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Abstra
t

We develop a family of lo
king-free elements for the Reissner{

Mindlin plate using Dis
ontinuous Galerkin te
hniques, one for ea
h

odd degree, and prove optimal error estimates. A se
ond family uses


onforming elements for the rotations and non
onforming elements

for the transverse displa
ement, generalizing the element of Arnold

and Falk to higher degree.

1 Introdu
tion

Re
ently there has been a 
onsiderable interest in the development of Dis-


ontinuous Galerkin methods for ellipti
 problems (see, for instan
e, [4℄

and the referen
es therein). Although their pra
ti
al interest is still under

investigation, it is 
lear that the DG approa
h often implies a di�erent way

of dealing with the problem, that 
an sometimes lead to new 
onforming or

non
onforming �nite elements that would have been more diÆ
ult to dis-


over starting with a 
lassi
al approa
h. Examples in this dire
tion are, for

instan
e, the extension of the Crouzeix{Raviart element for Stokes problem

or nearly in
ompressible elasti
ity problems [23℄, and the re
ent paper by

two of the present authors using DG methods to develop non-
onforming

elements for the Reissner{Mindlin plate [16℄.
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Here we present a family of �nite element approximations for the Reiss-

ner Mindlin plates. These are mixed methods, in whi
h the rotation ve
tor,

transverse displa
ement, and transverse shear are all approximated. The

starting point of the family is a totally dis
ontinuous approa
h, in whi
h

both rotations � and transversal displa
ements w are lo
ally polynomials

of degree � k, where k is an odd integer, while the transverse shears are ap-

proximated by totally dis
ontinuous polynomials of degree k�1. However,

many variants are possible. For instan
e, we 
ould (i) keep � dis
ontin-

uous but use a non
onforming w (having moments up to the order k � 1


ontinuous at the interelement boundaries), or (ii) take both � and w non-


onforming (by adding a suitable set of bubble fun
tions to �), or (iii) use

a 
ontinuous � and a non
onforming w, by adding a di�erent set of bubble

fun
tions to �. This last option, for k = 1, will give ba
k the Arnold{Falk

(AF) element [5℄, and therefore, for k > 1, 
an be seen as a higher order

version of AF. On the other hand, the other options 
an be seen, for k = 1,

as a dis
ontinuous or non
onforming versions of AF. In parti
ular here we

present the analysis of the two extreme 
ases, that is the fully dis
ontin-

uous 
ase and the 
ase in whi
h � is 
ontinuous and w is non
onforming.

The analysis of the other 
ases 
ould be performed along similar lines.

It would be interesting to 
ompare these new elements with the more


lassi
al MITC

k

families (see [12℄ or [15℄) and the elements in [5℄, as well

as with the more re
ent methods su
h as [6℄, [7℄, [8℄, [21℄, [22℄, [25℄, [26℄,

and [27℄.

Even more interesting would be the extension of these DG te
hniques

to the treatment of shell problems. See for instan
e [24℄, [9℄, [17℄, [18℄,

[20℄, [22℄, [19℄ and the referen
es therein for a dis
ussion of the diÆ
ulties

in designing a

urate and robust shell elements. We point out here that

our elements, at least in the totally dis
ontinuous version, use the same

degrees of freedom for the rotations and the transverse displa
ement, whi
h

is usually 
onsidered as a very favorable feature for the dis
retization of

shell problems in the Naghdi model.

The paper is organized as follows. After a se
tion on notations and

preliminaries, in Se
tion 3 we re
all the Reissner{Mindlin model and derive

our family of methods in the fully dis
ontinuous 
ase. The 
orresponding

error estimates are proved in Se
tion 4. Finally, in Se
tion 5, we present

the 
ase of 
ontinuous � and non
onforming w, together with its analysis.

2 Notations and preliminaries

Let 
 � R

2

denote the domain o

upied by the middle surfa
e of the

plate. We shall use the usual Sobolev spa
es su
h as H

s

(T ), with the 
or-

responding semi-norm and norm denoted by j � j

s;T

and k�k

s;T

, respe
tively.
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When T = 
 we just write j � j

s

and k � k

s

. By 
onvention, we use bold-

fa
e type for the ve
tor-valued analogues: H

s

(
) = [H

s

(
)℄

2

. O

asion-

ally we shall use 
alligraphi
 type for symmetri
-tensor-valued analogues:

H

s

(
) = [H

s

(
)℄

2

sym

. We use parentheses ( � ; � ) to denote the inner prod-

u
t in any of the spa
es L

2

(
), L

2

(
), or L

2

(
).

We shall assume that the domain 
 is a polygon and denote by T

h

a

de
omposition of 
 into triangles T , by E

h

the set of all the edges in T

h

,

and by E

0

h

the set of interior edges. We use the notation for pie
ewise

polynomial spa
es from [14℄, so

L

s

k

(T

h

) = f v 2 H

s

(
) : vj

T

2 P

k

(T ); T 2 T

h

g; (1)

with P

k

(T ) the set of polynomials of degree at most k on T . (Note that in

this usage, 
alligraphi
 type does not refer to tensor-valued quantities.)

Our �nite elements will be dis
ontinuous and so not 
ontained in the

spa
e H

1

(
), but rather in a pie
ewise Sobolev spa
e

H

1

(T

h

) := f v 2 L

2

(
) : vj

T

2 H

1

(T ); T 2 T

h

g:

Di�erential operators 
an be applied to this spa
e pie
ewise. We indi
ate

this by a subs
ript h on the operator. Thus, for example, the pie
ewise

gradient operatorr

h

mapsH

1

(T

h

) into L

2

(
) and the pie
ewise symmetri


gradient, or in�nitesimal strain, operator "

h

mapsH

1

(T

h

) into L

2

(
). The

spa
e H

1

(T

h

) is equipped with the semi-norm jvj

1;h

= kr

h

vk

0

and the


orresponding norm kvk

2

1;h

= jvj

2

1;h

+ kvk

2

0

.

