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Abstrat

We develop a family of loking-free elements for the Reissner{

Mindlin plate using Disontinuous Galerkin tehniques, one for eah

odd degree, and prove optimal error estimates. A seond family uses

onforming elements for the rotations and nononforming elements

for the transverse displaement, generalizing the element of Arnold

and Falk to higher degree.

1 Introdution

Reently there has been a onsiderable interest in the development of Dis-

ontinuous Galerkin methods for ellipti problems (see, for instane, [4℄

and the referenes therein). Although their pratial interest is still under

investigation, it is lear that the DG approah often implies a di�erent way

of dealing with the problem, that an sometimes lead to new onforming or

nononforming �nite elements that would have been more diÆult to dis-

over starting with a lassial approah. Examples in this diretion are, for

instane, the extension of the Crouzeix{Raviart element for Stokes problem

or nearly inompressible elastiity problems [23℄, and the reent paper by

two of the present authors using DG methods to develop non-onforming

elements for the Reissner{Mindlin plate [16℄.
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Here we present a family of �nite element approximations for the Reiss-

ner Mindlin plates. These are mixed methods, in whih the rotation vetor,

transverse displaement, and transverse shear are all approximated. The

starting point of the family is a totally disontinuous approah, in whih

both rotations � and transversal displaements w are loally polynomials

of degree � k, where k is an odd integer, while the transverse shears are ap-

proximated by totally disontinuous polynomials of degree k�1. However,

many variants are possible. For instane, we ould (i) keep � disontin-

uous but use a nononforming w (having moments up to the order k � 1

ontinuous at the interelement boundaries), or (ii) take both � and w non-

onforming (by adding a suitable set of bubble funtions to �), or (iii) use

a ontinuous � and a nononforming w, by adding a di�erent set of bubble

funtions to �. This last option, for k = 1, will give bak the Arnold{Falk

(AF) element [5℄, and therefore, for k > 1, an be seen as a higher order

version of AF. On the other hand, the other options an be seen, for k = 1,

as a disontinuous or nononforming versions of AF. In partiular here we

present the analysis of the two extreme ases, that is the fully disontin-

uous ase and the ase in whih � is ontinuous and w is nononforming.

The analysis of the other ases ould be performed along similar lines.

It would be interesting to ompare these new elements with the more

lassial MITC

k

families (see [12℄ or [15℄) and the elements in [5℄, as well

as with the more reent methods suh as [6℄, [7℄, [8℄, [21℄, [22℄, [25℄, [26℄,

and [27℄.

Even more interesting would be the extension of these DG tehniques

to the treatment of shell problems. See for instane [24℄, [9℄, [17℄, [18℄,

[20℄, [22℄, [19℄ and the referenes therein for a disussion of the diÆulties

in designing aurate and robust shell elements. We point out here that

our elements, at least in the totally disontinuous version, use the same

degrees of freedom for the rotations and the transverse displaement, whih

is usually onsidered as a very favorable feature for the disretization of

shell problems in the Naghdi model.

The paper is organized as follows. After a setion on notations and

preliminaries, in Setion 3 we reall the Reissner{Mindlin model and derive

our family of methods in the fully disontinuous ase. The orresponding

error estimates are proved in Setion 4. Finally, in Setion 5, we present

the ase of ontinuous � and nononforming w, together with its analysis.

2 Notations and preliminaries

Let 
 � R

2

denote the domain oupied by the middle surfae of the

plate. We shall use the usual Sobolev spaes suh as H

s

(T ), with the or-

responding semi-norm and norm denoted by j � j

s;T

and k�k

s;T

, respetively.
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When T = 
 we just write j � j

s

and k � k

s

. By onvention, we use bold-

fae type for the vetor-valued analogues: H

s

(
) = [H

s

(
)℄

2

. Oasion-

ally we shall use alligraphi type for symmetri-tensor-valued analogues:

H

s

(
) = [H

s

(
)℄

2

sym

. We use parentheses ( � ; � ) to denote the inner prod-

ut in any of the spaes L

2

(
), L

2

(
), or L

2

(
).

We shall assume that the domain 
 is a polygon and denote by T

h

a

deomposition of 
 into triangles T , by E

h

the set of all the edges in T

h

,

and by E

0

h

the set of interior edges. We use the notation for pieewise

polynomial spaes from [14℄, so

L

s

k

(T

h

) = f v 2 H

s

(
) : vj

T

2 P

k

(T ); T 2 T

h

g; (1)

with P

k

(T ) the set of polynomials of degree at most k on T . (Note that in

this usage, alligraphi type does not refer to tensor-valued quantities.)

Our �nite elements will be disontinuous and so not ontained in the

spae H

1

(
), but rather in a pieewise Sobolev spae

H

1

(T

h

) := f v 2 L

2

(
) : vj

T

2 H

1

(T ); T 2 T

h

g:

Di�erential operators an be applied to this spae pieewise. We indiate

this by a subsript h on the operator. Thus, for example, the pieewise

gradient operatorr

h

mapsH

1

(T

h

) into L

2

(
) and the pieewise symmetri

gradient, or in�nitesimal strain, operator "

h

mapsH

1

(T

h

) into L

2

(
). The

spae H

1

(T

h

) is equipped with the semi-norm jvj

1;h

= kr

h

vk

0

and the

orresponding norm kvk

2

1;h

= jvj

2

1;h

+ kvk

2

0

.

