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1 INTRODUCTION

Finite element method is a well-known and highly effec-
tive technique for the computation of approximate solu-
tions of complex boundary value problems. Started in the
fifties with milestone papers in a structural engineering
context (see e.g. references in Chapter 1 of Zienkiewicz
and Taylor (2000a) as well as classical references such
as Turner et al. (1956) and Clough (1965)), the method
has been extensively developed and studied in the last
50 years (Bathe, 1996; Brezzi and Fortin, 1991; Becker,
Carey and Oden, 1981; Brenner and Scott, 1994; Crisfield,
1986; Hughes, 1987; Johnson, 1992; Ottosen and Petersson,
1992; Quarteroni and Valli, 1994; Reddy, 1993; Wait and
Mitchell, 1985) and it is currently used also for the solution
of complex nonlinear problems (Bathe, 1996; Bonet and
Wood, 1997; Belytschko, Liu and Moran, 2000; Crisfield,
1991; Crisfield, 1997; Simo and Hughes, 1998; Simo,

Encyclopedia of Computational Mechanics, Edited by Erwin
Stein, René de Borst and Thomas J.R. Hughes. Volume 1: Funda-
mentals.  2004 John Wiley & Sons, Ltd. ISBN: 0-470-84699-2.

1999; Zienkiewicz and Taylor, 2000b; Zienkiewicz and
Taylor, 2000c).

Within such a broad approximation method, we focus on
the often-called mixed finite element methods, where in our
terminology the word ‘mixed’ indicates the fact that the
problem discretization typically results in a linear algebraic
system of the general form[

A BT

B 0

]{
x
y

}
=
{

f
g

}
(1)

with A and B matrices and with x, y, f, and g vectors. Also,
on mixed finite elements, the bibliography is quite large,
ranging from classical contributions (Atluri, Gallagher and
Zienkiewicz, 1983; Carey and Oden, 1983; Strang and Fix,
1973; Zienkiewicz et al., 1983) to more recent references
(Bathe, 1996; Belytschko, Liu and Moran, 2000; Bonet
and Wood, 1997; Brezzi and Fortin, 1991; Hughes, 1987;
Zienkiewicz and Taylor, 2000a; Zienkiewicz and Taylor,
2000c). An impressive amount of work has been devoted to
a number of different stabilization techniques, virtually for
all applications in which mixed formulations are involved.
Their treatment is, however, beyond the scope of this
chapter, and we will just say a few words on the general
idea in Section 4.2.5.

In particular, the chapter is organized as follows. Sec-
tion 2 sketches out the fact that several physical problem
formulations share the same algebraic structure (1), once a
discretization is introduced. Section 3 presents a simple,
algebraic version of the abstract theory that rules most
applications of mixed finite element methods. Section 4
gives several examples of efficient mixed finite element
methods. Finally, in Section 5 we give some hints on how
to perform a stability and error analysis, focusing on a
representative problem (i.e. the Stokes equations).
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2 Mixed Finite Element Methods

2 FORMULATIONS

The goal of the present section is to point out that a quite
large set of physical problem formulations shares the same
algebraic structure (1), once a discretization is introduced.

To limit the discussion, we focus on steady state field
problems defined in a domain � ⊂ R

d , with d the Euclidean
space dimension. Moreover, we start from the simplest class
of physical problems, that is, the one associated to diffusion
mechanisms. Classical problems falling in this frame and
frequently encountered in engineering are heat conduction,
distribution of electrical or magnetic potentials, irrotational
flow of ideal fluids, torsion or bending of cylindrical beams.

After addressing the thermal diffusion, as representative
of the whole class, we move to more complex problems,
such as the steady state flow of an incompressible New-
tonian fluid and the mechanics of elastic bodies. For each
problem, we briefly describe the local differential equations
and possible variational formulations.