As is usual in the DG approa
h, we de�ne the jump and average of a

fun
tion in H

1

(T

h

) as a fun
tion on the union of the edges of the triangula-

tion. Let e be an internal edge of T

h

, shared by two elements T

+

and T

�

,

and let n

+

and n

�

denote the unit normals to e, pointing outward from

T

+

and T

�

, respe
tively. If ' belongs to H

1

(T

h

) (or possibly the ve
tor-

or tensor-valued analogue), we de�ne the average f'g on e as usual:

f'g =

'

+

+ '

�

2

:

For a s
alar fun
tion ' 2 H

1

(T

h

) we de�ne its jump on e as

['℄ = '

+

n

+

+ '

�

n

�

;

whi
h is a ve
tor normal to e. The jump of a ve
tor ' 2 H

1

(T

h

) is the

symmetri
 matrix-valued fun
tion given on e by:

['℄ = '

+

� n

+

+'

�

� n

�

;

where '�n = ('n

T

+n'

T

)=2 is the symmetri
 part of the tensor produ
t

of ' and n.
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On a boundary edge, the average f'g is de�ned simply as the tra
e of

', while for a s
alar-valued fun
tion we de�ne ['℄ to be 'n (with n the

outward unit normal), and for a ve
tor-valued fun
tion we de�ne ['℄ =

'� n.

It is easy to 
he
k that (see, e.g., [3℄)

X

T2T

h

Z

�T

' � n

T

v ds =

X

e2E

h

Z

e

f'g � [v℄ ds; ' 2H

1

(
); v 2 H

1

(T

h

): (2)

Similarly,

X

T2T

h

Z

�T

Sn

T

� � ds =

X

e2E

h

Z

e

fSg : [�℄ ds; S 2 H

1

(
); � 2H

1

(T

h

):

It is not diÆ
ult to see that both the above relations hold in more

general situations. For instan
e, (2) also holds for ' 2 H(div; 
), where

H(div; 
) is the spa
e of ve
tors ' 2 L

2

(
) with div' 2 L

2

(
).

In the sequel we shall often use the following result (see [1℄, [2℄): let

T be a triangle, and let e be an edge of T . Then there exists a positive


onstant C only depending on the minimum angle of T su
h that

k'k

2

0;e

� C

�

jej

�1

k'k

2

0;T

+ jejj'j

2

1;T

�

; ' 2 H

1

(T ): (3)

Clearly, (3) also holds for ve
tor valued fun
tions ' 2H

1

(T

h

).

3 The problem and a DG dis
retization

In this se
tion we re
all the Reissner{Mindlin plate model and derive a

dis
ontinuous Galerkin dis
retization of it.

Given the load g in L

2

(
) and the tensor of bending moduli C, the

Reissner{Mindlin equations with 
lamped boundary determine the rotation

�, transverse displa
ement w, and s
aled shear stress 
 by the equations

� divC "(�)� 
 = 0 in 
; (4)

� div 
 = g in 
; (5)

rw � � � �

�1

t

2


 = 0 in 
; (6)

� = 0; w = 0 on �
: (7)

Here " denotes the usual symmetri
 gradient operator, � the shear 
orre
-

tion fa
tor, and t the plate thi
kness. Hen
eforth we will in
orporate � in

the thi
kness (still denoting it by t).

To obtain a weak mixed formulation of the system (4){(7) we multiply

(4) by a test fun
tion � 2 H

1

0

(
) and (5) by a test fun
tion v 2 H

1

0

(
),
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integrate by parts, and add the equations. Next, we multiply (6) by a test

fun
tion � 2 L

2

(
) and integrate. We thus �nd that (�; w) 2 H

1

0

(
) �

H

1

0

(
) and 
 2 L

2

(
) satisfy

(C "(�); "(�)) + (
;r v � �) = (g; v); (�; v) 2H

1

0

(
)�H

1

0

(
); (8)

(rw � �; � )� t

2

(
; � ) = 0; � 2 L

2

(
): (9)

A natural way to dis
retize the Reissner{Mindlin system is to restri
t

the trial and test fun
tions in this weak formulation to �nite dimensional

subspa
es. That is, we 
hoose �nite dimensions subspa
es �

h

� H

1

0

(
),

W

h

� H

1

0

(
), and �

h

� L

2

(
) and de�ne (�

h

; w

h

) 2 �

h

�W

h

and 


h

2 �

h

by the equations

(C "(�

h

); "(�)) + (


h

;r v � �) = (g; v); (�; v) 2 �

h

�W

h

;

(rw

h

� �

h

; � )� t

2

(


h

; � ) = 0; � 2 �

h

:

In order to over
ome the well-known problem of lo
king|the loss of a

u-

ra
y for small plate thi
kness|this formulation is often generalized by the

in
lusion of a proje
tion operator P

h

:H

1

(T

h

)! �

h

to obtain the system

(C "(�

h

); "(�)) + (


h

;P

h

(r v � �)) = (g; v); (�; v) 2 �

h

�W

h

;

(P

h

(rw

h

� �

h

); � )� t

2

(


h

; � ) = 0; � 2 �

h

:

(The method without P

h


an be viewed as the spe
ial 
ase where P

h

is

taken to be the L

2

-proje
tion onto �

h

.) A number of the most su

essful

�nite element methods for the Reissner{Mindlin system 
an be written in

this form with appropriate 
hoi
es for the spa
es �

h

, W

h

, and �

h

and

the proje
tion operator P

h

. However, simple 
hoi
es of the �nite element

spa
es have been found to be unsu

essful even with the use of a proje
tion

operator. For example, the 
hoi
e of 
ontinuous pie
ewise linear fun
tions

for �

h

and W

h

and pie
ewise 
onstant fun
tions for �

h

seems natural, but

does not give a good method. In this paper we will show that very simple

dis
ontinuous �nite element spa
es 
an be used.

