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Abstrat. We onsider the approximation of ellipti boundary

value problems by onforming �nite element methods. A model

problem, the Poisson equation with Dirihlet boundary onditions,

is used to examine the onvergene behavior of ux de�ned on an

internal boundary whih splits the domain in two. A variational

de�nition of ux, designed to satisfy loal onservation laws, is

shown to lead to improved rates of onvergene.

1. Introdution

In mathematial modeling of physial phenomena one frequently en-

ounters instanes when the primary quantity of interest is not the

analytial solution to the underlying partial di�erential equation but

a linear funtional of the analytial solution to the equation; in suh

ases, solving the di�erential equation onsidered is only an interme-

diate stage in the proess of omputing the main quantity of onern.

For example, in uid dynamis one may be interested in alulating the

lift and drag oeÆients of a body immersed in a visous inompress-

ible uid whose ow is governed by the Navier-Stokes equations. The

lift and drag oeÆients are de�ned as integrals, over the boundary

of the body, of the stress tensor omponents normal and tangential to

the ow, respetively. Similarly, in elastiity theory, the quantities of

prime interest, suh as the stress intensity fator, or the moments of a

shell or a plate, are derived quantities.

A further aspet of measurement problems of this kind is that, fre-

quently, the funtional under onsideration may be expressed in var-

ious forms whih are mutually equivalent at the ontinuous level but

1991 Mathematis Subjet Classi�ation. 65N30, 65N15, 65N50.

Key words and phrases. Finite element methods, onservation, error estimates,

ux funtionals.

1



2 FRANCO BREZZI, T.J.R. HUGHES, AND ENDRE S

�

ULI

result in very di�erent approximations under disretization. Thus it

is important to selet the appropriate representation of the funtional

before formulating its disretization. This basi idea has been widely

exploited in strutural mehanis [1, 2, 3, 4℄ and heat ondution [14℄ to

post-proess �nite element approximations, and more reently also in

the �eld of omputational uid dynamis in the ontext of a posteriori

error estimation for lift and drag omputations (f. [9℄).

In this paper we shall be onerned with the �nite element approxi-

mation of one partiular funtional: the di�usive ux over an interfae.

Our aim is to show that the natural \variational de�nition" of the dis-

rete ux an provide a high order of auray in suitably de�ned dual

norms. In doing so, we shall not aim at generality. On the ontrary,

we will try to present the main idea on the simplest possible prob-

lem, in order to stress what we believe to be the ruial points and

instruments, avoiding tehnialities as muh as possible. We believe

however that more general results are true, and the diÆulty in their

proof is mainly of a tehnial nature. The related problem of error

analysis of the di�usive ux approximation over the entire boundary of

the omputational domain has been onsidered by Barrett and Elliott

in [5℄.

The paper is strutured as follows. The model problem is desribed

in Setion 2, together with the de�nition of the proposed approximation

of the ux, while Setion 3 is devoted to the proof of our error estimate.

Throughout the paper we shall use the usual notation for Sobolev

spaes and their norms jj � jj and seminorms j � j. See, for example, [7℄,

[11℄.

2. The model problem and the main result

2.1. The geometry of the problem. Let 
 be a retangle in the

plane with boundary �
. We shall suppose that 
 is split into two

disjoint open subdomains 


1

and 


2

by a straight line �. We do not

assume � to be parallel to one of the edges of 
; however, for the sake

of simpliity of the notation we shall require that � has equation x = 0.

2.2. The model problem. For a given f , smooth enough, we onsider

the following problem:

(2.1)

�

�nd u 2 H

1

0

(
) suh that

�� u = f in 
:
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Figure 1. The domain 
 and the internal boundary �.

It is well known that (2.1) has a unique solution. We set V := H

1

0

(
),

and for u and v in V we let

(2.2) a(u; v) :=

Z




ru � rv dx dy:

Hene, the variational formulation of (2.1) is

(2.3)

�

�nd u 2 V suh that

a(u; v) = (f; v) 8v 2 V;

where, as usual, (�; �) represents the inner produt in L

2

(
).

2.3. The deomposition and the disrete problem. Let T

h

be a

deomposition of 
 into triangles whih is ompatible with the splitting

of 
 into 


1

and 


2

(this obviously means that eah triangle is a subset

of one of the two subdomains.) For k an integer � 1 we onsider the

spae V

k

h

de�ned as

V

k

h

:= fv

h

2 C

0

(
) \H

1

0

(
); v

h

jT

2 P

k

8T 2 T

h

g;

that is the usual �nite element spae of ontinuous pieewise polynomi-

als of degree k over the deomposition T

h

whih obey the homogeneous

Dirihlet boundary ondition on �
.