As is usual in the DG approah, we de�ne the jump and average of a

funtion in H

1

(T

h

) as a funtion on the union of the edges of the triangula-

tion. Let e be an internal edge of T

h

, shared by two elements T

+

and T

�

,

and let n

+

and n

�

denote the unit normals to e, pointing outward from

T

+

and T

�

, respetively. If ' belongs to H

1

(T

h

) (or possibly the vetor-

or tensor-valued analogue), we de�ne the average f'g on e as usual:

f'g =

'

+

+ '

�

2

:

For a salar funtion ' 2 H

1

(T

h

) we de�ne its jump on e as

['℄ = '

+

n

+

+ '

�

n

�

;

whih is a vetor normal to e. The jump of a vetor ' 2 H

1

(T

h

) is the

symmetri matrix-valued funtion given on e by:

['℄ = '

+

� n

+

+'

�

� n

�

;

where '�n = ('n

T

+n'

T

)=2 is the symmetri part of the tensor produt

of ' and n.
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On a boundary edge, the average f'g is de�ned simply as the trae of

', while for a salar-valued funtion we de�ne ['℄ to be 'n (with n the

outward unit normal), and for a vetor-valued funtion we de�ne ['℄ =

'� n.

It is easy to hek that (see, e.g., [3℄)

X

T2T

h

Z

�T

' � n

T

v ds =

X

e2E

h

Z

e

f'g � [v℄ ds; ' 2H

1

(
); v 2 H

1

(T

h

): (2)

Similarly,

X

T2T

h

Z

�T

Sn

T

� � ds =

X

e2E

h

Z

e

fSg : [�℄ ds; S 2 H

1

(
); � 2H

1

(T

h

):

It is not diÆult to see that both the above relations hold in more

general situations. For instane, (2) also holds for ' 2 H(div; 
), where

H(div; 
) is the spae of vetors ' 2 L

2

(
) with div' 2 L

2

(
).

In the sequel we shall often use the following result (see [1℄, [2℄): let

T be a triangle, and let e be an edge of T . Then there exists a positive

onstant C only depending on the minimum angle of T suh that

k'k

2

0;e

� C

�

jej

�1

k'k

2

0;T

+ jejj'j

2

1;T

�

; ' 2 H

1

(T ): (3)

Clearly, (3) also holds for vetor valued funtions ' 2H

1

(T

h

).

3 The problem and a DG disretization

In this setion we reall the Reissner{Mindlin plate model and derive a

disontinuous Galerkin disretization of it.

Given the load g in L

2

(
) and the tensor of bending moduli C, the

Reissner{Mindlin equations with lamped boundary determine the rotation

�, transverse displaement w, and saled shear stress  by the equations

� divC "(�)�  = 0 in 
; (4)

� div  = g in 
; (5)

rw � � � �

�1

t

2

 = 0 in 
; (6)

� = 0; w = 0 on �
: (7)

Here " denotes the usual symmetri gradient operator, � the shear orre-

tion fator, and t the plate thikness. Heneforth we will inorporate � in

the thikness (still denoting it by t).

To obtain a weak mixed formulation of the system (4){(7) we multiply

(4) by a test funtion � 2 H

1

0

(
) and (5) by a test funtion v 2 H

1

0

(
),

4



integrate by parts, and add the equations. Next, we multiply (6) by a test

funtion � 2 L

2

(
) and integrate. We thus �nd that (�; w) 2 H

1

0

(
) �

H

1

0

(
) and  2 L

2

(
) satisfy

(C "(�); "(�)) + (;r v � �) = (g; v); (�; v) 2H

1

0

(
)�H

1

0

(
); (8)

(rw � �; � )� t

2

(; � ) = 0; � 2 L

2

(
): (9)

A natural way to disretize the Reissner{Mindlin system is to restrit

the trial and test funtions in this weak formulation to �nite dimensional

subspaes. That is, we hoose �nite dimensions subspaes �

h

� H

1

0

(
),

W

h

� H

1

0

(
), and �

h

� L

2

(
) and de�ne (�

h

; w

h

) 2 �

h

�W

h

and 

h

2 �

h

by the equations

(C "(�

h

); "(�)) + (

h

;r v � �) = (g; v); (�; v) 2 �

h

�W

h

;

(rw

h

� �

h

; � )� t

2

(

h

; � ) = 0; � 2 �

h

:

In order to overome the well-known problem of loking|the loss of au-

ray for small plate thikness|this formulation is often generalized by the

inlusion of a projetion operator P

h

:H

1

(T

h

)! �

h

to obtain the system

(C "(�

h

); "(�)) + (

h

;P

h

(r v � �)) = (g; v); (�; v) 2 �

h

�W

h

;

(P

h

(rw

h

� �

h

); � )� t

2

(

h

; � ) = 0; � 2 �

h

:

(The method without P

h

an be viewed as the speial ase where P

h

is

taken to be the L

2

-projetion onto �

h

.) A number of the most suessful

�nite element methods for the Reissner{Mindlin system an be written in

this form with appropriate hoies for the spaes �

h

, W

h

, and �

h

and

the projetion operator P

h

. However, simple hoies of the �nite element

spaes have been found to be unsuessful even with the use of a projetion

operator. For example, the hoie of ontinuous pieewise linear funtions

for �

h

and W

h

and pieewise onstant funtions for �

h

seems natural, but

does not give a good method. In this paper we will show that very simple

disontinuous �nite element spaes an be used.