To derive a �nite element method for the Reissner{Mindlin system

based on dis
ontinuous elements, we pro
eed as before testing (4) against

a test fun
tion � and (5) against a test fun
tion v, integrating by parts,

and adding, with the di�eren
e that now � and v may be dis
ontinuous

a
ross element boundaries, that is, they belong to H

1

(T

h

) and H

1

(T

h

),

respe
tively. Thus we obtain

(C "

h

(�); "

h

(�))�

X

e2E

h

Z

e

fC "

h

(�)g : [�℄ ds+ (
;r

h

v � �)

�

X

e2E

h

Z

e

f
g � [v℄ ds = (g; v); (�; v) 2H

1

(T

h

)�H

1

(T

h

); (10)
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(r

h

w � �; � )� t

2

(
; � ) = 0; � 2 L

2

(
):

The two terms in the �rst equation involving integrals over the edges, whi
h

did not appear in (8), arise from the integration by parts and are ne
essary

to maintain 
onsisten
y. We now pro
eed as is 
ommon for DG methods.

First, we add terms to symmetrize this formulation so that it is adjoint-


onsistent as well. Se
ond, to stabilize the method, we add interior penalty

terms p

�

(�;�) and p

W

(w; v) in whi
h the fun
tions p

�

and p

W

will depend

only on the jumps of their arguments. Sin
e [�℄ = 0 and [w℄ = 0, we �nd

that �, w, and 
 satisfy

(C "

h

(�); "

h

(�))�

X

e2E

h

Z

e

(fC "

h

(�)g : [�℄ ds+ [�℄ : fC "

h

(�)g) ds

+ (
;r

h

v � �)�

X

e2E

h

Z

e

f
g � [v℄ ds

+ p

�

(�;�) + p

W

(w; v) = (g; v); (�; v) 2H

2

(T

h

)�H

2

(T

h

);

(r

h

w � �; � )�

X

e2E

h

Z

e

[w℄ � f�g ds� t

2

(
; � ) = 0; � 2H

1

(T

h

):

(11)

To obtain a DG dis
retization, we 
hoose �nite dimensional subspa
es

�

h

� H

2

(T

h

), W

h

� H

2

(T

h

), and �

h

� H

1

(T

h

) and, in analogy with

the 
ontinuous Galerkin 
ase, we in
orporate a proje
tion operator P

h

:

H

1

(T

h

) ! �

h

, so that the method takes the form: Find (�

h

; w

h

) 2

�

h

�W

h

and 


h

2 �

h

su
h that

(C "

h

(�

h

); "

h

(�))�

X

e2E

h

Z

e

(fC "

h

(�

h

)g : [�℄ ds+ [�

h

℄ : fC "

h

(�)g) ds

+ (


h

;P

h

(r

h

v � �))�

X

e2E

h

Z

e

f


h

g � [v℄ ds

+ p

�

(�

h

;�) + p

W

(w

h

; v) = (g; v); (�; v) 2 �

h

�W

h

;

(12)

(P

h

(r

h

w

h

� �

h

); � )�

X

e2E

h

Z

e

[w

h

℄ � f�g ds� t

2

(


h

; � ) = 0; � 2 �

h

: (13)

For any 
hoi
e of the �nite element spa
es�

h

,W

h

, and �

h

, and any interior

penalty fun
tions p

�

and p

W

depending only on the jumps of their argu-

ments, this gives a 
onsistent �nite element method when the proje
tion

operator P

h

is simply the L

2

-proje
tion onto �

h

. Most other 
hoi
es of

P

h

introdu
e a 
onsisten
y error just as for 
ontinuous Galerkin methods.
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The numeri
al method we will 
onsider is of the form (12), (13). To


omplete the spe
i�
ation of the method we need to spe
ify three things:

the �nite element spa
es �

h

, W

h

, and �

h

; the interior penalty forms p

�

and p

W

; and the proje
tion operator P

h

. For the �nite element spa
es we

make a simple 
hoi
e, namely for an integer k � 1 we use fully dis
ontinuous

pie
ewise polynomials of degree k to dis
retize � and w, and of degree k�1

for 
. Using the notation introdu
ed in (1),

�

h

= L

0

k

(T

h

); W

h

= L

0

k

(T

h

); �

h

= L

0

k�1

(T

h

):

Note that this 
hoi
e ensures that

r

h

(W

h

) � �

h

; (14)

an important relation for this method as for many dis
retizations of the

Reissner{Mindlin system. This, of 
ourse, implies that, for any proje
tion

operator P

h

:H

1

(T

h

)! �

h

, P

h

r

h

v =r

h

v for all v 2W

h

.

We make a standard 
hoi
e for the interior penalty term p

�

:

p

�

(�;�) =

X

e2E

h

�

�

jej

Z

e

[�℄ : [�℄ ds; (15)

so that p

�

(�;�) 
an be viewed as a measure of the deviation of � from

being 
ontinuous. The parameter �

�

is a positive 
onstant to be 
hosen;

it must be suÆ
iently large to ensure stability. For p

W

we use a weaker

penalization:

p

W

(w; v) =

X

e2E

h

�

W

jej

Z

e

Q

e

[w℄ �Q

e

[v℄ ds;

where Q

e

is the L

2

-proje
tion onto polynomials of degree k�1 on the edge

and �

W

is again a positive 
onstant to be 
hosen. Thus we penalize the

deviation of w from the usual non-
onforming degree k �nite element spa
e

rather than the deviation from 
ontinuity.

