble is
that ker By, is not, in general, a subspace of ker B, so that (1.8) is not a consequence of (1.4)
(unless coercivity hold for the whole space V'.)

In the same way, an improper choice of the spaces V}, and @), can lead to kj vanishing
to 0 with A in (1.9). In many instances, conditions (1.10) and (1.11) impose contradictory
requirements on the choice of the discrete spaces V}, and ()5, and only quite special choices
are admissible.

There are cases where these elaborate constructions are felt as inadequate. In some
situations, for example, it happens that (1.1) is only a part of a larger problem, for which
the choice of V}, and @)y, is not really free, and we are led to employ discrete spaces which
are not suitable for (1.6).

Stabilisation methods, then, try to recover (1.8)-(1.11) through a modification of the
variational formulation. This modification should obviously preserve consistency. Ideally, it
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should be as small as possible, restoring stability without introducing unwanted smoothing
properties.

In this paper we shall describe a general framework for the study of stability issues. We
shall also present a general technique that yields many examples of stabilised methods which
can be analysed in this framework. The basic idea of the technique is that, in several cases,
the discretisation at hand has some sort of “partial stability" (to fix ideas, we have a priori
bounds for a certain seminorm of the solution, but not for the true norm.) Our technique
consists then, somehow, in adding the minimum modification that allows to restore the full
stability.

In the next section, we present and discuss the abstract framework in which we are
going to set our examples. In Section 3 we present, always at the abstract level, a general
stabilisation technique, with abstract stability theorems and error estimates. A first class
of applications, together with several examples, will be discussed in Section 4, and a second
class of applications, with several other examples, will be the object of Section 5. Roughly
speaking, the two classes of applications will correspond to two different ways of stabilising
problems of type (1.1) when the inf-sup condition (1.9),(1.11) does not hold: in the first
class of stabilisations we assume that we have a stability result for a pair V}, — Q,, where
@), C Qp, while in the second class we only assume a sort of weak stability that will be made
precise later on. Applications to problems where the ellipticity in the kernel (1.8), (1.10) is
needed are then considered in Section 6.

Other important general results on stabilisations for this type of problems can be found
in [19], [4], [5], [24] and the references therein. See also [9] for additional references.

2 An abstract framework

We consider here a very general problem. Let W be a Hilbert space, let A be in LW, W')
(the space of linear continuous operators from W to W')) and let F' be in W'. We want to
find X € W such that,

(2].) <AX, Y>W’><W = <F, Y>W’><W \V/Y € W
From now on, we shall always assume that
(2.2) (AY)Y) >0 VY € W.

The following result is an exercise in functional analysis, but, for the convenience of the
readers, we sketch a proof.

Proposition 2.1

If (2.2) holds, then the two following conditions are equivalent:



i) A is an isomorphism from W onto W'.

i) 30 € LOW, W) and a positive real number ag such that

(2.3) (AY, 2(Y))wrsw > agl|Y ][y, VY € W.

Proof of Proposition 2.1

Let J be the Riesz’s operator from W' to W. The implication i) = ii) follows by taking
® = JA. To prove the converse implication we denote by Id the identity operator in W, and
we remark that, if (2.2) holds, then for every positive real number s we have, for all Y € W,

((s® + Id)'AY, Y )i = (AY, (5@ + Id)Y Yy > s an||Y]3)-

This easily implies that (s® + Id)"A is an isomorphism from ¥ onto W'. Since s® + Id is

an isomorphism for s small enough, then i) follows easily.
[ |

Remark 2.1

If (2.2) is not satisfied, we always have i) = i) but the converse is false. This can be seen
by considering in L?(]0, +o00o[) the mapping:

{ (Au)(z) = u(x — 1) for z > 1
(Au)(z) =0for 0 <z <1

with ®u := Au. Clearly i) is satisfied, but 7) is not, as A is injective but not surjective. For
an operator that does not satisfy (2.2), we would need two conditions instead of (2.3), that
is: 3P, € LOWV, W), Dy € LW, W) such that, for all Y € W,

o (AY, @1(Y))wrow = ||V ][5,
' <(I)2(Y)7AtY>WXW’ > aZHYH?/v:

implying that A is both injective and surjective.

Remark 2.2 (stability constant)

It must be noted that the “ stability constant" of Problem (2.1), that is the smallest constant
C' such that

X[ <clAX] VX ew,
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is not 1/ae (see (2.3)) but rather ||®||/ae. i

As we are mostly interested in mixed problems, it might be worth showing that this
abstract formalism contains the usual theory for Problem (1.1). Indeed, let W =V x Q,
X = (u,p), Y = (v,q), and define

(AX,Y) = a(u,v) + b(v,p) — b(u,q),
2 { (E.Y) = (. o)y — (0 d)arco.

In this context, it is clear that (2.1) is just another way of writing (1.1). We suppose that
a(u,u) > 0 for any u € V, which clearly implies (2.2). We now want to get (2.3) from (1.4)
and (1.5). We thus consider, for any given (u,p) € V x @, two auxiliary problems, which
have a unique solution if (1.4) and (1.5) hold:

— Find (uq,p1), solution of

a(v,u) —b(v,p1) = (u,v)y Yv € V,
b(UhQ) =0 vq € Q

— Find (usg, ps), solution of

{ a(v,uz2) —b(v,p2) =0 Vv €V,

(2.6)

(27) b(us, q) = (p,2)q Vg € Q.

We now set ®({u,p}) := {(u1 + ua), (p1 + p2)} and we have:

(A(X), (X)) = a(u, uy + us) + b(ur + uz, p) — b(u, p1 + p2)
(2.8) e )
= [Julli- + [Ipll5-
Remark 2.3

Problems (2.6) and (2.7) could, by linearity, be combined into one. We preferred to make
more explicit the separate control of ||ully and ||p[|g. |

Let us now turn to the discretisation of (2.1). For a given sequence of subspaces W}, of
W (usually of finite dimension) we consider, for each h, the discrete problem: find X, € W),
such that
(2.9) (AX},, Y, = (F,Y,,) VY, € W,

In general, for an arbitrary choice of W}, (2.9) will not be stable. In particular, we cannot
ensure that there exists a sequence of linear operators ®;, € L(W),, W), uniformly bounded
in h, such that, for some a; > 0 independent of h,

(210) <AYh, (I)h(yh)> > alHYh“]Q/V VY, € W,
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We however suppose that stability holds for some semi-norm [Y}], on W}, that is we
assume that we have two positive constants ¢ and ag and an operator ®, € LW, W),)
such that

(2.11) [Pa(Y)ll < calYall VY € W,

(212) <AYh, q)h(yh)> > Oéq;.[Yh]%b \V/Yh € Wh,

which we can loosely state as “some part of the problem is stable".
What we shall try to do in the sequel is then to modify problem (2.9) in order to make
it stable. We shall thus consider a stabilised problem of the type

(2.13) (AX), + R(Xy), Ya) = (F,Yy) VY, € W,

where R(X},) will be chosen in order to make (2.13) stable (in the sense of condition (2.10))
while preserving consistency. The following section will introduce a general mechanism
for this construction.

Remark 2.4

In the case of the mixed problem (1.1), assuming for simplicity that a(-,-) is V-elliptic, that
is

(2.14) Ja > 0s.t a(v,v)>alv|li VYeev,

we can always have (2.12) by using the following semi-norm

(2.15) Yali = [(vn, )] = lloall? + [an]7
where )
(2.16) [an]n :== sup (v, 1)

VR EVR HUhHV

as it is shown in the following proposition.