To derive a �nite element method for the Reissner{Mindlin system

based on disontinuous elements, we proeed as before testing (4) against

a test funtion � and (5) against a test funtion v, integrating by parts,

and adding, with the di�erene that now � and v may be disontinuous

aross element boundaries, that is, they belong to H

1

(T

h

) and H

1

(T

h

),

respetively. Thus we obtain

(C "

h

(�); "

h

(�))�

X

e2E

h

Z

e

fC "

h

(�)g : [�℄ ds+ (;r

h

v � �)

�

X

e2E

h

Z

e

fg � [v℄ ds = (g; v); (�; v) 2H

1

(T

h

)�H

1

(T

h

); (10)
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(r

h

w � �; � )� t

2

(; � ) = 0; � 2 L

2

(
):

The two terms in the �rst equation involving integrals over the edges, whih

did not appear in (8), arise from the integration by parts and are neessary

to maintain onsisteny. We now proeed as is ommon for DG methods.

First, we add terms to symmetrize this formulation so that it is adjoint-

onsistent as well. Seond, to stabilize the method, we add interior penalty

terms p

�

(�;�) and p

W

(w; v) in whih the funtions p

�

and p

W

will depend

only on the jumps of their arguments. Sine [�℄ = 0 and [w℄ = 0, we �nd

that �, w, and  satisfy

(C "

h

(�); "

h

(�))�

X

e2E

h

Z

e

(fC "

h

(�)g : [�℄ ds+ [�℄ : fC "

h

(�)g) ds

+ (;r

h

v � �)�

X

e2E

h

Z

e

fg � [v℄ ds

+ p

�

(�;�) + p

W

(w; v) = (g; v); (�; v) 2H

2

(T

h

)�H

2

(T

h

);

(r

h

w � �; � )�

X

e2E

h

Z

e

[w℄ � f�g ds� t

2

(; � ) = 0; � 2H

1

(T

h

):

(11)

To obtain a DG disretization, we hoose �nite dimensional subspaes

�

h

� H

2

(T

h

), W

h

� H

2

(T

h

), and �

h

� H

1

(T

h

) and, in analogy with

the ontinuous Galerkin ase, we inorporate a projetion operator P

h

:

H

1

(T

h

) ! �

h

, so that the method takes the form: Find (�

h

; w

h

) 2

�

h

�W

h

and 

h

2 �

h

suh that

(C "

h

(�

h

); "

h

(�))�

X

e2E

h

Z

e

(fC "

h

(�

h

)g : [�℄ ds+ [�

h

℄ : fC "

h

(�)g) ds

+ (

h

;P

h

(r

h

v � �))�

X

e2E

h

Z

e

f

h

g � [v℄ ds

+ p

�

(�

h

;�) + p

W

(w

h

; v) = (g; v); (�; v) 2 �

h

�W

h

;

(12)

(P

h

(r

h

w

h

� �

h

); � )�

X

e2E

h

Z

e

[w

h

℄ � f�g ds� t

2

(

h

; � ) = 0; � 2 �

h

: (13)

For any hoie of the �nite element spaes�

h

,W

h

, and �

h

, and any interior

penalty funtions p

�

and p

W

depending only on the jumps of their argu-

ments, this gives a onsistent �nite element method when the projetion

operator P

h

is simply the L

2

-projetion onto �

h

. Most other hoies of

P

h

introdue a onsisteny error just as for ontinuous Galerkin methods.
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The numerial method we will onsider is of the form (12), (13). To

omplete the spei�ation of the method we need to speify three things:

the �nite element spaes �

h

, W

h

, and �

h

; the interior penalty forms p

�

and p

W

; and the projetion operator P

h

. For the �nite element spaes we

make a simple hoie, namely for an integer k � 1 we use fully disontinuous

pieewise polynomials of degree k to disretize � and w, and of degree k�1

for . Using the notation introdued in (1),

�

h

= L

0

k

(T

h

); W

h

= L

0

k

(T

h

); �

h

= L

0

k�1

(T

h

):

Note that this hoie ensures that

r

h

(W

h

) � �

h

; (14)

an important relation for this method as for many disretizations of the

Reissner{Mindlin system. This, of ourse, implies that, for any projetion

operator P

h

:H

1

(T

h

)! �

h

, P

h

r

h

v =r

h

v for all v 2W

h

.

We make a standard hoie for the interior penalty term p

�

:

p

�

(�;�) =

X

e2E

h

�

�

jej

Z

e

[�℄ : [�℄ ds; (15)

so that p

�

(�;�) an be viewed as a measure of the deviation of � from

being ontinuous. The parameter �

�

is a positive onstant to be hosen;

it must be suÆiently large to ensure stability. For p

W

we use a weaker

penalization:

p

W

(w; v) =

X

e2E

h

�

W

jej

Z

e

Q

e

[w℄ �Q

e

[v℄ ds;

where Q

e

is the L

2

-projetion onto polynomials of degree k�1 on the edge

and �

W

is again a positive onstant to be hosen. Thus we penalize the

deviation of w from the usual non-onforming degree k �nite element spae

rather than the deviation from ontinuity.

Finally, we need to speify the projetion operator P

h

. In the lowest

order ase, k = 1, we simply hoose the L

2

-projetion onto the pieewise

onstant spae L

0

0

(T

h

). For k > 1 the de�nition of P

h

is more ompliated

and requires some notation and a lemma. For any odd integer k > 1 and

any triangle T , de�ne

�

�

(T ) = f � + url(b

T

v) j � 2 P

k�1

(T ); div � 2 P

k�3

(T ); v 2 P

k�2

(T ) g:

Here b

T

is the ubi bubble given by �

1

�

2

�

3

where the �

i

are the baryentri

oordinate funtions on T , and url v := (��v=�y; �v=�x) (with formal

adjoint rot Æ := �Æ

1

=�y��Æ

2

=�x). For k = 1 we interpret �

�

(T ) = P

0

(T ).