Finally, we need to spe
ify the proje
tion operator P

h

. In the lowest

order 
ase, k = 1, we simply 
hoose the L

2

-proje
tion onto the pie
ewise


onstant spa
e L

0

0

(T

h

). For k > 1 the de�nition of P

h

is more 
ompli
ated

and requires some notation and a lemma. For any odd integer k > 1 and

any triangle T , de�ne

�

�

(T ) = f � + 
url(b

T

v) j � 2 P

k�1

(T ); div � 2 P

k�3

(T ); v 2 P

k�2

(T ) g:

Here b

T

is the 
ubi
 bubble given by �

1

�

2

�

3

where the �

i

are the bary
entri



oordinate fun
tions on T , and 
url v := (��v=�y; �v=�x) (with formal

adjoint rot Æ := �Æ

1

=�y��Æ

2

=�x). For k = 1 we interpret �

�

(T ) = P

0

(T ).

Note that dim�

�

(T ) = dimP

k�1

(T ).
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Lemma 3.1 Let k be a positive odd integer and T a triangle. If Æ 2

P

k�1

(T ) satis�es

R

T

Æ � � dx = 0 for all � 2 �

�

(T ), then Æ = 0.

Proof. This is obvious for k = 1 so we assume k � 3. By integration by

parts, we have

R

T

(rot Æ)b

T

v dx = 0 for all v 2 P

k�2

(T ). In parti
ular, we


an take v = rot Æ and 
on
lude that rot Æ = 0. Therefore Æ = r for

some  2 P

k

(T ) whi
h we 
an normalize to have mean value 0 on �T . Now,

given an arbitrary q 2 P

k�2

(T ) and an arbitrary pie
ewise polynomial �

of degree k � 1 on �T (that is, � restri
ts to a polynomial of degree k � 1

on ea
h edge of T ), we have that the equation

div � = q in T ; � � n = � on �T (16)

has a solution � 2 P

k�1

(T ) if and only if

R

T

q dx =

R

�T

� ds. (This 
an be


he
ked by 
ounting dimensions and noting that � satis�es (16) for q = 0,

� = 0 if and only if � = 
url(b

T

p) for some p 2 P

k�3

(T )). Taking q = 0

and � an arbitrary pie
ewise polynomial of mean value 0 on �T , we 
an

solve (16) to �nd � 2 �

�

(T ). Then integration by parts gives

0 =

Z

T

r � � dx =

Z

�T

 �ds:

This, together with our normalization

R

�T

 ds = 0 shows that  j

�T

is

orthogonal to all pie
ewise polynomials of degree k� 1. Therefore on ea
h

edge  must be a multiple of the Legendre polynomial of degree k and hen
e

it mush 
hange sign exa
tly k times on ea
h edge (unless it is identi
ally

0). The global 
ontinuity of  , however, rules out an odd number (3k) of

sign 
hanges, so we 
on
lude that  = 0 on �T , i.e.,  = b

T

� for some

� 2 P

k�3

(T ). Now take q = �, � = 
onstant on �T in (16). The resulting �

belongs to �

�

(T ) and so is orthogonal to Æ =r(b

T

�), and now integration

by parts immediately implies that � = 0. �

Let

�

�

h

= f � 2 L

2

(
) j � j

T

2 �

�

(T ); T 2 T

h

g: (17)

In view of the lemma, we may de�ne P

h

: L

2

(
)! �

h

by

(Æ � P

h

Æ; � ) = 0; � 2 �

�

h

: (18)

4 Error analysis

Having 
ompleted the spe
i�
ation of our family of DG methods (one for

ea
h positive odd integer k), in this se
tion we state and prove the basi
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error estimates for the methods. For this purpose we �rst de�ne norms

jjj�jjj

2

�

:= k�k

2

1;h

+

X

e2E

h

�

1

jej

k[�℄k

2

0;e

+ jej kfC "

h

(�)gk

2

0;e

�

; (19)

jjjvjjj

2

W

:= jvj

2

1;h

+

X

e2E

h

1

jej

k[v℄k

2

0;e

; (20)

jjj� jjj

2

�

:= k�k

2

0

+

X

e2E

h

jejkf�gk

2

0;e

; (21)

for � 2H

2

(T

h

), v 2 H

1

(T

h

), and � 2H

1

(T

h

).

Remark 4.1 It is easy to see that the norm jjj � jjj

W

de�ned in (20) 
an

be expressed in other equivalent ways. Indeed, denoting again by Q

e

the

L

2

�proje
tion operator onto polynomials of degree k � 1 on the edge e,

and by Q

0

e

the proje
tions onto 
onstants, we have

jjjvjjj

2

W

' jvj

2

1;h

+

X

e2E

h

1

jej

kQ

e

([v℄)k

2

0;e

' jvj

2

1;h

+

X

e2E

h

1

jej

kQ

0

e

([v℄)k

2

0;e

; v 2 H

1

(T

h

);

(22)

with the 
onstants in the equivalen
es (22) depending only on the minimum

angle of the triangulation. In order to see that (22) hold we �rst noti
e

that, obviously, we always have

kQ

0

e

([v℄)k

0;e

� kQ

e

([v℄)k

2

0;e

� k[v℄k

2

0;e

; v 2 H

1

(T

h

):

Hen
e, (22) will follow easily from the following inequality, where we add

and subtra
t Q

0

e

([v℄), then we rearrange terms, then use (3) and �nally

apply 
lassi
al approximation results.

X

e2E

h

1

jej

k[v℄k

2

0;e

=

X

e2E

h

1

jej

(k[v℄�Q

0

e

([v℄)k

2

0;e

+ kQ

0

e

([v℄)k

2

0;e

)

� C (

X

T

X

e2�T

1

jej

kv �Q

0

e

vk

2

0;e

) +

X

e2E

h

1

jej

kQ

0

e

([v℄)k

2

0;e

� C

X

T

(

1

jej

2

kv �Q

0

e

vk

2

0;T

+ kr

h

vk

2

0;T

) +

X

e2E

h

1

jej

kQ

0

e

([v℄)k

2

0;e

� C jvj

2

1;h

+

X

e2E

h

1

jej

kQ

0

e

([v℄)k

2

0;e

:

The following theorem is the prin
ipal result of the paper.
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Theorem 4.2 Let �, w, 
 solve the Reissner{Mindlin system (8), (9). Let

k be a positive odd integer and suppose that the penalty parameter �

�

is

suÆ
iently large and the penalty parameter �

W

is positive. Then there

exists a unique solution �

h

, w

h

, 


h

to the dis
ontinuous Galerkin method

(12){(13). Moreover, there exists a 
onstant C, independent of h and t,

su
h that

jjj� � �

h

jjj

�

+ jjjw � w

h

jjj

W

+ tjjj
 � 


h

jjj

�

� C h

k

(k�k

k+1

+ kwk

k+1

+ k
k

k

) : �

Remark 4.3 This estimate is 
learly optimal with respe
t to the power

of h and with respe
t to the regularity of � and w. With respe
t to the

regularity of 
 one might hope to repla
e k
k

k

with tk
k

k

+ k
k

k�1

+

k div
k

k�1

on the right-hand side. However, su
h an estimate does not

follow from the 
urrent analysis. We will however be able to prove it, in

the last se
tion, for the 
ontinuous-non
onforming 
ase.

We now turn to the proof Theorem 4.2, beginning by introdu
ing some

notation. Let

a

h

(�;�) = (C "

h

(�); "

h

(�))

�

X

e2E

h

Z

e

(fC "

h

(�)g : [�℄ + [�℄ : fC "

h

(�)g) ds+ p

�

(�;�);

j(� ; v) =

X

e2E

h

Z

e

f�g � [v℄ ds: (23)

Clearly we have

a

h

(�;�) � Cjjj�jjj

�

jjj�jjj

�

; �;� 2H

2

(T

h

); (24)

j(� ; v) � Cjjj� jjj

�

jjjvjjj

W

; v 2 H

1

(T

h

); � 2H

1

(T

h

): (25)

In this notation we may rewrite (11) as

a

h

(�;�) + (
;r

h

v � �)� j(
; v) + p

W

(w; v) = (g; v);

(�; v) 2H

2

(T

h

)�H

2

(T

h

); (26)

(r

h

w � �; � )� j(� ; w)� t

2

(
; � ) = 0; � 2H

1

(T

h

); (27)

and (12){(13) as

a

h

(�

h

;�) + (


h

;r

h

v � P

h

�)� j(


h

; v) + p

W

(w

h

; v) = (g; v);

(�; v) 2 �

h

�W

h

; (28)

10



(r

h

w

h

� P

h

�

h

; � )� j(� ; w

h

)� t

2

(


h

; � ) = 0; � 2 �

h

: (29)

De�ning a lifting operator J :H

1

(T

h

)! �

h

by the equation

(J(v); � ) = j(� ; v); � 2 �

h

; (30)

we 
an eliminate 


h

in (29):




h

= t

�2

(r

h

w

h

� J(w

h

)� P

h

�

h

): (31)

Substituting in (28), we obtain an alternate formulation of the method:

a

h

(�

h

;�) + t

�2

(r

h

w

h

� J(w

h

)� P

h

�

h

;r

h

v � J(v)� P

h

�)

+ p

W

(w

h

; v) = (g; v); � 2 �

h

; v 2W

h

:

The following estimate for J will play an important role in the analysis.

(Here and throughout the sequel we 
ontinue to denote by C a generi



onstant whi
h may depend on the mesh through its shape regularity but

not otherwise and whi
h is independent of t.)

Proposition 4.4

jjjJ(v)jjj

2

�

� C

X

e2E

h

1

jej

kQ

e

[v℄k

2

0;e

; v 2 W

h

:

Proof. First we note that, by a lo
al inverse inequality,

jjj� jjj

2

�

� Ck�k

2

0

; � 2 �

h

: (32)

Now

kJ(v)k

2

0

= (J(v);J(v)) = j(J(v); v) =

X

e2E

h

Z

e

fJ(v)g � [v℄ ds

=

X

e2E

h

Z

e

fJ(v)g �Q

e

[v℄ ds:

Therefore

kJ(v)k

2

0

�

 

X

e2E

h

jejkfJ(v)gk

2

0;e

!

1=2

 

X

e2E

h

1

jej

kQ

e

[v℄k

2

0;e

!

1=2

� jjjJ(v)jjj

�

 

X

e2E

h

1

jej

kQ

e

[v℄k

2

0;e

!

1=2

;

and so the proposition follows using (32). �

The next two propositions are analogues of Poin
ar�e's inequality and

Korn's inequality for pie
ewise smooth fun
tions.
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Proposition 4.5

kvk

0

� C jjjvjjj

W

; v 2 H

1

(T

h

): (33)

Proof. This sort of result is well-known. See for instan
e [2℄ or the more

general results of [10℄. For the 
onvenien
e of the reader we in
lude the

proof. As a �rst step, we 
onsider a smooth domain

e


 su
h that 
 �

e


, and

we extend v by zero outside 
. We denote again by v the extension. Then

we de�ne the fun
tion  as the solution of � = v in

e


, with  2 H

1

0

(

e


).

We obviously have k k

2;

e




� C kvk

0

. Then we have, using the de�nition

of  , integrating by parts in ea
h triangle and using (2), and �nally using

(25):

kvk

2

0

= (� ; v) = �(r ;r

h

v) + j(r ; v)

� j j

1

jvj

1;h

+ C jjjr jjj

�

jjjvjjj

W

:

Using (3) it is not diÆ
ult to see that

jjjr jjj

�

� Ck k

2;

e




� Ckvk

0

;

and (33) follows. �

Lemma 4.6

k�k

2

1;h

� C(

X

T2T

h

k "(�)k

2

0;T

+

X

e2E

h

1

jej

k[�℄k

2

0;e

); � 2H

1

(T

h

): (34)

Proof. This is essentially a spe
ialization of the results in [11℄. From

Theorem 3.1 of that paper, with � 
hosen as in Example 2.3, we get

j�j

2

1;h

� C(

X

T2T

h

k "(�)k

2

0;T

+ k�k

2

0

+

X

e2E

h

1

jej

k[�℄k

2

0;e

); � 2H

1

(T

h

):

We 
an now repeat, essentially, the proof of (33) in order to bound the k�k

0

in terms of k "(�)k

0;T

and the jumps, and then we easily dedu
e (34). �

Using Lemma 4.6, (3), and an inverse inequality, it is straightforward

to verify the following proposition.