Proposition 2.2

Let A be of the form (2.5) and assume that (2.14) holds. Then, for every choice of subspaces
Vi, Qn we can find a linear operator ®, € LWV, Wh) such that (2.11) and (2.12) hold, with

o 1
(2.17) ap = —min (1, ——),
2 lal”

allbl]
laf[*”

(2.18) co =1+

and the semi-norm defined in (2.15) and (2.16).



Proof of Proposition 2.2
For a given Y, = (vp, q1), let v} € V3, be such that

b(vy, qn) — b(vh, qn)

(2.19) L = = [an]n
lvillv wievi lonllv

and

(2.20) [vallv = Tgnln-

We now choose

(2.21) ®1,(Yn) = (vn — v}, qn),

with ¢ € R to be chosen later on. We have from (2.5) and (2.21):

<AYh, (I)h(Yh)> == a(vh,vh) - 5a(vh,v,’;)
+b(vn, qn) — b(vn, qn) + 6b(v}, qn)
2 allollt = dllallllvallvllvillvy + 6lgnlnllvrllv

= allall{ = dllallllvnllvlanln + dlanli

(2.22)

having used (2.14), (2.19), and, in the last step, (2.20). It is now clear that, choosing
§ = a/l|al|?, (2.22) implies

o )
(2.23) (AYh, ®p, Yh)) > §||Uh||%/ + 5[[%]]%

having used 2ab < a? + b?. Hence we have (2.12) with the constant ag given by (2.17). On
the other hand, (2.20) and the choice of ¢ imply (2.11) and (2.18) since

[lon = dvi[l < lloall + dllvall = llonll + lgnln < l[onll + 6111 llgnllq-

3 Abstract stabilisation and error estimates

We still consider the abstract setting of the previous section and our goal is to find ap-
proximate solutions of problem (2.1). We thus have a Hilbert space W, and a sequence of
approximation spaces W,. We suppose as in (2.12) that we have a “ partial" stability result.
More precisely, we make the following hypothesis:

H.1 For every h there exists

i) a semi-norm -], on W,



i) an operator @, € LWy, Wh),
iii) a constant ce such that
(3.1) [Pr(Ya)ll < collYall  VYn € Wi,
i) a constant ag > 0 such that
(3.2) (AV}, @, (V) > as[Ya]h VY, € W
i

We now want to modify the problem in order to stabilise it, and we assume that we find
a bilinear form R(X},Y},) on W, x W, satisfying the following hypotheses.

H.2 There exist a Hilbert space H, and, for every h:
i) an operator G, € LWy, H),
i) a constant cp > 0 such that
(3.3) R(Xn, Y3) < crl| Xl | Yal] VX, Yy € Wy,
iii) a constant ag > 0 such that

(34) R(Yh,Yh) > aRHGth“g{ VYh € Wh.

H.3 With the notation of assumption H.2, there exist two positive constants o and 73 such
that
(3.5) Vil + 2lGaYall3 > wllYallly VY4 € Wi

Remark 3.1
It is clear from (3.1) and (3.3) that, for every Y}, € W, we have

R(Yh, ®(Ya)) < creallVal”.
However, indicating by cre the best possible constant such that
(36) R(Yh, q)h(Yh)) < CR¢||YhH2 VY, € Wh,

it might be possible that, in particular cases, cre is much smaller than crce. Indeed,
in some cases, cge could even be zero. In the following estimates, we shall therefore use
the constant cpe instead of the (always pessimistic) crce. Moreover, in several cases, the
following additional property H.4 will hold. We shall see that, if this is the case, many
technicalities could be avoided. | |



H.4 With the notation of assumptions H.1 and H.2 we have
(3.7) R(Y,, @,(Y)) >0 VY, € W,
|
We now consider, for some positive real number r, the regularized operator A defined as
(3.8) (AX), V) i= (AXp, Y3 + rR(X,, Y2) VY5, Xp € Wi,
and the corresponding regularised problem
(3.9) (AXp, V) = (F,Y}) VY, € W,
We begin by proving the following lemma.

Lemma 3.1

Assume that H.1, H.2 and H.4 hold. For every positive real numbers r and v let A be defined
as in (3.8) and @y, be defined as

(3.10) (I)h(yh) =Y, + ’)/(I)h(yh) VY, € W
Then we have, for all Y}, € W,

(3.11) (AY}, @4 (Y3)) > min(ag, ae)(Y[YA]Z + 7l|Ga(Va)|[3)-

Proof of Lemma 3.1

From definitions (3.8), (3.10), and assumptions (3.2), (3.4), one immediately obtains for
every positive v and r:

(AY), 8, (1)) = (AY), B (Yh)) 4+ rR(Yh, @1 (V3)
(3.12) = (AY}, Y3 + y@n(Yn)) + rR(Ys, Yo + v®n(Y2))
> agY[Yalj, + arr||Gr(Ya) |3, + ryR(Ya, @1 (Y2)),

and the result follows easily from (3.7). i

It is clear that, if assumption H.3 is also verified, then (3.11) will give a stability result
of type (2.10), where the explicit value of the constant a; can be easily deduced from the
values of the other constants. On the other hand, the estimate (3.11) will be used in the
sequel also in cases when some constant (r, mostly, and sometimes 72) might depend on h,
so that it is convenient to leave it in its actual form.



In the applications that we are going to examine in the following sections, assumption
H.4 will always be satisfied. However, for completeness, we present the following result, that
can be used for the cases in which (3.7) does not hold.

Lemma 3.2
Assume that H.1, H.2 and H.3 hold, and let A and ®, be defined as in (3.8) and (3.10),

respectively. Set now

Ap73
3.13 =
( ) 1o 2CRo

QaRrY3
and Yo i=
272CRa

(or +00 when cpe = 0.) Then, for all v < 7o and for all r < ry we have
IS 1

(314) <AYh, (I)h(Yh)> Z §m1n(aR, Oé@)(’)/[Yh]i —+ r||Gh(Vh)||3{) VYh € Wh.

Proof of Lemma 3.2

We restart as in (3.12), but using now (3.6) and assumption H.3:

(AY, @4(Vh)) = (AVh, @4(Vh)) + rR(YVi, Pu(V3)
> ey [Yaly + arr||Gu(Ya)ll3, — ryere[Yall*.
Using (3.5), the right-hand side of (3.15) is bounded below by

(3.15)

(3.16) (aey — rycre/73) [Yalh + (arr — ryyacre /73)|GR(Ya) |3

If we choose now r < ry and v < v then (3.14) follows immediately from (3.15), (3.16) and
(3.13). ¥

Lemmata 3.1 and 3.2 will ensure stability for a wide class of stabilising procedures. We
now consider the problem of error estimates. As we introduced sufficient conditions to ensure
stability, the question will be to check consistency, and in particular the effect on consistency
of the extra stabilising terms.

In order to retain a certain amount of generality, we shall make now some stability assump-
tions, that, in different particular cases, can be proved by means of the stability lemmata
seen before. However, as we shall see, this part of Section 3 is presented in a way that makes
it logically independent from the previous one. We make therefore the following assumptions.

H.5 We have:
i) a continuous problem
(3.17) (AX,Y) = (F)Y) VY e W,

that we assume to have a unique solution,
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i) a sequence of stabilised discrete problems

(3.18) (AX),, V) = (F)Y}) VY, eW,
where A is still defined as in (3.8) for somer >0,

iii) two constants ¢p and ap, and an operator 5;1 € LWy, Wy) such that

(3.19) 12, (Y2) || < CallYall  VYh € W,
and L
(320) <AYh,q)h(Yh)> > &¢||Yh||2 VYh € Wh.