In tandem with (2.3) onsider the following disrete problem:

(2.4)

�

�nd u

h

2 V

k

h

suh that

a(u

h

; v

h

) = (f; v

h

) 8v

h

2 V

k

h

:
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It is well known (see, for instane, [7℄) that (2.4) has a unique solution

u

h

, and that the following error estimates hold, whenever the analytial

solution u has the neessary regularity:

(2.5) jju� u

h

jj

r;


� C h

k+1�r

juj

k+1;


; r = 0; 1;

where, here and in all the sequel, C denotes a onstant (not neessarily

the same at the various ourrenies) that, in general, might depend

on k, on the minimum angle in the deomposition, and possibly on the

geometrial data of the problem (i.e. 
 and �).

2.4. The disrete ux, and the statement of the main result.

First of all, in analogy with (2.2) we introdue

(2.6) a

i

(u ; v) :=

Z




i

ru � rv d


for i = 1; 2. We de�ne now the ontinuous ux from 


1

into 


2

through

the interfae � as

(2.7) F

u

:= (

�u

�x

)

j�

where we assumed that 


1

is to the left of �, that is




1

= f(x; y) 2 
; x < 0g:

De�nition (2.7) is to be understood in the pointwise sense (or a.e. if u

is not smooth enough.) Here, however, we shall be more interested in

the ux in the distributional sense. Therefore, we notie that for every

' 2 D(�) = C

1

0

(�) we have

(2.8) hF

u

; 'i =

Z

�

�u

�x

' ds;

where h ; i is the duality pairing between D(�) and its dual. By Green's

formula we have

(2.9) hF

u

; 'i =

Z

�

�u

�x

' ds = a

1

(u ; ~') �

Z




1

f ~'d


for every ~' in H

1

(


1

) that has trae equal to ' on � and equal to zero

on the rest of �


1

.

In turn, the disrete ux F

u

h

will be de�ned as a linear mapping

ating from the spae

(2.10) �

h

= (V

k

h

)

j�
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into IR. More preisely, in agreement with (2.9) and with [12℄, [10℄, we

set, for every '

h

2 �

h

:

(2.11) hF

u

h

; '

h

i = a

1

(u

h

; ~'

h

) �

Z




1

f ~'

h

d


where ~'

h

is any funtion in V

k

h

whose trae on � oinides with '

h

.

De�nitions suh as (2.11) are fundamental to the development of loal

onservation laws; see [10℄.

For a given ' 2 D(�) we onsider now its interpolant '

I

2 �

h

. Our

goal is to estimate the error in the ux; thus we onsider

(2.12) hF

u

� F

u

h

; '

I

i:

Our main result, to be proved in the next setion, is that there exists

a onstant C, independent of u, ', and h, suh that

(2.13) jhF

u

� F

u

h

; '

I

ij � Ch

2k

juj

k+1;


k'k

k+1=2;�

:

Remark. The estimate (2.13) is essentially an error estimate in the

spae H

�k�1=2

(�). As usual, we pay for the inrease in the order of on-

vergene by the weakness of the norm. On the other hand, it is known

in similar situations that estimates of this type (that is, with high or-

der in dual spaes) are the ruial ingredient for proving that suitable

postproessings of the disrete solution onverge, with the same high

order, in more reasonable spaes, for instane in L

2

(�). These postpro-

essors are typially onstruted through suitable loal averages that

are generally rather inexpensive to ompute. We refer, for instane, to

the lassial papers from the Cornell shool (see for instane [6℄, and

[13℄), and to the more reent approah of [8℄.

Remark. One may also onsider the possibility when 
 is separated

into the subdomains 


1

and 


2

by a general smooth urve � (instead of

a straight line as assumed here). However, for k > 1, this neessitates

the use of isoparametri elements, ompatible with �, in our deompo-

sition. Moreover, the presene of a urved interfae � would require the

use of an approximate urve �

h

for the de�nition of the approximate

ux. It is lear that the additional tehnial ompliations to deal with

this situation would be onsiderable.

3. The proof of the error estimate

3.1. The onstrution of  . For a given ' 2 D(�) we onstrut now

a suitable lifting  2 D(


1

) suh that
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(3.1)  vanishes on a strip around �


1

n �;

(3.2)

�

s

 

�x

s

= (�1)

s=2

'

(s)

on �; for s even; 0 � s � k;

(3.3)

�

s

 

�x

s

= 0 on �; for s odd; 0 � s � k;

and there exists a onstant C, independent of ', suh that

(3.4) jj jj

k+1;


1

� C jj'jj

k+1=2;�

:

Here and below the '

(s)

denotes the derivative of ' of order s with

respet to the variable y along �. Notie that the boundary onditions

(3.2), (3.3) are ompatible with the existene of a ontinuous lifting

(that is, of one satisfying (3.4)). For instane, we an extend (by zero)

the funtion ' to the whole line x = 0, �nd the lifting in the half-plane

fx < 0g aording to [11℄ (Chapter 1, Theorem 7.5) and then apply a

suitable ut-o�.