Proposition 4.7 There exist positive 
onstants �

0

and � depending only

on the polynomial degree k and the shape regularity of the partition T

h

,

su
h that: if the 
onstant �

�

� �

0

(where �

�

is the penalty parameter

appearing in (15)), then

a

h

(�;�) � �jjj�jjj

2

�

; � 2 �

h

: (35)
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To pro
eed with the analysis we de�ne, for � 2 H

1

(
), w 2 H

1

(
),

and 
 2 L

2

(
), approximations �

I

2 �

h

, w

I

2 W

h

, and 


I

2 �

h

. For �

I

we simply take the L

2

-proje
tion of � onto�

h

. Sin
e �

�

h

� �

h

, an obvious

(but important) 
onsequen
e is that

P

h

� = P

h

�

I

; � 2 H

1

(
): (36)

Of 
ourse we have

jjj� � �

I

jjj

�

� C h

k

k�k

k+1

: (37)

For w

I

we use a standard non-
onforming P

k

interpolant. Namely on

ea
h triangle T we de�ne w

I

j

T

2 P

k

(T ) by

Z

e

(w � w

I

)� ds = 0; � 2 P

k�1

(e) for ea
h edge e of T ; (38)

Z

T

(w � w

I

)v dx = 0; v 2 P

k�3

(T ): (39)

Note that

Z

T

r(w � w

I

) � � dx = �

Z

T

(w � w

I

) div � dx+

Z

�T

(w � w

I

)� � n ds;

whi
h vanishes if � 2 P

k�1

(T ) with div � 2 P

k�3

(T ) and 
ertainly if

� = 
url(b

T

v) for some v. Thus

P

h

(rw) = P

h

(r

h

w

I

) =r

h

w

I

; w 2 H

1

(
); (40)

with the last equality 
oming from (14). Standard approximation theory

gives

jjjw � w

I

jjj

W

� C h

k

kwk

k+1

: (41)

We also note that (38) implies that Q

e

[w�w

I

℄ = 0 on every edge e. Hen
e,

p

W

(w � w

I

; v

h

) = 0; v

h

2W

h

: (42)

Finally we de�ne 


I

= P

h


. Standard approximation arguments es-

tablish that

jjj
 � 


I

jjj

�

� C h

k

k
k

k

: (43)

Most importantly, (36) and (40) together imply that if 
 = t

�2

(rw � �),

then




I

= t

�2

(r

h

w

I

� P

h

�

I

): (44)

Following ideas from Duran and Liebermann [21℄, our analysis will rely on

this last relation. Also important, but spe
i�
 to the 
ase of dis
ontinuous

elements, is the relation

j(� ; w

I

) = 0; w 2 H

1

(
); � 2 �

h

;
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or, equivalently,

J(w

I

) = 0; (45)

whi
h follows dire
tly from (38).

We will bound the error between the exa
t solution � , w, 
, determined

by (26) and (27), and the Galerkin solution �

h

, w

h

, 


h

, determined by (28)

and (29), in terms of the errors in �

I

, w

I

, and 


I

whi
h 
an in turn be

bounded as in (37), (41), and (43). Let

�

Æ

= �

h

� �

I

; w

Æ

= w

h

� w

I

; 


Æ

= 


h

� 


I

: (46)

From (31), (44), and (45) we have

P

h

�

Æ

= �t

2




Æ

+r

h

w

Æ

� J(w

Æ

): (47)

Using (35), then adding and subtra
ting � we obtain

�jjj�

Æ

jjj

2

�

� a

h

(�

Æ

;�

Æ

) = a

h

(�

h

� �;�

Æ

) + a

h

(� � �

I

;�

Æ

)

=: a

h

(�

h

� �;�

Æ

) + T

1

:

(48)

Then we take � = �

Æ

, v = 0 in (26) and (28), and we add and subtra
t

P

h

�

Æ

, to obtain

a

h

(�

h

� �;�

Æ

) = (


h

;P

h

�

Æ

)� (
;�

Æ

)

= (


h

� 
;P

h

�

Æ

) + (
;P

h

�

Æ

� �

Æ

) =: (


h

� 
;P

h

�

Æ

) + T

2

: (49)

By (47),

(


h

� 
;P

h

�

Æ

) = �t

2

(


h

� 
;


Æ

) + (


h

� 
;r

h

w

Æ

� J(w

Æ

))

= �t

2

k


Æ

k

2

0

� t

2

(


I

� 
;


Æ

) + (


h

� 
;r

h

w

Æ

� J(w

Æ

))

=: �t

2

k


Æ

k

2

0

+ T

3

+ (


h

� 
;r

h

w

Æ

� J(w

Æ

)):

The �rst term in the right-hand side is negative, and will go to the left

in the �nal estimate. To deal with the last term, we note that (28) with

� = 0, v = w

Æ

, and (30) give

(


h

;r

h

w

Æ

� J(w

Æ

)) = (g; w

Æ

)� p

W

(w

h

; w

Æ

) = (g; w

Æ

) + p

W

(w � w

h

; w

Æ

);

and (26) gives

(
;r

h

w

Æ

) = (g; w

Æ

) + j(
; w

Æ

);

so

(


h

� 
;r

h

w

Æ

� J(w

Æ

)) = p

W

(w � w

h

; w

Æ

) + (
;J(w

Æ

))� j(
; w

Æ

)

=: p

W

(w � w

h

; w

Æ

) + T

4

:
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Finally, adding and subtra
ting w