We have then the following error bound.

Lemma 3.3

Assume that (3.19) and (3.20) hold, and let X and X}, be the solutions of (3.17) and (3.18)
respectively. For every X; € Wy, we set

R(X., Y,
(3.21) R(X) := sup M,
view,  |[Yal
and we have _
Q
(3.22) 5—¢||Xf = Xl < AN IX = X7l + rR(X7).
o

Proof of Lemma 3.3

Set 6X = X; — Xp, and YV, = ®,(5X). From (3.19) we immediately have
(3.23) IVl < Za ||0X]].

On the other hand, using (3.20) and (3.8), adding and subtracting X, then using (3.17)-
(3.18), and finally (3.21) we obtain:

ao ||0X]|2 < (A6X,Yy) = (A(6X),Y3) + rR(0X,Y})
= (A(X; — X),V)) + (AX,Y},) — (AX,, V}) + rR(X;,Y})

(3.24) N !
= (A(Xy = X), Ya) + rR(X}, Ya)
< [Vl (JANHIX7 = X || + 7R (X7))
and (3.22) follows immediately using (3.23). i
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Remark 3.2

In several applications, R will be chosen of the form
(3.25) R(X, Y3) = (Gp Xy, GpYn)n

where G, is the operator appearing in H.2. Moreover, the operator G;, will have a kernel,
say W, (which in general will be a subspace of the “part of W, controlled by A, before
stabilisation".) In these cases, for every X, € W, the second term in the right hand side
of (3.22) can be estimated by

R(X[,Yh) R(XI - Yha}/h)

(3.26) vl e -
< epl| X1 — Xal] < er([[ X7 — X[ + [|X = X)),

so that, from (3.22) we have, in this case

P —
(3.27) 5, I = Xall < [JANIX = Xl 4 ren(|X7 = X+l = X))
Clearly the choice (3.25) satisfies (3.4) with ag = 1. i
Remark 3.3

It is clear that, if all the constants appearing in H.1, H.2 and H.3 are independent of h, we
can choose r and v in Lemma 3.2 to be independent of h as well. Hence the assumption H.5
will also be satisfied with ¢ and ag independent of h, and the combination of H.3, Lemma
3.2, and Lemma 3.3 (plus the obvious triangle inequality) will yield

(3.28) Ix -l <0 nf X =il +_int X -Ta).

Y,eWy YLEW),
with a constant C' independent of h. If assumption H.4 holds as well, the choice of r can be
done arbitrarily, for instance r = 1. | |

A certain number of applications can be analysed with the instruments that we have de-
velopped so far, as indicated in the previous remark. However, there are cases in which it
is convenient to use an r depending on h. In such cases, the previous analysis has to be
readjusted, starting again from Lemma 3.1 and Lemma 3.2. In particular, we cannot expect
to have a stability result of the type (3.20), but only the weaker one that comes from Lemma
3.1. Hence we have to modify H.5 as follows.

H.6 We retain assumptions i) and ii) of H.5, and we change iii) into:
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iii bis) there exist two constants ¢y and o, independent of h and r, and a sequence of
linear operators ®, € LWy, W,,) such that (3.19) holds together with

(3.29) (A, 4 (Ya)) > o ([Yalz + 7GR (Ya)1Z) VY5 € Wh.

|

It is clear that the above assumption will be satisfied by every stabilising method that

satisfies the assumptions of Lemma 3.1 or the ones of Lemma 3.2, as it can be seen from

(3.11) and (3.14). In this case we can prove the following more sophisticated and more useful
error bound.

Lemma 3.4

Let X and X}, be the solutions of (3.17) and (3.18) respectively. Assume that H.3 and H.6
hold. Then, for every X; € W), we have

(X7 — XuJj, 4+ rl|Ga(X7 — XI5,
3.30 o\ A(r 4+
(3.30) <_> 4(r + ) (

< AZX_X2 2 X 2
o s [P X 7 = X1* +7*(R(X1))?)

where R(X) is still defined as in (3.21).
Proof of Lemma 3.4

We set 6X = X; — Xj,. Arguing as in the proof of Lemma 3.3 we get, from (3.29), (3.8),
(3.17), and (3.18) -
g ([0XT5 + r|GRoX|]?) < (A(6X), 2(6X))

(3.31) <co([[A|l | X7 — X|| + 7R(X7))||6X]|),

and using (3.5) we immediately obtain
[OXT; + rllGroX]]* <

633 S s (AN = X1+ r R (BXE + 2l GadX 2)/2)

Co

< M(IIAII IXr = X[ +rR(X2)) (10X]n + (1) /?[|Go X )).

4 1
Then we apply the inequality ab < gaz + gbz four times to the right-hand side, move four
terms to the left and multiply the resulting equation by 3 to get (3.30). [ |

Remark 3.4

In applications, as we shall see, (3.30) will often be used with an r depending on h, while
the other constants are independent of h. Still, we shall find cases in which the constant 7,
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in (3.5) can also be chosen to be dependent on h, and of the same order of magnitude of .
In these latter cases, (3.30) will provide an estimate of the type:

(3.33) [BXTE +rllGR(6X)I3, < O (1X7 = X|I* +r*(R(X1))?)
with C' independent of h, which, in its turn, can become

(3.34) [BXT5 + rllGA(0X) 5, < C (1 + )X = X7 + 2l X = X1)IP)

using the bound (3.26) for R. More generally, if there exists a constant x independent of h
such that r > k7, then we can apply H.3 to the left-hand side of (3.30) obtainig

min (1, k) ||6.X]|?
(3.35) _ <5_¢>2 A(1+1/k)

* 2
Qg 73

(AP = X[+ r*(R(X1))?) -

In other applications, r will depend on h but v, will not. In these cases (3.30) will provide
(for r “small") an estimate of the type

1 _
(3.36) BXE + rIGABX)IB, < € (1) = XIP 4 rllx = XpJ?).

that will then become
1
[6X]7 4+ r||GRéX || < C <—h51 + rh”) ,
r
by usual interpolation estimates with, in general, s; > s, > 0. Then by taking r = h® we get
[6X]7 + h5||GRoX|)> < C (h,sl_s + h”“)

with the optimal choice given by s = (51 — s3)/2. i

4 A first class of applications

We shall start by considering a framework which is still abstract but deals with a subclass of
problems (with similar features) containing many of the applications that will be discussed
later on.

Suppose that we are in the context of mixed methods as in (1.1), and that we want to
stabilise an inf-sup condition (1.5). Then we have

(4.1) <AXh, Yh> = a(uh, Uh) -+ b(Uh,ph) — b(uh, qh).
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We want to work on a choice of spaces V), x @), for which we do not have stability, and we
are aiming at using stabilised problems of the form

(4.2) { a(un, vn) + b(vp, pr) — b(un, qn) + rR((un, pr), (Vn, qn))

= (f,vn) —(9,qn) Yun € Vi, Van € Q.

for a suitable choice of R. This section will be dedicated to the stabilisation of problems of
type (1.1) that satisfy the following assumptions.

A.0 The bilinear forms a(, ) and b(, ) are continuous on V xV and V x Q) respectively.
Moreover a(, ) is V-elliptic (see (2.14)) and b(, ) satisfies the inf-sup condition
(1.5) in V x Q.
Al There exists a subspace @, C Qp such that in Vy, x Q,, the problem is stable, that
18
_ b a _ _
(4.3) > 05t sup W) g [@lle Va, € Q.