Before proceeding, we need to comment on the adopted
notation. In general, we indicate scalar fields with nonbold
lower-case roman or nonbold lower-case greek letters (such
as a, α, b, β), vector fields with bold lower-case roman
letters (such as a, b), second-order tensors with bold lower-
case greek letters or bold upper-case roman letters (such as
α, β, A, B), fourth-order tensors with upper-case blackboard
roman letters (such as D). We however reserve the letters
A and B for ‘composite’ matrices (see e.g. equation (31)).
Moreover, we indicate with 0 the null vector, with I the
identity second-order tensor and with I the identity fourth-
order tensor.

Whenever necessary or useful, we may use the standard
indicial notation to represent vectors or tensors. Accord-
ingly, in a Euclidean space with base vectors ei , a vector a,
a second-order tensor α, and a fourth-order tensor D have
the following components

a|i = ai = a · ei , α|ij = αij = ei · (αej )

D|ijkl = Dijkl = (ei ⊗ ej ) : [D(ek ⊗ el)] (2)

where ·, ⊗, and : indicate respectively the scalar vector
product, the (second-order) tensorial vector product, and
the scalar (second-order) tensor product. Sometimes, the
scalar vector product will be also indicated as aTb, where
the superscript T indicates transposition.

During the discussion, we also introduce standard differ-
ential operators such as gradient and divergence, indicated
respectively as ‘∇’ and ‘div’, and acting either on scalar,
vector, or tensor fields. In particular, we have

∇a|i = a,i , ∇a|ij = ai,j

div a = ai,i, div α|i = αij,j (3)

where repeated subscript indices imply summation and
where the subscript comma indicates derivation, that is,
a,i = ∂a/∂xi .

Finally, given for example, a scalar field a, a vector
field a, and a tensor field α, we indicate with δa, δa, δα

the corresponding variation fields and with ah, ah, αh the
corresponding interpolations, expressed in general as

ah = Na
k âk, ah = Na

kâk, αh = Nα
k α̂k (4)

where Na
k , Na

k, and Nα
k are a set of interpolation func-

tions (i.e. the so-called shape functions), while âk and
α̂k are a set of interpolation parameters (i.e. the so-called
degrees of freedom); clearly, Na

k , Na
k , and Nα

k are respec-
tively scalar, vector, and tensor predefined (assigned) fields,
while âk and α̂k are scalar quantities, representing the
effective unknowns of the approximated problems. With
the adopted notation, it is now simple to evaluate the
differential operators (3) on the interpolated fields, that
is,

∇ah = (∇Na
k

)
âk, ∇ah = (∇Na

k

)
âk

div ah = (
div Na

k

)
âk, div αh = (

div Nα
k

)
α̂k (5)

or in indicial notation

∇ah|i = Na
k,i âk, ∇ah|ij = Na

k|i,j âk

div ah = Na
k|i,i âk, div αh|i = Nα

k |ij,j α̂k (6)

2.1 Thermal diffusion

The physical problem
Indicating with θ the body temperature, e the temperature
gradient, q the heat flux, and with b the assigned heat source
per unit volume, a steady state thermal problem in a domain
� can be formulated as a (θ, e, q) three field problem as
follows: { div q + b = 0 in �

q = −De in �

e = ∇θ in �

(7)

which are respectively the balance equation, the constitutive
equation, the compatibility equation.

In particular, we assume a linear constitutive equa-
tion (known as Fourier law), where D is the conductivity
material-dependent second-order tensor; in the simple case
of thermally isotropic material, D = kI with k the isotropic
thermal conductivity.

Equation (7) is completed by proper boundary condi-
tions. For simplicity, we consider only the case of trivial
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essential conditions on the whole domain boundary, that is,

θ = 0 on ∂� (8)

This position is clearly very restrictive from a physical
point of view but it is still adopted since it simplifies the
forthcoming discussion, at the same time without limiting
our numerical considerations.