I

, and using (42) we dedu
e

p

W

(w � w

h

; w

Æ

) = p

W

(w � w

I

; w

Æ

)� p

W

(w

Æ

; w

Æ

) = �p

W

(w

Æ

; w

Æ

):

The last term in the right-hand side is negative, and goes to the left-hand

side. Colle
ting the above equations we have

�jjj�

Æ

jjj

2

�

+ t

2

jjj


Æ

jjj

2

�

+

1

2

p

W

(w

Æ

; w

Æ

) � T

1

+ T

2

+ T

3

+ T

4

; (50)

where

T

1

= a

h

(� � �

I

;�

Æ

) � Cjjj� � �

I

jjj

�

jjj�

Æ

jjj

�

; (51)

T

2

= (
;P

h

�

Æ

� �

Æ

); (52)

T

3

= t

2

(
 � 


I

;


Æ

) � t

2

k
 � 


I

k

0

k


Æ

k

0

; (53)

T

4

= (
;J(w

Æ

))� j(
; w

Æ

): (54)

To estimate T

4

we add and subtra
t 


I

using (30), and then we use

(25) and Proposition 4.4, obtaining

T

4

= (
;J(w

Æ

))� j(
; w

Æ

) = (
 � 


I

;J(w

Æ

))� j(
 � 


I

; w

Æ

)

� C jjj
 � 


I

jjj

�

jjjw

Æ

jjj

W

:

This estimate is not, however, satisfa
tory, sin
e we do not have a term like

jjjw

Æ

jjj

W

in the left-hand side of (50). Hen
e, we have to bound kr

h

w

Æ

k

0

as well. For this, we apply (47), Proposition 4.4, and the L

2

-boundedness

of P

h

to obtain

kr

h

w

Æ

k

0

= kt

2




Æ

+ J(w

Æ

) + P

h

�

Æ

k

0

� C(t

2

jjj


Æ

jjj

�

+ jjj�

Æ

jjj

�

+ (p

W

(w

Æ

; w

Æ

))

1=2

);

and therefore, thanks to (22),

jjjw

Æ

jjj

W

� C(t

2

jjj


Æ

jjj

�

+ jjj�

Æ

jjj

�

+ (p

W

(w

Æ

; w

Æ

))

1=2

): (55)

It remains to bound T

2

. From the de�nition of P

h

, we have

T

2

= (
 � Æ;P

h

�

Æ

� �

Æ

) � k
 � Æk

0

kP

h

�

Æ

� �

Æ

k

0

� Chk
 � Æk

0

jjj�

Æ

jjj

�

;

where Æ is an arbitrary element of �

�

h

. We may 
hoose, for example, Æ to

be the L

2

-proje
tion of 
 onto L

0

k�2

(T

h

) and get k
�Æk

0

� Ch

k�1

k
k

k�1

.

Thus

T

2

� Ch

k

k
k

k�1

jjj�

Æ

jjj

�

:
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Combining the pre
eding estimates and invoking the arithmeti
-geomet-

ri
 mean inequality we obtain

jjj�

Æ

jjj

2

�

+ t

2

jjj


Æ

jjj

�

+ p

W

(w

Æ

; w

Æ

)

� C

�

jjj� � �

I

jjj

2

�

+ (1 + t

2

)jjj
 � 


I

jjj

2

�

+ jjjw � w

I

jjj

2

W

+ h

2k

k
k

2

k�1

�

:

In view of (22), this be
omes

jjj�

Æ

jjj

2

�

+ t

2

jjj


Æ

jjj

�

+ jjjw

Æ

jjj

2

W

� C

�

jjj� � �

I

jjj

2

�

+ (1 + t

2

)jjj
 � 


I

jjj

2

�

+ jjjw � w

I

jjj

2

W

+ h

2k

k
k

2

k�1

�

:

Finally, 
ombining with the triangle inequality and the interpolation error

bounds (37), (41), (43), and assuming as natural that t is bounded from

above, we 
omplete the proof of the Theorem 4.2.

5 Continuous � and non
onforming w

In this �nal se
tion we 
onsider a method in whi
h � is dis
retized by

means of 
ontinuous elements, and w by means of non
onforming ones.

Our method is still of the form (12){(13), and again we must spe
ify the

�nite element spa
es �

h

, W

h

, and �

h

, the penalty fun
tions p

�

and p

W

,

and the proje
tion operator P

h

. The penalty fun
tions are not needed

for this method, and 
an be taken to vanish. We keep �

h

= L

0

k�1

(T

h

) as

before, and we keep the de�nition (18) of P

h

where �

�

h

is still given by

(17). For the 
hoi
e of W

h

we take the spa
e of non
onforming pie
ewise

polynomials of degree at most k, that is

W

h

= f v

h

2 L

0

k

jQ

e

[v

h

℄ = 0; e 2 E

h

g (56)

where Q

e

is as before the L

2

-proje
tion on the spa
e of polynomials of

degree k � 1 on e. Obviously we still have r

h

(W

h

) � �

h

.

The above de�nitions allow us to again take 


I

:= P

h


 2 �

h

and to

again de�ne w

I

2 W

h

by (38)-(39). Then (40) still holds. In order to

have the fundamental property (44), on whi
h the error analysis is based,

we need to de�ne the spa
e �

h

so it admits an interpolation operator

� 7! �

I

2 �

h

satisfying (36) (whi
h, together with (40), implies (44)).

The 
ontinuity we are requiring for �

I

pre
ludes the 
hoi
e �

I

= P

h

�

made formerly, and leads to a more 
ompli
ated 
onstru
tion of �

h

. In

parti
ular, the somewhat natural 
hoi
e � = L

1

k

does not work (even for

k = 1) as we would not have enough degrees of freedom to for
e (36) in

ea
h element. Instead, we start from L

1

k

and add a suÆ
ient number of

bubble fun
tions to ensure (36).
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De�ne �(T ) = P

k

(T ) + b

T

�

�

(T ), and remark that all the bubbles of

P

k

(T ) 
an be written as b

T

P

k�3

(T ). Sin
e P

k�3

(T ) � �

�

(T ), all the

bubbles of P

k

(T ) belong to b

T

�

�

(T ). Hen
e a set of degrees of freedom

for � 2 �(T ) 
onsists of the values of ea
h 
omponent of � at the verti
es

of T , the moments of degree at most k� 2 of ea
h 
omponent of � on ea
h

edge of T , and the integrals

R

T

� � � dx for ea
h � in a basis for �

�

(T ).