Note that dim�

�

(T ) = dimP

k�1

(T ).
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Lemma 3.1 Let k be a positive odd integer and T a triangle. If Æ 2

P

k�1

(T ) satis�es

R

T

Æ � � dx = 0 for all � 2 �

�

(T ), then Æ = 0.

Proof. This is obvious for k = 1 so we assume k � 3. By integration by

parts, we have

R

T

(rot Æ)b

T

v dx = 0 for all v 2 P

k�2

(T ). In partiular, we

an take v = rot Æ and onlude that rot Æ = 0. Therefore Æ = r for

some  2 P

k

(T ) whih we an normalize to have mean value 0 on �T . Now,

given an arbitrary q 2 P

k�2

(T ) and an arbitrary pieewise polynomial �

of degree k � 1 on �T (that is, � restrits to a polynomial of degree k � 1

on eah edge of T ), we have that the equation

div � = q in T ; � � n = � on �T (16)

has a solution � 2 P

k�1

(T ) if and only if

R

T

q dx =

R

�T

� ds. (This an be

heked by ounting dimensions and noting that � satis�es (16) for q = 0,

� = 0 if and only if � = url(b

T

p) for some p 2 P

k�3

(T )). Taking q = 0

and � an arbitrary pieewise polynomial of mean value 0 on �T , we an

solve (16) to �nd � 2 �

�

(T ). Then integration by parts gives

0 =

Z

T

r � � dx =

Z

�T

 �ds:

This, together with our normalization

R

�T

 ds = 0 shows that  j

�T

is

orthogonal to all pieewise polynomials of degree k� 1. Therefore on eah

edge  must be a multiple of the Legendre polynomial of degree k and hene

it mush hange sign exatly k times on eah edge (unless it is identially

0). The global ontinuity of  , however, rules out an odd number (3k) of

sign hanges, so we onlude that  = 0 on �T , i.e.,  = b

T

� for some

� 2 P

k�3

(T ). Now take q = �, � = onstant on �T in (16). The resulting �

belongs to �

�

(T ) and so is orthogonal to Æ =r(b

T

�), and now integration

by parts immediately implies that � = 0. �

Let

�

�

h

= f � 2 L

2

(
) j � j

T

2 �

�

(T ); T 2 T

h

g: (17)

In view of the lemma, we may de�ne P

h

: L

2

(
)! �

h

by

(Æ � P

h

Æ; � ) = 0; � 2 �

�

h

: (18)

4 Error analysis

Having ompleted the spei�ation of our family of DG methods (one for

eah positive odd integer k), in this setion we state and prove the basi
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error estimates for the methods. For this purpose we �rst de�ne norms

jjj�jjj

2

�

:= k�k

2

1;h

+

X

e2E

h

�

1

jej

k[�℄k

2

0;e

+ jej kfC "

h

(�)gk

2

0;e

�

; (19)

jjjvjjj

2

W

:= jvj

2

1;h

+

X

e2E

h

1

jej

k[v℄k

2

0;e

; (20)

jjj� jjj

2

�

:= k�k

2

0

+

X

e2E

h

jejkf�gk

2

0;e

; (21)

for � 2H

2

(T

h

), v 2 H

1

(T

h

), and � 2H

1

(T

h

).

Remark 4.1 It is easy to see that the norm jjj � jjj

W

de�ned in (20) an

be expressed in other equivalent ways. Indeed, denoting again by Q

e

the

L

2

�projetion operator onto polynomials of degree k � 1 on the edge e,

and by Q

0

e

the projetions onto onstants, we have

jjjvjjj

2

W

' jvj

2

1;h

+

X

e2E

h

1

jej

kQ

e

([v℄)k

2

0;e

' jvj

2

1;h

+

X

e2E

h

1

jej

kQ

0

e

([v℄)k

2

0;e

; v 2 H

1

(T

h

);

(22)

with the onstants in the equivalenes (22) depending only on the minimum

angle of the triangulation. In order to see that (22) hold we �rst notie

that, obviously, we always have

kQ

0

e

([v℄)k

0;e

� kQ

e

([v℄)k

2

0;e

� k[v℄k

2

0;e

; v 2 H

1

(T

h

):

Hene, (22) will follow easily from the following inequality, where we add

and subtrat Q

0

e

([v℄), then we rearrange terms, then use (3) and �nally

apply lassial approximation results.

X

e2E

h

1

jej

k[v℄k

2

0;e

=

X

e2E

h

1

jej

(k[v℄�Q

0

e

([v℄)k

2

0;e

+ kQ

0

e

([v℄)k

2

0;e

)

� C (

X

T

X

e2�T

1

jej

kv �Q

0

e

vk

2

0;e

) +

X

e2E

h

1

jej

kQ

0

e

([v℄)k

2

0;e

� C

X

T

(

1

jej

2

kv �Q

0

e

vk

2

0;T

+ kr

h

vk

2

0;T

) +

X

e2E

h

1

jej

kQ

0

e

([v℄)k

2

0;e

� C jvj

2

1;h

+

X

e2E

h

1

jej

kQ

0

e

([v℄)k

2

0;e

:

The following theorem is the prinipal result of the paper.
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Theorem 4.2 Let �, w,  solve the Reissner{Mindlin system (8), (9). Let

k be a positive odd integer and suppose that the penalty parameter �

�

is

suÆiently large and the penalty parameter �

W

is positive. Then there

exists a unique solution �

h

, w

h

, 

h

to the disontinuous Galerkin method

(12){(13). Moreover, there exists a onstant C, independent of h and t,

suh that

jjj� � �

h

jjj

�

+ jjjw � w

h

jjj

W

+ tjjj � 

h

jjj

�

� C h

k

(k�k

k+1

+ kwk

k+1

+ kk

k

) : �

Remark 4.3 This estimate is learly optimal with respet to the power

of h and with respet to the regularity of � and w. With respet to the

regularity of  one might hope to replae kk

k

with tkk

k

+ kk

k�1

+

k divk

k�1

on the right-hand side. However, suh an estimate does not

follow from the urrent analysis. We will however be able to prove it, in

the last setion, for the ontinuous-nononforming ase.