We also point out expliitly that, thanks to our onstrution,

(3.5) � 2 H

k�1

0

(


1

):

Indeed, for k = 2 we have

� =  

xx

+  

yy

=  

xx

+ '

(2)

= 0 on �:

If k = 3 we also have

(� )

x

=  

xxx

+  

yyx

=  

xxx

+ ( 

x

)

yy

= 0 on �;

and for k = 4 we an add

(� )

xx

=  

xxxx

+  

yyxx

=  

xxxx

+ ( 

xx

)

yy

=  

xxxx

� '

(2)

yy

= 0 on �;

and so on.

Remark. The onstrution of  is feasible in more general geome-

tries (and for more general operators) than the one onsidered here.

The relevant properties, as we shall see, are (3.4) and (3.5). However,

the onstrution would be tehnially muh more ompliated.
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3.2. The onstrution of �. We an now proeed to the onstrution

of the new auxiliary funtion �. We set

(3.6) p = �� in 


1

; and p = 0 in 


2

;

and we de�ne � as the solution of the following problem:

(3.7)

�

�nd � 2 H

1

0

(
) suh that

��� = p in 
:

Now, from (3.5) we easily dedue that p 2 H

k�1

(
); moreover,

(3.8) jjpjj

k�1;


� jjpjj

k�1;


1

� C jj jj

k+1;


1

:

We also reall that  in (3.1) vanishes in a strip near �


1

n�. Hene

p has ompat support in 
, and, in partiular, it belongs to H

k�1

0

(
).

Therefore there exists a onstant (that we, again, all C), independent

of  , suh that

(3.9) jj�jj

k+1;


� C jjpjj

k�1;


:

The regularity result (3.9) is well known, and its proof an be obtained

by the standard tehnique of reeting the problem in an odd way a

suitable number of times, and then using the internal regularity results

for the problem in the enlarged domain. The ruial point is that the

odd reetions of p (whih is the Laplaian of �) are still in H

k�1

of

the enlarged domain. This is true thanks to (3.5).

Using (3.9), (3.8), and (3.4) we then have immediately:

(3.10) jj�jj

k+1;


� C jj'jj

k+1=2;�

:

Remark. As we an see, in order to have an auxiliary funtion �

satisfying (3.7) and (3.10) we ould just assume that 
 is suÆiently

smooth, provided that p (= �� ) satis�es (3.5) and (3.8).

3.3. The error estimates. As stated in (2.13), we wish to estimate

the error in the �nite element approximation of the ux:

(3.11) hF

u

� F

u

h

; '

I

i:

It is immediate to see that, taking as ~'

I

the interpolant  

I

of  (in

V

k

h

), and using (2.9) and (2.11) we get

(3.12)

hF

u

� F

u

h

; '

I

i = a

1

(u� u

h

; ~'

I

) = a

1

(u� u

h

;  

I

)

= a

1

(u� u

h

;  

I

�  ) + a

1

(u� u

h

;  )

= I + II:
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The estimate of I follows easily from (2.6), (2.5), usual interpolation

estimates, and (3.4):

(3.13) I � C h

2k

juj

k+1;


j j

k+1;


1

� Ch

2k

juj

k+1;


k'k

k+1=2;�

:

The estimate of II is also easy: using (2.6), integrating by parts, using

(3.6), (3.3) and then (3.7) we obtain �rst

(3.14)

II = �

R




1

(u� u

h

)� d
 =

R




1

(u� u

h

) p d


= �

R




(u� u

h

)�� d
 = a(u� u

h

; �):

Then, using (3.14), hoosing �

I

as the usual interpolant of � in V

k

h

,

and using Galerkin orthogonality, (2.5), interpolation estimates, and

(3.10), we obtain

(3.15)

II = a(u� u

h

; �) = a(u� u

h

; �� �

I

)

� Ch

2k

juj

k+1;


j�j

k+1;


� Ch

2k

juj

k+1;


k'k

k+1=2;�

:

Now, from (3.12), (3.13), and (3.15) we easily onlude the proof of the

desired estimate (2.13).

Remark. In the partiular ase of k = 1 we see that the ruial

properties (3.5), (3.4), and hene (3.10) an easily be obtained under

muh more general assumptions. It is then lear that the extension of

our result to more general problems and geometries, for linear elements,

is trivial. The tehnial diÆulties would arise only for k > 1.
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