VR EVY ||Uh||V
[ |

We note, incidentally, that the V-ellipticity assumption on a(, ) is not really relevant and
only serves to simplify the presentation. Under the assumption Al it is possible to explicitly
build ®;, and a semi-norm [-], to apply our results, as we shall see in the follofing lemma.

Lemma 4.1
Assumptions A.0 and A.1 imply H.1.
Proof of Lemma 4.1

As we have stability in Vj, x @L’ we can solve, for any p, € @)y, the problem: find u; =
un(pn) € Vi and ¢, = ¢,,(pn) € Q) such that

(4.4) a(vn, Up) — b(vn, ¢p) =0 Yoy, € Vi,
b(Tn, Gn) = (Pry Gn)o = (Pr, Gn)o Yan € Q.

where p, = P(py,) = projection of pj, onto @,. We define now

(4.5) @, ((un, pr)) := (up + aTin(pr), pr + ady (pr))

using, for instance, the same « as in (2.14). From (4.5) and (4.4) we have

a(up, up, + oy) + b(up + oy, pr) — b(un, p + dy,)
(4.6) = a(up, up) + afa(up, @) — b(up, ¢,)] + ab(n, ¢,))
> a||unl]? + [|7all?)-
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We then have that hypothesis H.1 is satisfied with the choice (4.5) for ®;, and the semi-
norm

(4.7) [, @)ln = ([l + [Pl
|

We note in particular that, if A.0 and A.1 hold then the constants cg, ag in H.1 will be
independent of h. On the other hand, hypotheses H.2 and H.3 will be easily fullfilled, with
constants independent of A, if we take

(4.8) Gn((vn, qn)) = an — Pan
with H = @, and, as in (3.25),
(4.9) R((un, pn), (0n, 4n)) = (pn — Pon, qn — ?Qh)Q :

It is however clear that the class of possible stabilisations is much wider, as shown in the
following Lemma.

Lemma 4.2

Let sy, be a linear operator from @, into itself, satisfying

sn(an) =0 B Yan € Qp,
(4.10) Isn(an)lley > asllgn — Panlly,  Van € Qn,
Isn(gn)lle < esllanllq Yan € Qn,

with constants ag and cs independent of h. We take now H = Q and
(4.11) Gu((vns an)) = snlan),

(4.12) R((un, pn), (Vhs qn)) = (sn(pn), sn(qn))q-

If assumptions A.0 and A.1 hold, then H.2 and H.3 will also hold, with constants independent
of h. Moreover, if @y, is defined as in (4.5), then H.4 will also hold. Finally, H.5 will hold
with @, defined as in Lemma 3.1.

Proof of Lemma 4.2

It is clear that (3.4) follows from (4.12) and (4.11) with ag = 1. It is also clear that (3.3)
holds with constant cg = ¢%. Similarly (3.5) follows, with constants 75 and 73 independent
of h, from (4.7) and (4.10)-(4.12). Finally, from (4.5) and (4.10)-(4.12) we have

R((vn, qn), @n(vnsqn)) = (sulan), sulan + ady,(an)))q

(4.13) = [Isn(an)llg + als(an), s(dn(an))e = lIsn(an)llz > 0.
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The validity of H.5 follows then directly from Lemma 3.1. |
We can now conclude with a general error estimate for this type of stabilisations.

Theorem 4.1 Assume that A.0 and A.1 hold, and let (u,p) be the solution of Problem (1.1).
Assume that in (4.2) R is defined through (4.11) and (4.12) using an sy, that satisfies (4.10).
Then for every positive r Problem (4.2) has a unique solution (up,pp), and there exist a
consant C, independent of h, such that, for every (ur,pr) € Vi, X Qy and for every g, € Q,

we have _ _
lur —unl[3 + |1P(pr — pu)llg + rll(Id = P)(pr — pi)ll5

—) (lw = wrl|Z + llp = pellEy + r2llpr — Tall) -

Proof of Theorem 4.1

Under the above assumptions, we can immediately apply Lemma 3.4, that in our case gives,
for every (ur,pr) € Vi x Qp,

lur = unll} + |P(pr — pw)llE + rll(Id — P)(pr — pn)ll,

4. r
(4.15) <O (lu—wrll2 + Ip - prll3 + r2(R((Cur, pi))?)

r

with a constant C' independent of h. Using then (4.10)-(4.12) we have, for every g, € Q,

(4.16) R((ur,pr)) = sup (sn(p1)s snlan))q —su (sn(pr — @), snlqn))

Q 2 —
< &llpr — @llo
an lanllq an lgnllo i "

which inserted in (4.15) gives the result. i

It is clear that traditional bounds for the error between the continuous solution and the
discrete solution can be obtained from (4.14) by a suitable use of the triangle inequality, as
we are going to do in the following corollaries. However, as we shall see, it will be convenient
to split them in two cases: one in which r is bounded from below by a positive constant
independent of h (but we allow it to be arbitrarily large), and the other in which r is bounded
from above by a positive constant independent of & (but we allow it to go to zero for h going
to zero). In order to simplify the exposition, we introduce first the following notation: given
a Hilbert space W, an element w € W and a subspace W, C W we set:

(4.17) E(w, W) := inf |lw — wp||w.

wp EWp
The following notation will also be convenient: for p € Q, for Q, C Q, C @ and r a positive
real number, we set:

B 1/2
(4.18) a@@m@yz(mfnﬁum—m@+ﬂm—%%0 -

ahEQn GLEQ),
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We have then the following two corollaries, whose proof follows immediately from Theo-
rem 4.1.

Corollary 4.1 In the same hypotheses of Theorem /.1, assume that there exists an ro inde-
pendent of h such that r > ry. The there exist a constant C', independent of r and h, such
that o

lu — unlf3 + [P — pallgy + 7llpn — Ppall

(4.19) <o (XY (B2, V) + 20,0 Q).

Corollary 4.2 In the same hypotheses of Theorem 4.1, assume that there exists an 1o inde-
pendent of h such that r < ry. The there exist a constant C', independent of r and h, such
that o o

lu = unll§ + [1P(p = p)llG + rll(p — pn) — P(p — pu) I

(4.20) <o (X0 (B2(u, Vi) + B2, Q0. 0))) |

Remark 4.1

As we have said, the result of Corollary 4.1 applies as well to the cases in which r is very
large. In these cases, we remark that in (4.18) we can obviously choose ¢, € @, so that
E.(p,Qn, Q) < E(p, Q) and then from (4.19) we easily obtain

(4.21) lu —unlly + llp = pullgy < C ((B*(u, Vi) + E*(p, Q1))

as we could have obtained directly from Lemma 3.3. In fact for r large the method is
equivalent to penalising the unstable part of @, to actually obtain a solution in @,. The
theoretical interest of this choice seems questionable, as we could use directly a discretisation
with V;, and @,, that would be stable and provide essentially the same error bound. In
practice however this choice could still be interesting for various reasons. For instance the
choice of @, might be dictated by other equations that have to be solved toghether with (1.1),
or by some optimistic hope of an improvement in the constants, providing better results for
a fixed h. i

Remark 4.2 In fact the most interesting case is covered by Corollary 4.2, and corresponds
to use an r that goes to zero when h goes to zero, in the spirit of Remark 3.4. This becomes
specially interesting when E(p, Q) is of a lower order than F(u,V}). In this case, we can
add and subtract p in the expression of E,(p, Qp, @,) to obtain

(4.22) lp = anlley + r*llan — a@nlle < (1 + 20)|lp = aullgy + 2r%[lp — anll
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and then (4.20) easily becomes
lu = wnl% + 1P(p = p) I + 71l (P — p1) = P(p — )l

(4.23) 1 _

S C ;(E2(U,, Vh) + E2(p, Qh)) + TE2(p, Qh) :

When @, provides a worse accuracy (with respect to Vj, and Q) so that the term E2?(p, Q),) is
bigger than the term E?(u, V;)+E*(p, @4), a small  can, somehow, compensate the difference
(see Remark 3.4). Notice that, in this case, the theory can be applied with @, = {0} (pure
penalty methods.) [ |

Example 4.1 Stabilisation of the (); — P, element

The first case that we consider has been studied by Sylvester [23] for the Stokes problem.
The goal is the stabilisation of the classical bilinear velocity—constant pressure (Q1—Fp)
approximation which notoriously suffers from stability problems ([21], [9], [18]). We thus
consider the Stokes problem

{fQ e(u) s e(v) dx — [,p dive dx = [, f - v dx Vo € (H(Q))?