We now turn to the proof Theorem 4.2, beginning by introduing some

notation. Let

a

h

(�;�) = (C "

h

(�); "

h

(�))

�

X

e2E

h

Z

e

(fC "

h

(�)g : [�℄ + [�℄ : fC "

h

(�)g) ds+ p

�

(�;�);

j(� ; v) =

X

e2E

h

Z

e

f�g � [v℄ ds: (23)

Clearly we have

a

h

(�;�) � Cjjj�jjj

�

jjj�jjj

�

; �;� 2H

2

(T

h

); (24)

j(� ; v) � Cjjj� jjj

�

jjjvjjj

W

; v 2 H

1

(T

h

); � 2H

1

(T

h

): (25)

In this notation we may rewrite (11) as

a

h

(�;�) + (;r

h

v � �)� j(; v) + p

W

(w; v) = (g; v);

(�; v) 2H

2

(T

h

)�H

2

(T

h

); (26)

(r

h

w � �; � )� j(� ; w)� t

2

(; � ) = 0; � 2H

1

(T

h

); (27)

and (12){(13) as

a

h

(�

h

;�) + (

h

;r

h

v � P

h

�)� j(

h

; v) + p

W

(w

h

; v) = (g; v);

(�; v) 2 �

h

�W

h

; (28)

10



(r

h

w

h

� P

h

�

h

; � )� j(� ; w

h

)� t

2

(

h

; � ) = 0; � 2 �

h

: (29)

De�ning a lifting operator J :H

1

(T

h

)! �

h

by the equation

(J(v); � ) = j(� ; v); � 2 �

h

; (30)

we an eliminate 

h

in (29):



h

= t

�2

(r

h

w

h

� J(w

h

)� P

h

�

h

): (31)

Substituting in (28), we obtain an alternate formulation of the method:

a

h

(�

h

;�) + t

�2

(r

h

w

h

� J(w

h

)� P

h

�

h

;r

h

v � J(v)� P

h

�)

+ p

W

(w

h

; v) = (g; v); � 2 �

h

; v 2W

h

:

The following estimate for J will play an important role in the analysis.

(Here and throughout the sequel we ontinue to denote by C a generi

onstant whih may depend on the mesh through its shape regularity but

not otherwise and whih is independent of t.)

Proposition 4.4

jjjJ(v)jjj

2

�

� C

X

e2E

h

1

jej

kQ

e

[v℄k

2

0;e

; v 2 W

h

:

Proof. First we note that, by a loal inverse inequality,

jjj� jjj

2

�

� Ck�k

2

0

; � 2 �

h

: (32)

Now

kJ(v)k

2

0

= (J(v);J(v)) = j(J(v); v) =

X

e2E

h

Z

e

fJ(v)g � [v℄ ds

=

X

e2E

h

Z

e

fJ(v)g �Q

e

[v℄ ds:

Therefore

kJ(v)k

2

0

�

 

X

e2E

h

jejkfJ(v)gk

2

0;e

!

1=2

 

X

e2E

h

1

jej

kQ

e

[v℄k

2

0;e

!

1=2

� jjjJ(v)jjj

�

 

X

e2E

h

1

jej

kQ

e

[v℄k

2

0;e

!

1=2

;

and so the proposition follows using (32). �

The next two propositions are analogues of Poinar�e's inequality and

Korn's inequality for pieewise smooth funtions.
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Proposition 4.5

kvk

0

� C jjjvjjj

W

; v 2 H

1

(T

h

): (33)

Proof. This sort of result is well-known. See for instane [2℄ or the more

general results of [10℄. For the onveniene of the reader we inlude the

proof. As a �rst step, we onsider a smooth domain

e


 suh that 
 �

e


, and

we extend v by zero outside 
. We denote again by v the extension. Then

we de�ne the funtion  as the solution of � = v in

e


, with  2 H

1

0

(

e


).

We obviously have k k

2;

e




� C kvk

0

. Then we have, using the de�nition

of  , integrating by parts in eah triangle and using (2), and �nally using

(25):

kvk

2

0

= (� ; v) = �(r ;r

h

v) + j(r ; v)

� j j

1

jvj

1;h

+ C jjjr jjj

�

jjjvjjj

W

:

Using (3) it is not diÆult to see that

jjjr jjj

�

� Ck k

2;

e




� Ckvk

0

;

and (33) follows. �

Lemma 4.6

k�k

2

1;h

� C(

X

T2T

h

k "(�)k

2

0;T

+

X

e2E

h

1

jej

k[�℄k

2

0;e

); � 2H

1

(T

h

): (34)

Proof. This is essentially a speialization of the results in [11℄. From

Theorem 3.1 of that paper, with � hosen as in Example 2.3, we get

j�j

2

1;h

� C(

X

T2T

h

k "(�)k

2

0;T

+ k�k

2

0

+

X

e2E

h

1

jej

k[�℄k

2

0;e

); � 2H

1

(T

h

):

We an now repeat, essentially, the proof of (33) in order to bound the k�k

0

in terms of k "(�)k

0;T

and the jumps, and then we easily dedue (34). �

Using Lemma 4.6, (3), and an inverse inequality, it is straightforward

to verify the following proposition.