Hen
e, we 
an set

�

h

= f� 2H

1

0

(
) j�j

T

2 �(T ); T 2 T

h

g;

and use the above degrees of freedom to 
onstru
t a proje
tion operator

C(T )! �(T ), and so an operator � 7! �

I

from C(
) \H

1

0

(
)! �

h

. It

is then 
lear that for this operator (36) holds.

Be
ause of the 
ontinuity of the elements of �

h

and the near 
ontinuity

of the elements of W

h

, all the terms involving edge integrals in (12){(13)

vanish, and the method may be simply written

(C "(�

h

); "(�)) + (


h

;r

h

v � P

h

�)) = (g; v); (�; v) 2 �

h

�W

h

; (57)

(r

h

w

h

� P

h

�

h

; � )� t

2

(


h

; � ) = 0; � 2 �

h

: (58)

Remark 5.1 In the lowest order 
ase, k = 1, �

h

= �

�

h

is just the spa
e

of pie
ewise 
onstants and P

h

the L

2

-proje
tion into this spa
e, �

h

is the

usual spa
e of 
onforming pie
ewise linears augmented by bubbles, and

W

h

the usual spa
e on non
onforming pie
ewise linears, so this method is

exa
tly that of Arnold and Falk [5℄.

Remark 5.2 The 
hoi
e of �

h

was made in order to obtain (36) easily,

rather than to simplify the implementation of the method. From the latter

point of view, the alternative 
hoi
e based on �(T ) := P

k

(T ) + b

T

P

k�1

(whi
h 
oin
ides with our 
hoi
e only for k = 1) seems natural, but we

shall not 
onsider this possibility here.

Equation (58) may be written in strong form as

t

2




h

=r

h

w

h

� P

h

�

h

; (59)

whi
h makes it easy to see that the method admits a unique solution.

Moreover, (59) and (44) together give

t

2




Æ

=r

h

w

Æ

� P

h

�

Æ

(60)

(with the notation given by (46)). We now turn to the error analysis,

assuming that k � 3 (sin
e the 
ase k = 1 is handled in [5℄).
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The analysis pro
eeds along the same lines as in the previous se
tion.

Following (48) and (49) we obtain

�jjj�

Æ

jjj

2

�

� T

1

+ T

2

+ (


h

� 
; P

h

�

Æ

);

with T

1

and T

2

still given by (51) and (52). We 
an now use (60), add and

subtra
t 


I

, use (57) and (10) (both with � = 0), and the de�nition of j

given by (23) to obtain:

(


h

� 
; P

h

�

Æ

) = �t

2

(


h

� 
;


Æ

) + (


h

� 
;r

h

w

Æ

)

= �t

2

k


Æ

k

2

0

� t

2

(


I

� 
;


Æ

) + (


h

� 
;r

h

w

Æ

)

=: �t

2

k


Æ

k

2

0

+ T

3

+ (


h

� 
;r

h

w

Æ

)

= �t

2

k


Æ

k

2

0

+ T

3

� j(
; w

Æ

);

where the �rst term in the right-hand side is negative, and will go to the

left in the �nal estimate, and T

3

is given by (53). It remains to bound the

last term.

Let 


M

denote the BDM interpolant of 
 degree k � 1 (see, e.g., [13℄

or [14℄). Thus 


M

2 L

0

k�1

(T

h

) satis�es: i) its normal 
omponent is 
on-

tinuous a
ross interelement boundaries, ii) div 


M

= P

k�2

div 
 = P

k�2

g

where P

k�2

denotes the L

2

-proje
tion onto L

0

k�2

(T

h

), and iii) 
 � 


M

is

orthogonal to L

0

0

.

Using the de�nition (23) of j( � ; � ), then (56), then (2) and Green for-

mula in ea
h T , then (60) and ii), then iii) and ii), then Cau
hy-S
hwarz,

the arithmeti
-geometri
 mean inequality and �nally standard interpola-

tion estimates, we get

j(
; w

Æ

) = j(
 � 


M

; w

Æ

)

= (
 � 


M

;r

h

w

Æ

) + (div 
 � div 


M

; w

Æ

)

= (
 � 


M

; t

2




Æ

+ P

h

�

Æ

) + (g � P

k�2

g; w

Æ

)

= t

2

(
 � 


M

;


Æ

) + (
 � 


M

; (I � P

0

)P

h

�

Æ

)

+ (g � P

k�2

g; (I � P

0

)w

Æ

)

�

1

2"

t

2

k
 � 


M

k

2

0

+

"

2

t

2

k


Æ

k

2

0

+ k
 � 


M

k

0

k(I � P

0

)P

h

�

Æ

k

0

+ kg � P

k�2

gk

0

k(I � P

0

)w

Æ

k

0

�

1

2"

t

2

h

2k

k
k

2

k

+

"

2

t

2

k


Æ

k

2

0

+ C h

k�1

k
k

k�1

hjjj�

Æ

jjj

+ C h

k�1

kgk

k�1

hjjjw

Æ

jjj

W

:

The remainder of the error analysis follows the lines of the previous se
tion,

18



arriving �nally to the error bound

jjj� � �

h

jjj

�

+ jjjw � w

h

jjj

W

+ tjjj
 � 


h

jjj

�

� C h

k

(k�k

k+1;


+ kwk

k+1;


+ tk
k

k

+ k
k

k�1

+ kgk

k�1

) :
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