4.24
(4.24) Joq dive dx =0 Vq € L3(Q),

where L3(2) is the set of square integrable functions with null average.

Let 7j, be a partition of € into rectangles ( we restrict ourselves to this simplified setting,
instead of the general isoparametric case, for the sake of a lighter presentation.) We now
take for V}, the space of piecewise bilinear continuous functions, and for (), the space of
piecewise constants:

{ Vi = {v, € (HE(Q))? | vy = a+bo + cy + doy, VK € Ty}

4.25
(4.25) Qn = {an € L§(Q) | qnic = constant, VK € Ty}

On a rectangular mesh, it is well known that this approximation suffers from the checker-
board spurious mode on pp: the kernel of the discrete gradient (in the space of piecewise
constants) is two-dimensional and contains besides the expected global constants (which do
not belong to @) a second mode alternating values in a checkerboard pattern.

There also exist other unstable modes which emanate from local checkerboard patterns ([20]).

Indeed, let us split 75, into 2 x 2 macroelements and on a macroelement M

let us define

1on A,
—1 on B,
—1 on C,
lonD

(4.26) OBy =
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+1 -1

-1 +1
C D

Figure 4.1: Macroelement

and
(4.27) CBy={aqn | quu =aCBy VM}.

It is easily seen (cfr. e.g.[21]) that, defining @ to be the orthogonal complement of C'By, in
Qp, the pair V, x @, gives a stable approximation which is equivalent (from the point view

of degrees of freedom) to the Qo — Py piecewise quadratic—piecewise linear approximation.
The above theory provides different possibilities for stabilising: we can take

(4.28) R = Ri(pn, qn) = (P — Ppn.an — Pay)

which corresponds to (4.9), or set, in each 2 x 2 macroelement, s,(qn) = ¢4 — ¢ — qc + 4p,
and then use

(4.29) R = Ry(pn, qn) = (sn(pn), sn(an))

which clearly satisfies (4.10). As we have seen in the previous section, both choices can be
used with arbitrarily large r. It is clear that, for r large, the use of these stabilisations is
equivalent to penalising the checkerboard mode and that the result is essentially the same
as if one had used the stable approximation V}, x Q.

In Sylvester [23], one also uses

R(gn,an) = (g5 — ¢4)* + (gc — q4)* + (a0 — 48)* + (a0 — 4¢)?)

For r large, this amounts to take
@, = {qu| q» = constant on M},

that is the space of piecewise constants on macroelements, which is actually an “overstabili-
sation”.
Remark 4.3

An identical situation is met if we consider a triangular grid 7, which has been obtained
from a coarser one, say 7, by splitting as usual each triangle into four identical ones. Taking
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the space of piecewise linear continuous vectors on 7} for velocities and piecewise constants
on T, for pressures we clearly have a stable pair. As above, this can be used to stabilise a
P1 — PO approximation on 7y, which by itself would be highly unstable. |

Example 4.2 Taylor-Hood approximation for Stokes

Another widely employed approximation for the Stokes problem is the Taylor -Hood
P, — P, element which uses, on triangles, a continuous approximation for pressure of degree
one and a continuous approximation for velocity of degree two. This is apparently a drawback
for many users who prefer the simplicity of the P, — P, equal-order interpolation. One could
eventually think of using stabilisation as follows. Suppose that we use a piecewise quadratic
approximation for the pressure.

Let us consider an edge at the interface of two triangles.L.et A and B be the endpoints
of this edge and C' its midpoint. We can define

sn(an) = q(A) — 2¢(C) + q(B)
and

R((wr qn), (Wns qn)) = Sedges (sn(qn))”

Introducing this term with a large r obviously forces ¢, to become linear on the edge,
thus reducing the approximation to the Taylor-Hood approximation. It is easily seen that
the theory applies and that, for r large, we get the usual O(h?) error estimates. We could
also employ for both variables a piecewise linear approximation on macro-elements obtained
by subdividing each triangle into four subtriangles. One can then use the same trick, forcing
the pressure to be linear on each macro-element, obtaining in the limit the popular variant
often called the P1 —isoP2 approximation, with the usual O(h) error estimate. We will not
develop further, as this procedure (for obtaining P1 — isoP2 as a limit of a penalty method
on P1 — P1) has never been implemented to our knowledge.

Example 4.3 Penalty methods
We still consider the Stokes problem (4.24), and we employ for V}, x @, the unstable
choice,
(4.30) Vi = {Bh € (Hy(Q)* | vy € P(K), VK € Th}
Qh:{QheLg| qh‘KEPl(K), \V/KGE}

Note that (4.30) is a discontinuous pressure approximation as we impose no continuity
requirement on (), at interfaces.This not a stable choice and the classical procedures to make
it stable are
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1. Use alarger V},. The Crouzeix-Raviart element [13] is built along this option by adding
cubic bubble functions to V}, .

2. Use a smaller . Taking as previously @, as the space of piecewise constant pres-
sures yields a stable approximation, at the price of a loss of accuracy: this P, — B,
approximation is only O(h) instead of the O(h?) that one expects from the choice of
Vi.

Stabilisation opens another avenue. The couple V}, x @, is stable and we can define, as in
Example 4.1, R(pn, qn) = (pr — Pph,qn — Pgy). The Stokes problem (4.24) becomes

Jo €(uy,)  e(vy,) dx — [, pp divy, dx = fni vy, dx Vo, € V),
[ an divw, dx + 7 (pn — Ppr,an — Pg) =0 Van € Qp.

This can also be written, after a few algebraic manipulations, as

(4.31)

Jo €luy) = e(vy) dx — [, by, divey, dx+
1
(4.32) - Jo divu,dive,dx = [i) f - v, dx Yo, €V,
fQ G, divy, dx =0 Vg, € @ha

where P, now lies in @,. This can be read as an augmented Lagrangian formulation for the
constraint div u, = 0. It can also be seen that, for r large, (4.32) reduces to the standard
P, — Py approximation, as the “penalty" term (containig 1/r) becomes negligible.

We can now apply the general results. For a fixed value of r, we get an O(h) convergence
rate as the consistency term

R -P
R := sup (pl, qh) — sup (pl Pr, Qh)
o llanll an gl

is obviouly only O(h). However if we now employ the technique of Remark 4.2, taking
r = O(h) in (4.23) yields an O(h*?) estimate for velocities in H' and for the elementwise
mean value of the pressure in L?, as it has been pointed out in [7].

One can also see that, taking @, = {0}, we obtain a pure penalty method. In this case
our analysis provides the following result: if the space V}, yields an O(h¥) approximation,
taking r = O(h*/?) we obtain globally an O(h¥/?) error estimate on velocities, regardless of
the choice of approximation for ().