Proposition 4.7 There exist positive onstants �

0

and � depending only

on the polynomial degree k and the shape regularity of the partition T

h

,

suh that: if the onstant �

�

� �

0

(where �

�

is the penalty parameter

appearing in (15)), then

a

h

(�;�) � �jjj�jjj

2

�

; � 2 �

h

: (35)
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To proeed with the analysis we de�ne, for � 2 H

1

(
), w 2 H

1

(
),

and  2 L

2

(
), approximations �

I

2 �

h

, w

I

2 W

h

, and 

I

2 �

h

. For �

I

we simply take the L

2

-projetion of � onto�

h

. Sine �

�

h

� �

h

, an obvious

(but important) onsequene is that

P

h

� = P

h

�

I

; � 2 H

1

(
): (36)

Of ourse we have

jjj� � �

I

jjj

�

� C h

k

k�k

k+1

: (37)

For w

I

we use a standard non-onforming P

k

interpolant. Namely on

eah triangle T we de�ne w

I

j

T

2 P

k

(T ) by

Z

e

(w � w

I

)� ds = 0; � 2 P

k�1

(e) for eah edge e of T ; (38)

Z

T

(w � w

I

)v dx = 0; v 2 P

k�3

(T ): (39)

Note that

Z

T

r(w � w

I

) � � dx = �

Z

T

(w � w

I

) div � dx+

Z

�T

(w � w

I

)� � n ds;

whih vanishes if � 2 P

k�1

(T ) with div � 2 P

k�3

(T ) and ertainly if

� = url(b

T

v) for some v. Thus

P

h

(rw) = P

h

(r

h

w

I

) =r

h

w

I

; w 2 H

1

(
); (40)

with the last equality oming from (14). Standard approximation theory

gives

jjjw � w

I

jjj

W

� C h

k

kwk

k+1

: (41)

We also note that (38) implies that Q

e

[w�w

I

℄ = 0 on every edge e. Hene,

p

W

(w � w

I

; v

h

) = 0; v

h

2W

h

: (42)

Finally we de�ne 

I

= P

h

. Standard approximation arguments es-

tablish that

jjj � 

I

jjj

�

� C h

k

kk

k

: (43)

Most importantly, (36) and (40) together imply that if  = t

�2

(rw � �),

then



I

= t

�2

(r

h

w

I

� P

h

�

I

): (44)

Following ideas from Duran and Liebermann [21℄, our analysis will rely on

this last relation. Also important, but spei� to the ase of disontinuous

elements, is the relation

j(� ; w

I

) = 0; w 2 H

1

(
); � 2 �

h

;

13



or, equivalently,

J(w

I

) = 0; (45)

whih follows diretly from (38).

We will bound the error between the exat solution � , w, , determined

by (26) and (27), and the Galerkin solution �

h

, w

h

, 

h

, determined by (28)

and (29), in terms of the errors in �

I

, w

I

, and 

I

whih an in turn be

bounded as in (37), (41), and (43). Let

�

Æ

= �

h

� �

I

; w

Æ

= w

h

� w

I

; 

Æ

= 

h

� 

I

: (46)

From (31), (44), and (45) we have

P

h

�

Æ

= �t

2



Æ

+r

h

w

Æ

� J(w

Æ

): (47)

Using (35), then adding and subtrating � we obtain

�jjj�

Æ

jjj

2

�

� a

h

(�

Æ

;�

Æ

) = a

h

(�

h

� �;�

Æ

) + a

h

(� � �

I

;�

Æ

)

=: a

h

(�

h

� �;�

Æ

) + T

1

:

(48)

Then we take � = �

Æ

, v = 0 in (26) and (28), and we add and subtrat

P

h

�

Æ

, to obtain

a

h

(�

h

� �;�

Æ

) = (

h

;P

h

�

Æ

)� (;�

Æ

)

= (

h

� ;P

h

�

Æ

) + (;P

h

�

Æ

� �

Æ

) =: (

h

� ;P

h

�

Æ

) + T

2

: (49)

By (47),

(

h

� ;P

h

�

Æ

) = �t

2

(

h

� ;

Æ

) + (

h

� ;r

h

w

Æ

� J(w

Æ

))

= �t

2

k

Æ

k

2

0

� t

2

(

I

� ;

Æ

) + (

h

� ;r

h

w

Æ

� J(w

Æ

))

=: �t

2

k

Æ

k

2

0

+ T

3

+ (

h

� ;r

h

w

Æ

� J(w

Æ

)):

The �rst term in the right-hand side is negative, and will go to the left

in the �nal estimate. To deal with the last term, we note that (28) with

� = 0, v = w

Æ

, and (30) give

(

h

;r

h

w

Æ

� J(w

Æ

)) = (g; w

Æ

)� p

W

(w

h

; w

Æ

) = (g; w

Æ

) + p

W

(w � w

h

; w

Æ

);

and (26) gives

(;r

h

w

Æ

) = (g; w

Æ

) + j(; w

Æ

);

so

(

h

� ;r

h

w

Æ

� J(w

Æ

)) = p

W

(w � w

h

; w

Æ

) + (;J(w

Æ

))� j(; w

Æ

)

=: p

W

(w � w

h

; w

Æ

) + T

4

:
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Finally, adding and subtrating w