As classically done, the three field problem (7) can be
simplified eliminating the temperature gradient e, obtaining
a (θ, q) two field problem{

div q + b = 0 in �

q = −D∇θ in �
(9)

and the two field problem (9) can be further simplified
eliminating the thermal flux q (or eliminating the fields e
and q directly from equation (7)), obtaining a θ single field
problem

− div (D∇θ) + b = 0 in � (10)

For the case of an isotropic and homogeneous body, this
last equation specializes as follows

−k�θ + b = 0 in � (11)

where � is the standard Laplace operator.

Variational principles
The single field equation (10) can be easily derived starting
from the potential energy functional

�(θ) = 1

2

∫
�

[∇θ · D∇θ] d� +
∫

�

θb d� (12)

Requiring the stationarity of potential (12), we obtain

d�(θ)[δθ] =
∫

�

[(∇δθ) · D∇θ] d� +
∫

�

[δθb] d� = 0

(13)

where δθ indicates a possible variation of the temperature
field θ and d�(θ)[δθ] indicates the potential variation
evaluated at θ in the direction δθ. Since functional (12) is
convex, we may note that the stationarity requirement is
equivalent to a minimization.

Recalling equation (4), we may now introduce an inter-
polation for the temperature field in the form

θ ≈ θh = N θ
k θ̂k (14)

as well as a similar approximation for the corresponding
variation field, such that equation (13) can be rewritten in

matricial form as follows

Aθ̂ = f (15)

with 
A|ij =

∫
�

[∇N θ
i · D∇N θ

j ] d�, θ̂|j = θ̂j

f|i = −
∫

�

[
N θ

i b
]

d�

(16)

Besides the integral form (13) associated to the single field
equation (10), it is also possible to associate an integral
form to the two field equation (9) starting now from the
more general Hellinger–Reissner functional

�HR(θ, q) = −1

2

∫
�

[
q · D−1q

]
d� −

∫
�

[
q · ∇θ

]
d�

+
∫

�

θb d� (17)

Requiring the stationarity of functional (17), we obtain

d�HR(θ, q)[δq] = −
∫

�

[
δq · D−1q

]
d�

−
∫

�

[
δq · ∇θ

]
d� = 0

d�HR(θ, q)[δθ] = −
∫

�

[
(∇δθ) · q

]
d�

+
∫

�

[δθb] d� = 0

(18)

which is now equivalent to the search of a saddle point.
Changing sign to both equations and introducing the
approximation {

θ ≈ θh = N θ
k θ̂k

q ≈ qh = Nq
k q̂k

(19)

as well as a similar approximation for the corresponding
variation fields, equation (18) can be rewritten in matricial
form as follows [

A BT

B 0

]{
q̂
θ̂

}
=
{

0
g

}
(20)

where 

A|ij =
∫

�

[Nq
i · D−1Nq

j ] d�, q̂|j = q̂j

B|rj =
∫

�

[∇N θ
r · Nq

j ] d�, θ̂|r = θ̂r

g|r =
∫

�

[N θ
r b] d�

(21)
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Starting from the Hellinger–Reissner functional (17) previ-
ously addressed, the following modified Hellinger–Reissner
functional can be also generated

�HR,m(θ, q) = −1

2

∫
�

[
q · D−1q

]
d� +

∫
�

[
θ div q

]
d�

+
∫

�

θb d� (22)

and, requiring its stationarity, we obtain



d�HR,m(θ, q)[δq] = −
∫

�

[
δq · D−1q

]
d�

+
∫

�

[
div (δq) θ

]
d� = 0

d�HR,m(θ, q)[δθ] =
∫

�

[
δθ div q

]
d� +

∫
�

[δθb] d� = 0

(23)

which is again equivalent to the search of a saddle point.
Changing sign to both equations and introducing again
field approximation (19), equation (23) can be rewritten in
matricial form as equation (20), with the difference that
now

B|rj = −
∫

�

[
N θ

r div
(

Nq
j

) ]
d� (24)