5 A second class of applications

We consider now another general situation in which our abstract framework can be applied.
We go back to a problem of the form (4.1) and we still make the assumption that a(-,-) is
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elliptic on V. On the other hand, instead of assuming that we know a stable approximation
Vi, x Q),, we make the following hypotheses.

A.2 i) there exists a Hilbert space H with V-C H = H' C V' and a function w : Rt —
R such that

(5.1) w(h)[[onllv < flonllm, — Von € Vi
i) if B': Q — V' is the linear operator associated with the bilinear form b(v,q),
we have
(5.2) BYQw) C H

iii) there exists a linear operator I from V into V}, and two positive constants o and
cr, independent of h, such that

(5.3) 1(v) = vlla < ow)lvllv, and [I(v)[ly < erlvlly Voe V.

As an example, let us say that this assumption is verified when the pressure of Stokes
problem is discretised by a space of continuous finite elements. Let us recall that from
Proposition 2.2 we have a priori stability in the semi-norm

(5.4) [(vn, @)1z = Nloally + [an]i
with ) B
(5.5) [[Qh]]h .= sup (Uh,(Jh) — su (Uh, (Jh)H
o onllv w ol

We then have that assumption H.1 holds in our case, for the seminorm (5.4), with constants
independent of h. Moreover it is obvious from (5.1) and (5.2) that we have

(5.6) [an]n > w(h)|| Py, B'qn 1

where Py, is the projection operator, in H, onto V;, CV C H.
The stability in the semi-norm (5.4) therefore implies also the stability in

(5.7) [(vn, an)s = llonll* + w*(R) | Pv;, B anll%-

and H.1 will hold, with constants independent of h, for the seminorm (5.7) as well. In
agreement with the general procedure developed in Section 3, we can now take H = H with
Gu((vn, qn)) = Bqn — Py, B'qy,, and define:

(5.8) R((un, pn), (vn, qn)) = (B'pn — Py, B'pn, B'ay — Py, B'qy) , -
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It is clear that H.2 will hold with constants independent of h. Moreover it is easy to see,
checking the expression of @, in (2.21), that it leaves the second component invariant. Then
from (5.8) we easily have that H.4 holds. We are left with H.3 which will be proved in the
next two propositions using essentially the so-called Verfiirth’s trick [25].

Lemma 5.1
Assume that A.0 and A.2 hold. Then

b(vp,
(5.9) crlan]n == ¢r sup M

> kollallq — crow(h)||B'an|ar Yan € Qu,
v €V ||Uh||V

where ko is the inf-sup constant appearing in (1.5), w(h) is given in (5.1), and o, ¢; are
given in (5.3).

Proof of Lemma 5.1

We have from the inf-sup condition (1.5), and (5.3)

o bwa) (W) a) | e~ ()0
follarllo < sup = vp( ©lv T el )
L BI@La)  (0= 10), B )
(5.10) S aSPII) TP Tollv
< o o) | o= 1) 1B ()
S SPTe T ol
SCI[[qh]]thaw( WB'qllz Van € Qn. i

We can now easily get the following result.

Lemma 5.2

Under the assumptions A.0 and A.2 there exists a constant %, independent of h, such that
(5.11) [l + &* (M| B'ar = Py, Banllys > Ellanllyy  Yan € Qn.

Proof of Lemma 5.2

Indeed, from (5.6) one easily obtains

(5.12) [an] + w?(R) || B'an — Py, B'n||3; > w*(R)|B'anllZ, Yan € Qn,
and from (5.9)

(5.13) 2¢ilanls = Ksllanllg — 207w ()| B'qn
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Then (5.11) is obtained by summing (5.12) and (5.13) with appropriate constants. i

Lemma 5.2 implies that H.3 holds, with the above choices for [ -], and G, with a constant
73 independent of h, and with 75 = w?(h). In a sense, we have a stability result that is
stronger than necessary. However, if we look at the statement of Lemma 3.4, it is clear that
a small v, offers the possibility of using a small r without “paying the price". This is indeed
what happens in the following convergence theorem.

Theorem 5.1 Assume that A.2 holds, and let (u,p) be the solution of Problem (1.1). Assume
that in (4.2) R is defined through (5.8). Then for every positive r Problem (4.2) has a unique
solution (un,pp) and there exists a constant C, independent of h and r, such that:

lw = unll¥ + llp = pallg

(5.14) SC(M)(Ez(u,vh)_|_(1+r2)E2(p,Qh)—|—7"2E2(Btp,Vh))

-
with the notation introduced in (4.17).
Proof of Theorem 5.1

The proof follows directly from Lemma 3.1, Lemma 3.4 the definition of R given in (5.8) and
a few triangle inequalities. | |

In certain cases, as we are going to see in the sequel, it might be more convenient to consider
another subspace V}, of H and change the definition of R (5.8) into

(5.15) R((un,pn), (vn, @n)) = (Btph — Py, B'py, By — Pf/hthh>H-

This will be allowed, and it will still give optimal error estimates, provided that we have the
following inequality.

A.3 With the notation of aAssumption A.2, there exists a positive constant E, independent
of h, such that

(5.16) 1Py, B'anl* + || B'an — Py, B'anl* > B B'anl” Van € Q.

Indeed, proceeding as in Lemma 5.2, and using (5.6) inequality (5.16) will imply
(5.17) [a]7 + w? (W1 B'an — Py, B'asll3; > Ellanlly  Van € Qu.
We summarise the above discussion in the following theorem.

Theorem 5.2 Assume that A.2 and A.3 hold, and let (u, p) be the solution of Problem (1.1).
Assume that in (4.2) R is defined through (5.15). Then for every positive r Problem (4.2)
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has a unique solution (up,py) and there exists a constant C' independent of r and h such
that:
[ —unl[i + [Ip = pallg + 7| B(p — pn) — Py, B'(p — i) I3

w?(h) +r 2 2\ 172 272( Rty 17
< O (F2) (B2(u,Va) + (L4+12)EX(p, Qu) + 12 E*(B'p, Vi)
with the notation introduced in (4.17).
Proof of Theorem 5.2

(5.18)

The proof follows the same lines as the one of Theorem 5.1. |

Example 5.1

We consider again Stokes problem as described in Example 4.1. However we now consider a
piecewise linear approximation for both V;, and @)}, a so-called equal interpolation case. On
a general mesh, it is not possible, to our knowledge, to build (as in the previous section) a
subspace @, yielding a stable approximation. We can however apply in a straightforward
way the previous results with H = (L%*(2))?. We have here w?(h) = 0(h?). We can also
write the bilinear form b(-, ) in two ways,

(5.19) b(vy, qn) = —/ div v, gpdx = +/gh - Vgpdx.
Q Q

The stabilised Stokes problem now reads

(5.20) {“(ﬂh’ﬂh) + (Un, Yopn) = (fr00) Vo, € Vi,

(w,, V) — (Vo — Py, Y ou, Y an) = (9,qn) Van € Qn,

where we also introduced a possible right-hand side g in the second equation. The projection
operator is not local and it is more convenient to write (5.20) in the form

a(w,,vy,) + (@, Yopu) = (f,u,) Yy, € Vi,
U,V qn) =r(V pn, Y qn) + (9,q) Van € Qn,
@haﬂh)H = (H}pyh)H + (th,yh)H Vﬂh S Vha

(5.21)

where stability is seen to have been gained at the expense of a larger, non symmetric linear
system. In practice, this can be solved by some iterative process.