I

, and using (42) we dedue

p

W

(w � w

h

; w

Æ

) = p

W

(w � w

I

; w

Æ

)� p

W

(w

Æ

; w

Æ

) = �p

W

(w

Æ

; w

Æ

):

The last term in the right-hand side is negative, and goes to the left-hand

side. Colleting the above equations we have

�jjj�

Æ

jjj

2

�

+ t

2

jjj

Æ

jjj

2

�

+

1

2

p

W

(w

Æ

; w

Æ

) � T

1

+ T

2

+ T

3

+ T

4

; (50)

where

T

1

= a

h

(� � �

I

;�

Æ

) � Cjjj� � �

I

jjj

�

jjj�

Æ

jjj

�

; (51)

T

2

= (;P

h

�

Æ

� �

Æ

); (52)

T

3

= t

2

( � 

I

;

Æ

) � t

2

k � 

I

k

0

k

Æ

k

0

; (53)

T

4

= (;J(w

Æ

))� j(; w

Æ

): (54)

To estimate T

4

we add and subtrat 

I

using (30), and then we use

(25) and Proposition 4.4, obtaining

T

4

= (;J(w

Æ

))� j(; w

Æ

) = ( � 

I

;J(w

Æ

))� j( � 

I

; w

Æ

)

� C jjj � 

I

jjj

�

jjjw

Æ

jjj

W

:

This estimate is not, however, satisfatory, sine we do not have a term like

jjjw

Æ

jjj

W

in the left-hand side of (50). Hene, we have to bound kr

h

w

Æ

k

0

as well. For this, we apply (47), Proposition 4.4, and the L

2

-boundedness

of P

h

to obtain

kr

h

w

Æ

k

0

= kt

2



Æ

+ J(w

Æ

) + P

h

�

Æ

k

0

� C(t

2

jjj

Æ

jjj

�

+ jjj�

Æ

jjj

�

+ (p

W

(w

Æ

; w

Æ

))

1=2

);

and therefore, thanks to (22),

jjjw

Æ

jjj

W

� C(t

2

jjj

Æ

jjj

�

+ jjj�

Æ

jjj

�

+ (p

W

(w

Æ

; w

Æ

))

1=2

): (55)

It remains to bound T

2

. From the de�nition of P

h

, we have

T

2

= ( � Æ;P

h

�

Æ

� �

Æ

) � k � Æk

0

kP

h

�

Æ

� �

Æ

k

0

� Chk � Æk

0

jjj�

Æ

jjj

�

;

where Æ is an arbitrary element of �

�

h

. We may hoose, for example, Æ to

be the L

2

-projetion of  onto L

0

k�2

(T

h

) and get k�Æk

0

� Ch

k�1

kk

k�1

.

Thus

T

2

� Ch

k

kk

k�1

jjj�

Æ

jjj

�

:
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Combining the preeding estimates and invoking the arithmeti-geomet-

ri mean inequality we obtain

jjj�

Æ

jjj

2

�

+ t

2

jjj

Æ

jjj

�

+ p

W

(w

Æ

; w

Æ

)

� C

�

jjj� � �

I

jjj

2

�

+ (1 + t

2

)jjj � 

I

jjj

2

�

+ jjjw � w

I

jjj

2

W

+ h

2k

kk

2

k�1

�

:

In view of (22), this beomes

jjj�

Æ

jjj

2

�

+ t

2

jjj

Æ

jjj

�

+ jjjw

Æ

jjj

2

W

� C

�

jjj� � �

I

jjj

2

�

+ (1 + t

2

)jjj � 

I

jjj

2

�

+ jjjw � w

I

jjj

2

W

+ h

2k

kk

2

k�1

�

:

Finally, ombining with the triangle inequality and the interpolation error

bounds (37), (41), (43), and assuming as natural that t is bounded from

above, we omplete the proof of the Theorem 4.2.

5 Continuous � and nononforming w

In this �nal setion we onsider a method in whih � is disretized by

means of ontinuous elements, and w by means of nononforming ones.

Our method is still of the form (12){(13), and again we must speify the

�nite element spaes �

h

, W

h

, and �

h

, the penalty funtions p

�

and p

W

,

and the projetion operator P

h

. The penalty funtions are not needed

for this method, and an be taken to vanish. We keep �

h

= L

0

k�1

(T

h

) as

before, and we keep the de�nition (18) of P

h

where �

�

h

is still given by

(17). For the hoie of W

h

we take the spae of nononforming pieewise

polynomials of degree at most k, that is

W

h

= f v

h

2 L

0

k

jQ

e

[v

h

℄ = 0; e 2 E

h

g (56)

where Q

e

is as before the L

2

-projetion on the spae of polynomials of

degree k � 1 on e. Obviously we still have r

h

(W

h

) � �

h

.

The above de�nitions allow us to again take 

I

:= P

h

 2 �

h

and to

again de�ne w

I

2 W

h

by (38)-(39). Then (40) still holds. In order to

have the fundamental property (44), on whih the error analysis is based,

we need to de�ne the spae �

h

so it admits an interpolation operator

� 7! �

I

2 �

h

satisfying (36) (whih, together with (40), implies (44)).