Similarly, we may also associate an integral form to the
three field equation (7) starting from the even more general
Hu–Washizu functional

�HW(θ, e, q) = 1

2

∫
�

[e · De] d� +
∫

�

[
q · (e − ∇θ)

]
d�

+
∫

�

θb d� (25)

Requiring the stationarity of functional (25), we obtain



d�HW(θ, e, q)[δe] =
∫

�

[δe · De] d�

+
∫

�

[
δe · q

]
d� = 0

d�HW(θ, e, q)[δq] =
∫

�

[
δq · (e − ∇θ)

]
d� = 0

d�HW(θ, e, q)[δθ] = −
∫

�

[
(∇δθ) · q

]
d�

+
∫

�

[δθb] d� = 0

(26)

which is equivalent to searching a saddle point. Introducing
the following approximation θ ≈ θh = N θ

k θ̂k

e ≈ eh = Ne
kêk

q ≈ qh = Nq
k q̂k

(27)

as well as a similar approximation for the corresponding
variation fields, equation (26) can be rewritten in matricial
form as follows:A BT 0

B 0 CT

0 C 0


ê
q̂
θ̂

 =


0
0
h

 (28)

where

A|ij =
∫

�

[Ne
i · DNe

j ] d�, ê|j = êj

B|rj =
∫

�

[∇Nq
r · Ne

j ] d�, q̂|r = q̂r

C|sr = −
∫

�

[∇N θ
s · Nq

r ] d�, θ̂|s = θ̂s

h|s = −
∫

�

[
N θ

s b
]

d�

(29)

For later considerations, we note that equation (28) can be
also rewritten as [

A B
T

B 0

]{
x
y

}
=
{

0
h

}
(30)

where we made the following simple identifications

A =
[

A BT

B 0

]
, B = {0, C}

x =
{

ê
q̂

}
, y = θ̂ (31)

Examples of specific choices for the interpolating func-
tions (14), (19), or (27) respectively within the single field,
two field, and three field formulations can be found in
standard textbooks (Bathe, 1996; Ottosen and Petersson,
1992; Brezzi and Fortin, 1991; Hughes, 1987; Zienkiewicz
and Taylor, 2000a) or in the literature.

2.2 Stokes equations

The physical problem
Indicating with u the fluid velocity, ε the symmetric part
of the velocity gradient, σ the stress, p a pressure-like
quantity, and with b the assigned body load per unit volume,
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the steady state flow of an incompressible Newtonian fluid
can be formulated as a (u, ε,σ, p) four field problem as
follows: 

div σ + b = 0 in �

σ = 2µε − p1 in �

ε = ∇su in �

div u = 0 in �

(32)

which are respectively the balance, the constitutive, the
compatibility, and the incompressibility constraint equa-
tions. In particular, ∇s indicates the symmetric part of the
gradient, that is, in a more explicit form,

ε = ∇su = 1
2

[∇u + (∇u)T] (33)

while the constitutive equation relates the stress σ to the
symmetric part of the velocity gradient ε through a material
constant µ known as viscosity, and a volumetric pressure-
like scalar contribution p.

This set of equations is completed by proper boundary
conditions. As for the thermal problem, we prescribe trivial
essential conditions on the whole domain boundary, that is,

u = 0 on ∂� (34)

As classically done, equation (32) can be simplified elimi-
nating ε and σ, obtaining a (u, p) two field problem

{
µ�u − ∇p + b = 0 in �

div u = 0 in �
(35)

Variational principles
Equation (35) can be derived starting from the potential
energy functional

�(u) = 1

2
µ

∫
�

[∇u : ∇u] d� −
∫

�

[b · u] d� (36)

where now u is a function satisfying the constraint, that is,
such that div u = 0.

To remove the constraint on u, we can modify the
variational principle introducing the functional

L(u, p) = 1

2
µ

∫
�

[∇u : ∇u] d� −
∫

�

[b · u] d�

−
∫

�

[
p div u

]
d� (37)

where p now plays the role of Lagrange multiplier.