To study convergence, we consider the estimate (5.14). It is clear that some potential
trouble might lie in the last term of this inequality, that in our case is 7|V p — P, V pl|%.
Indeed, the space V}, is made of functions vanishing on the boundary, while V p does not.
This induces a bad approximation near the boundary and it is easy to see that the term
at hand is O(h) for p regular enough. To get the correct order of convergence, we are thus
led to use r = O(h), which still is going to ensure convergence, as it will give r > ¢;w?(h)
asymptotically.
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It must be recalled that the more classical stabilised problem (Brezzi-Pitkéiranta [ )

5.22
(5.22) (up, Vopu, ) + (VY pn, V. qn) =0 Yan € Qn,

requires 7 = 0(h?) in order to get the right order of approximation. This is also clear from
our estimate if we take Py, = 0. At the first sight, one might think that stabilising with
r = O(h?) is somehow better than using O(h), as the consistency error becomes smaller.
However, numerical experiments show that the scheme (5.22) with r = ¢ h? suffers from
minor instabilities (oscillations of the pressure variable near to the boundary) when ¢ is
too small, while for a larger § a boundary layer will appear (corresponding to a Neumann
boundary condition 7dp/0n = 0.) The same is true for the scheme (5.20) if we take r = ¢ h.
On the other hand, very good results have been observed experimentally by Habashi et alii [6]
if, instead of Py, , one uses the projection Py on the space Vh in which boundary conditions
are ignored. In particular, this choice eliminates the boundary layer effect, and allows to
take a much bigger r (for instance r = 1) in order to suppress the oscillations. It is clear
that with this choice we could recover the right order of convergence in the right-hand side
of (5.14). We are then in the situation of Theorem 5.2, and we have to prove that inequality
(5.16) of Assuption A3 holds. A result of this type is claimed in [12]. Since the proof there
is rather complicated and might require some minor fixing, for convenience of the reader we
report here another proof, limited to the case k=1. The proof follows, in essence, similar lines
(macroelements, continuous dependence of the constant on the shape of the macroelement
and so on) of the original one in [12], but has a simpler presentation.

{a(@h,yh) + (U, Yopn) = (1) Von € Va,

Proposition 5.1

Let Qn and V}, be the space of piecewise linear pressures and velocities as above, and let
Vi, be the space of piecewise linear continuous vectors on Ty, (without boundary conditions.)
There exists a constant 3* > 0, independent of h, such that, for every q, € Qy and for every
w,, € Vy, there exists a v) €V}, verifying

(5.23) 129 < IV ]|
and
(5.24) (%, V) + [|[Van — w,|* > 8%V anl)?

where scalar products and norms are all in L*($).

Proof of Proposition 5.1

Let us consider first a macroelement K made by the collection of triangles having one
vertex P of 7;, in common. Split ¢, = ¢y + q¢, where ¢p is such that Vg, has zero mean value
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in K and ¢, is linear on K (hence Vg, = constant in K.) It is clear that (Vqo, Vg/)x = 0.
We take now v}, piecewise linear, continuous, vanishing on the boundary of K and having
value V6V ¢, at the internal vertex P. An easy computation shows that:

(5.25) |

and
(5.26) (05, Vo) = \[ IV gell5, -

On the other hand, V¢, belongs to a space (piecewise constant vectors on K, with contin-
uous tangential components, and zero mean on K) whose intersection with piecewise linear
continuous vectors on K is reduced to the zero vector. As we are in finite dimension, there
exists a positive constant dx such that, for every Vg, and for every w,

(5.27) 1Vgo — thIQ > 6K||ZQ0||§,K'
As Vg, is clearly continuous and piecewise linear, (5.27) easily implies that

IVan — wyl]? = [IVqo + Var — w,||?

5.28 i
( ) = ||Z(I0 _ﬂh“2 > 5K||ZQ0 2

and a simple scaling argument shows immediately that dx is independent of the size of K
(notice that (5.28) holds for every w,,.)
Finally we explicitly point out that

0
(5.29) (v), Vo) x Uh / Vqdz =0,

where P is the only vertex internal to K. From (5.26)-(5.29) one then gets that, for every g,
and for every w,, there is a v{, piecewise linear, continuous, and vanishing on the boundary
of K, such that (5.25) holds and

(5.30) (wh Yan)x + [I¥an — willg . = BrlIVanll5 i

for some positive constant Sk independent of g, and w;,. The result (5.23), (5.24) follows then
easily from (5.30) by typical instruments (continuity of S, splitting of € into macroelements
such that each triangle belongs at most to three different macroelements, and so on.) |

With the aid of Proposition 5.1 we can now prove Assumption A.3.

Proposition 5.2
Let Qpn, Vi, and ‘N/h be as in Proposition 5.1. Then there exists a constant E > 0 such that
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(5.31) 1Py, Yanl* + IVan — Py, Yau® > BlINaul*>  Yan € Qa
where all the norms are in L2.

Proof of Proposition 5.2

We start by observing that, for every v9 and ¢, we have

(vh, ¥Yan) = (), Pv,Nan) < [0} ]| | Py, V||

(5.32) I5; 1 5

< —||Py, ¥V
where the last inequality clearly holds for every positive 5*, but we shall use it for the value
of B* given in (5.24). For every g, we take now v) as given by Proposition 5.1, and using

(5.23) we have
(5.33) (vh, Vagn) < %HthIIZ +

P+

1
2%

1Py, Yan .

that, inserted in (5.24) with w, = Py Vg, gives

i 1 :
(5.34) 1Yl + 55 1P Yl + 1V — Py Yaul* = 67 [Vanl”
and (5.31) follows immediately. i

We can then apply Theorem 5.2, and see that, for r = O(1), the stabilised Stokes problem:

a(wy,,vy) + (0, Y opn) = (f v,) Yo, € Vi,
(uns Y @) =7 (N pn — Py, VY opu, N qn) = (9,qn)  Van € Qn,
is stable and optimally convergent when we take piecewise linear continuous velocities and

pressure, and for V) the space of piecewise linear continuous vectors without boundary
conditions. |

(5.35)

Example 5.2

Let us consider a “ mixed formulation" of the Dirichet problem.

(¢,1) +(z, ¥ ¢) =0 VL eX,
(5:36) { (mY @) =(f,p) Vpel,

having taken ¥ = (L*(2))? = H = %', ¥ = H}(Q2). At the continuous level, this is nothing
but a somewhat bizarre way of writing the standard formulation

(5.37) /QZz/)-ZgodX:/Qf pdx Vo e U.
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This equivalence however does not hold in general for discretised problems, unless W,
and X, are chosen in such a way that the space of gradients of ¥, is contained in ¥;,. Let us
consider, as an example, a case in which this condition is violated: the so-called equal-order
interpolation. We take

(5.39) {\I’h:{SOhGH&(Q) | oni € Pu(K)? VK € Th}

Sn= {1, € (H'(Q)* | Ty € (Pu(K))* VK € Th}

and we look for (7, pp) in Xj, x ¥, such that:

(5.39)

(gp, 1) + (1, Vb)) =0 V1, € ),
(a1, Y on) = (f, ¢n) Vo € Uy,

This is not stable. Indeed one easily checks that we have

b(Th, ¢
(5.40) sup w =: [en]n = |1P5, Y onlln
Ty Lh
instead of
(5.41) [onn > IV onllm,

which would ensure stability from Poincaré’s inequality. Applying our procedure (with,
clearly, V' =¥ and @) = U,) we consider the stabilised problem,

(5.42) { (ap,7h) + (1, V) =0, VI, €3y

(01, Y on) + (N n — Py, N 0w, N on) = (f, ¢n) Yo € Yy,
Theorem 5.1 applies directly and we can get a convergence proof to the correct order in h.