The ontinuity we are requiring for �

I

preludes the hoie �

I

= P

h

�

made formerly, and leads to a more ompliated onstrution of �

h

. In

partiular, the somewhat natural hoie � = L

1

k

does not work (even for

k = 1) as we would not have enough degrees of freedom to fore (36) in

eah element. Instead, we start from L

1

k

and add a suÆient number of

bubble funtions to ensure (36).
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De�ne �(T ) = P

k

(T ) + b

T

�

�

(T ), and remark that all the bubbles of

P

k

(T ) an be written as b

T

P

k�3

(T ). Sine P

k�3

(T ) � �

�

(T ), all the

bubbles of P

k

(T ) belong to b

T

�

�

(T ). Hene a set of degrees of freedom

for � 2 �(T ) onsists of the values of eah omponent of � at the verties

of T , the moments of degree at most k� 2 of eah omponent of � on eah

edge of T , and the integrals

R

T

� � � dx for eah � in a basis for �

�

(T ).

Hene, we an set

�

h

= f� 2H

1

0

(
) j�j

T

2 �(T ); T 2 T

h

g;

and use the above degrees of freedom to onstrut a projetion operator

C(T )! �(T ), and so an operator � 7! �

I

from C(
) \H

1

0

(
)! �

h

. It

is then lear that for this operator (36) holds.

Beause of the ontinuity of the elements of �

h

and the near ontinuity

of the elements of W

h

, all the terms involving edge integrals in (12){(13)

vanish, and the method may be simply written

(C "(�

h

); "(�)) + (

h

;r

h

v � P

h

�)) = (g; v); (�; v) 2 �

h

�W

h

; (57)

(r

h

w

h

� P

h

�

h

; � )� t

2

(

h

; � ) = 0; � 2 �

h

: (58)

Remark 5.1 In the lowest order ase, k = 1, �

h

= �

�

h

is just the spae

of pieewise onstants and P

h

the L

2

-projetion into this spae, �

h

is the

usual spae of onforming pieewise linears augmented by bubbles, and

W

h

the usual spae on nononforming pieewise linears, so this method is

exatly that of Arnold and Falk [5℄.

Remark 5.2 The hoie of �

h

was made in order to obtain (36) easily,

rather than to simplify the implementation of the method. From the latter

point of view, the alternative hoie based on �(T ) := P

k

(T ) + b

T

P

k�1

(whih oinides with our hoie only for k = 1) seems natural, but we

shall not onsider this possibility here.

Equation (58) may be written in strong form as

t

2



h

=r

h

w

h

� P

h

�

h

; (59)

whih makes it easy to see that the method admits a unique solution.

Moreover, (59) and (44) together give

t

2



Æ

=r

h

w

Æ

� P

h

�

Æ

(60)

(with the notation given by (46)). We now turn to the error analysis,

assuming that k � 3 (sine the ase k = 1 is handled in [5℄).
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The analysis proeeds along the same lines as in the previous setion.

Following (48) and (49) we obtain

�jjj�

Æ

jjj

2

�

� T

1

+ T

2

+ (

h

� ; P

h

�

Æ

);

with T

1

and T

2

still given by (51) and (52). We an now use (60), add and

subtrat 

I

, use (57) and (10) (both with � = 0), and the de�nition of j

given by (23) to obtain:

(

h

� ; P

h

�

Æ

) = �t

2

(

h

� ;

Æ

) + (

h

� ;r

h

w

Æ

)

= �t

2

k

Æ

k

2

0

� t

2

(

I

� ;

Æ

) + (

h

� ;r

h

w

Æ

)

=: �t

2

k

Æ

k

2

0

+ T

3

+ (

h

� ;r

h

w

Æ

)

= �t

2

k

Æ

k

2

0

+ T

3

� j(; w

Æ

);

where the �rst term in the right-hand side is negative, and will go to the

left in the �nal estimate, and T

3

is given by (53). It remains to bound the

last term.

Let 

M

denote the BDM interpolant of  degree k � 1 (see, e.g., [13℄

or [14℄). Thus 

M

2 L

0

k�1

(T

h

) satis�es: i) its normal omponent is on-

tinuous aross interelement boundaries, ii) div 

M

= P

k�2

div  = P

k�2

g

where P

k�2

denotes the L

2

-projetion onto L

0

k�2

(T

h

), and iii)  � 

M

is

orthogonal to L

0

0

.

Using the de�nition (23) of j( � ; � ), then (56), then (2) and Green for-

mula in eah T , then (60) and ii), then iii) and ii), then Cauhy-Shwarz,

the arithmeti-geometri mean inequality and �nally standard interpola-

tion estimates, we get

j(; w

Æ

) = j( � 

M

; w

Æ

)

= ( � 

M

;r

h

w

Æ

) + (div  � div 

M

; w

Æ

)

= ( � 

M

; t

2



Æ

+ P

h

�

Æ

) + (g � P

k�2

g; w

Æ

)

= t

2

( � 

M

;

Æ

) + ( � 

M

; (I � P

0

)P

h

�

Æ

)

+ (g � P

k�2

g; (I � P

0

)w

Æ

)

�

1

2"

t

2

k � 

M

k

2

0

+

"

2

t

2

k

Æ

k

2

0

+ k � 

M

k

0

k(I � P

0

)P

h

�

Æ

k

0

+ kg � P

k�2

gk

0

k(I � P

0

)w

Æ

k

0

�

1

2"

t

2

h

2k

kk

2

k

+

"

2

t

2

k

Æ

k

2

0

+ C h

k�1

kk

k�1

hjjj�

Æ

jjj

+ C h

k�1

kgk

k�1

hjjjw

Æ

jjj

W

:

The remainder of the error analysis follows the lines of the previous setion,

18



arriving �nally to the error bound

jjj� � �

h

jjj

�

+ jjjw � w

h

jjj

W

+ tjjj � 

h

jjj

�

� C h

k

(k�k

k+1;


+ kwk

k+1;


+ tkk

k

+ kk

k�1

+ kgk

k�1

) :
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