Requiring the stationarity of functional (37), we obtain

dL(u, p)[δu] = µ

∫
�

[(∇δu) : ∇u] d� −
∫

�

[δu · b] d�

−
∫

�

[div (δu) π] d� = 0

dL(u, p)[δp] = −
∫

�

[
δp div u

]
d� = 0

(38)

which is equivalent to the search of a saddle point. Intro-
ducing the following approximation{

u ≈ uh = Nu
k ûk

p ≈ ph = N
p

k p̂k

(39)

as well as a similar approximation for the corresponding
variation fields, equation (38) can be rewritten as follows[

A BT

B 0

]{
û
p̂

}
=
{

f
0

}
(40)

where

A|ij = µ

∫
�

[
∇Nu

i : ∇Nu
j

]
d�, û|j = ûj

B|rj = −
∫

�

[
Np

r div
(

Nu
j

) ]
d�, p̂|r = p̂r

f|i =
∫

�

[
Nu

i · b
]

d�

(41)

Examples of specific choices for the interpolating func-
tions (39) can be found in standard textbooks (Bathe,
1996; Brezzi and Fortin, 1991; Hughes, 1987; Quarteroni
and Valli, 1994; Zienkiewicz and Taylor, 2000a) or in the
literature.

2.3 Elasticity

The physical problem
Indicating with u the body displacement, ε the strain, σ

the stress, and with b the assigned body load per unit
volume, the steady state equations for a deformable solid
under the assumption of small displacement gradients can
be formulated as a (u, ε, σ) three field problem as follows{ div σ + b = 0 in �

σ = Dε in �

ε = ∇su in �

(42)

which are respectively the balance, the constitutive, and the
compatibility equations.
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In particular, we assume a linear constitutive equation,
where D is the elastic material-dependent fourth-order ten-
sor; in the simple case of a mechanically isotropic material,
D specializes as

D = 2µI + λI ⊗ I (43)

and the constitutive equation can be rewritten as

σ = 2µε + λ tr (ε) I (44)

where tr (ε) = I : ε. This set of equations is completed
by proper boundary conditions. As previously done, we
prescribe trivial essential conditions on the whole domain
boundary, that is,

u = 0 on ∂� (45)

This position is once more very restrictive from a physical
point of view but it is still adopted since it simplifies the
forthcoming discussion, at the same time without limiting
our numerical considerations.

The three field problem (42) can be simplified eliminat-
ing the strain ε, obtaining a (u, σ) two field problem{ div σ + b = 0 in �

σ = D∇su in �
(46)

and the two field problem (46) can be simplified eliminating
the stress σ (or eliminating ε and σ directly from equa-
tion (42)), obtaining a u single field problem

div
(
D∇su

)+ b = 0 in � (47)

In the case of an isotropic and homogeneous body, this last
equation specializes as follows:

2µ div
(∇su

) + λ∇ ( div u) + b = 0 in � (48)

Variational principles
The single field equation (47) can be easily derived starting
from the potential energy functional

�(u) = 1

2

∫
�

[∇su : D∇su
]

d� −
∫

�

[b · u] d� (49)

Requiring the stationarity of potential (49), we obtain

d�(u)[δu] =
∫

�

[(∇sδu
)

: D∇su
]

d�

−
∫

�

[δu · b] d� = 0 (50)

where δu indicates a possible variation of the displacement
field u. Since functional (49) is convex, we may note that

the stationarity requirement is equivalent to a minimization.
Recalling the notation introduced in equation (4), we may
now introduce an interpolation for the displacement field in
the form

u ≈ uh = Nu
k ûk (51)

as well as a similar approximation for the variation field,
such that equation (50) can be rewritten as follows:

Aû = f (52)

where
A|ij =

∫
�

[
∇sNu

i : D∇sNu
j

]
d�, û|j = ûj

f|i =
∫

�

[
Nu

i · b
]

d�

(53)