Notice that in this case there are no troubles with the boundary conditions, as we have them
on ¥ and not on X.

Remark 5.1

The stabilised formulation (5.42) can be read as a convex combination of the standard
discrete formulation

(5.43) /Z%'z(Pth:/fgohdx Yo, € Uy,

Q Q
and the mixed formulation (5.36). Indeed Ps, V ), = 0y, [ |
Remark 5.2

Although we have followed the same general framework, there is a fundamental difference
between Example 5.1 and Example 5.2 (beside the role of boundary conditions.) Indeed in
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this last case we have V' =X = H so that the constant w(h) = 1, while in Example 5.1 we
had to employ the equivalence of norms in finite dimensional spaces. [ |

Example 5.3

We discuss now a “viscoelastic "problem. We consider a variant of Stokes problem, as a model
problem for situations appearing in the finite element approximation of some viscoelastic flow
problems. This example was, in fact, the first instance where the stabilisation technique
developed in this paper was introduced. We refer to [14] and [15] for a more detailed
presentation.

We take V = (H} ()%, Q = L*(Q) and ¥ = (L*(Q))?, the space of symmetric square-
integrable tensors, and we look for (u,p,0) € V' x @ x ¥ such that:

(@,2) +(G(2) 1) =n (T, e(w) + (F(w),) VZeX,
(5.44) (divu,q) =0 Vg € Q,

(2, €) + (p,dive) = (f,v) VueV
Here, 7 is a constant depending on the viscosity, and the functions G(-) and F'(-) are repre-
senting rather complex terms which may vary from a model to another and can include Lie

derivatives in convected models. They can be left undefined for our present purpose.
We now consider the discrete problem,

(@,.z,)+(Glg,),r,) =n(z, . e(w)) + (Fu,),7,) VI, € p,
(5.45) (div uy,,qn) =0 Vg, € Q,
(@,:€(v) + (P, divv,) = (f,v,) Yy, €V,

where V},, @, and X, are finite element subspaces of V', () and ¥, respectively. Let us reduce
this temporarily to a simple Stokes problem:

(@,.7,) =n(T,,€(w,)) VI, € Xy,
(5.46) (div up,,qn) =0 Vi € Qp,
(2, () + (Pn, div vy) = (f,v,) Vo, € Vi

The first equation can now be read as:
(5.47) o, = Ps,(e(uy))

and we can understand why we may have a stability problem, as P, (¢(u,)) is not strong
enough to control u, through a Korn’s inequality, unless ¥, is rich enough ([16]). Following
the general procedure, we thus write, instead of (5.45), a stabilised form
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(¢,.7,) +(G(g,),7,) =n(z, e(w,)) + (Fu,),z,) Vz,,
(div uy, qn) =0 Van,
(g, €(wn)) + r(elun) = Po, (€(un)), €(vs))

+(pn, div v,) = (f,v4) Yoy
Applying the theory is again straightforward. In fact this is very close to the previous
example but is much more relevant in applications, as it strongly widens the range of possible
approximations of (5.44). Indeed, we may now use any reasonable approximation for ¥,
the only constraint being to get the right order of precision. The price to pay is that the

projection operator is most often not local, and that it has to be considered as an extra
equation in the problem, which can also be written as

(e,,7,) +(G(g,),1,) =n(z,,ew)) + (Flw),z,) VI,

(div uy,, qn) =0 Y,

(h €(v)) +r(elw,) — g, €wn)) + (pn, div v,) = (f,v5) Yoy,
g, = Ps,(e(uy))-

We refer to [14] for details about implementation and numerical results.

(5.48)

(5.49)

6 Coercivity on the kernel of B

In all previous examples, we have used stabilisation to ensure an inf-sup condition. In many
problems, e.g., plate problems, coercivity of the bilinear form a(-,-) is an equally important
issue and we can apply the same general framework to get stability when needed. Let us
then suppose that, in problem (1.1), we have a bilinear form on V' x V' that is coercive only
on ker B. It is then natural to suppose that one has

(6.1) a(v,v) + ||Bv||* > ||v||3 Vv e V.

The problem arises because, in general, ker By, is not a subset of ker B
Let us introduce then, instead of (1.6), a stabilised discrete problem: find (up,pp) €
Vi, X Qn, Vi, CV, Q) C @, such that,

(6.2) { a(up, vp) + b(vp, p) + r(Bup — Bruy, Bop)g = (f,vs) Yo, € Vi,

b(un, qn) = (9, qn) Van € Q.

It is then obvious that we now have coercivity on the kernel of Bj,. Here again we have
employed the strategy of adding the minimum amount of stabilisation. In fact the stabilising
term vanishes if ker B;, C ker B. We also notice that the stabilising term is in fact symmetric,
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as By is the projection of Buvy, on Q. As to error estimation, it is easy to obtain, using
Lemma 3.3, the following result.

Proposition 6.1 Let (u,p) be the solution of (1.6) and (up,py) the solution of the stabilised

problem (6.2), with an r independent of h. Then there exists a constant C, independent of
h, such that:

(6.3) lun = ull5 + llpn = pllg < C (E*(u, Vi) + E*(p, Qu) + E*(Bu, Q)
always with the notation (4.17). i

To fix ideas, let us consider a simple mixed formulation for the Dirichlet’s problem: find
u €V = H(div,Q) and p € Q = L*(Q) solution of

(6.4) { (w,v) + (p,divy) =0, YveV

(divu,q) = (9,9) Vq€eQ.

Here we have B = div and this is a simple example in which the bilinear form af(-,-) is
coercive only on

ker B = {v,| v, € H(div,Q), divv, =0} .

Except for very special constructions (see e.g. [9] and the references therein) of the spaces
Vi, and @, the discrete kernel ker Bj, = ker Py, div is not a subset of ker B. This is is the
case, for instance, if one uses the Mini element of [3] to build V,, and Q. Let us recall it
briefly: let 7, be a triangulation of €2 and let, for every K € 7,, bg be the cubic bubble in
K defined by bg = A1 A2A3. We set:

(6.5) { Vi = {ﬂh | v, € CQ), vy i € (P(K) + axbk)® VK € Th}
Qh:{Qh|QhECO(Q)7Qh\K€P1(K) VKE'FL}.

It is classical that this approximation satisfies an inf-sup condition (in fact a stronger one
than what we need here.)
To get a stabilised problem, we write

(6.6) { (wy, vy) + (pn, divy,) + r(dive, — Py, divw,, divy,) =0 Y,

(divw,, qn) = (g,qn) Vau.

The projection operator is not, in general, local, and must be considered at the expenses of an
extra equation. However it is easy to see that our general theory applies, and that the error
estimate (6.3) yields the right order for the spaces at hand. In the particular case above, we
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can eliminate Py, divy,, as the second equation of (6.6) states in fact that Py, divu, = Py, g.
We can thus replace (6.6) by :

(uy,vp,) + (pn, divvy) + r(dive, — Pg, g, divey) =0 Yu, € V,

(6.7 (divug, gn) = (9,qn) VYan € Qn

This is very similar to the satbilisation introduced in [10].
This way of modifying the equations to bypass the coercivity problem proved to be fruitful
also in the context of the approximation of Mindlin—Reissner plates ( [1]) and shell problems

(1221, [21)

7 Conclusions

The various examples presented clearly show that the abstract theory developed here provides
a unified framework for a wide class of applications, establishing links between apparently
unrelated techniques. The theory also provides a general way of choosing the value of the
stabilising parameter with respect to the mesh size and permits to obtain in some cases
sharper error bounds.
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