Besides the integral form (50) associated to the single field
equation (47), it is also possible to associate an integral
form to the two field equation (46) starting now from the
more general Hellinger–Reissner functional

�HR(u, σ) = −1

2

∫
�

[
σ : D

−1σ
]

d� +
∫

�

[σ : ∇u] d�

−
∫

�

[b · u] d� (54)

Requiring the stationarity of functional (54), we obtain

d�HR(u, σ)[δσ] = −
∫

�

[
δσ : D

−1σ
]

d�

+
∫

�

[δσ : ∇u] d� = 0

d�HR(u, σ)[δu] =
∫

�

[(∇δu) : σ] d�

−
∫

�

[δu · b] d� = 0

(55)

which is now equivalent to the search of a saddle point.
Changing sign to both equations and introducing the
approximation {

u ≈ uh = Nu
k ûk

σ ≈ σh = Nσ
k σ̂k

(56)

as well as a similar approximation for the corresponding
variation fields, equation (55) can be rewritten in matricial
form as follows [

A BT

B 0

]{
σ̂

û

}
=
{

0
g

}
(57)
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where



A|ij =
∫

�

[Nσ
i : D

−1Nσ
j ] d�, σ̂|j = σ̂j

B|rj = −
∫

�

[∇Nu
r : Nσ

j ] d�, û|r = ûr

g|r = −
∫

�

[Nu
r · b] d�

(58)

Starting from equation (54) the following modified Hellin-
ger–Reissner functional can be also generated

�HR,m(u, σ) = −1

2

∫
�

[
σ : D

−1σ
]

d� −
∫

�

[u · div σ] d�

−
∫

�

[b · u] d� (59)

and, requiring its stationarity, we obtain



d�HR,m(u, σ)[δσ] = −
∫

�

[
δσ : D

−1σ
]

d�

−
∫

�

[div (δσ) · u] d� = 0

d�HR,m(u, σ)[δu] = −
∫

�

[δu · div σ] d�

−
∫

�

[δu · b] d� = 0

(60)

which is again equivalent to the search of a saddle point.
Changing sign to both equations and introducing again field
approximation (56), equation (60) can rewritten in matricial
form as equation (57), with the difference that now

B|rj =
∫

�

[
Nu

r · div
(

Nσ
j

) ]
d� (61)

Similarly, we may also associate an integral form to three
field equation (42) starting from the even more general
Hu–Washizu functional

�HW(u, ε, σ) = 1

2

∫
�

[ε : Dε] d� −
∫

�

[
σ :

(
ε − ∇su

)]
d�

−
∫

�

[b · u] d� (62)

Requiring the stationarity of functional (62), we obtain

d�HW(u, ε,σ)[δε] =
∫

�

[δε : Dε] d�

−
∫

�

[δε : σ] d� = 0

d�HW(u, ε,σ)[δσ] = −
∫

�

[
δσ :

(
ε − ∇su

)]
d� = 0

d�HW(u, ε,σ)[δu] =
∫

�

[(∇sδu
)

: σ
]

d�

−
∫

�

[δu : b] d� = 0

(63)

which is again equivalent to the search of a saddle point.
Introducing the following approximation

u ≈ uh = Nu
k ûk

ε ≈ εh = Nε
k ε̂k

σ ≈ σh = Nσ
k σ̂k

(64)

as well as a similar approximation for the variation fields,
equation (63) can be rewritten as followsA BT 0

B 0 CT

0 C 0


ε̂

σ̂

û

 =


0
0
h

 (65)

where

A|ij =
∫

�

[
Nε

i : DNε
j

]
d�, ε̂|j = ε̂j

B|rj = −
∫

�

[
Nσ

r : Nε
j

]
d�, σ̂|r = σ̂r

C|sr =
∫

�

[∇sNu
s : Nσ

r

]
d�, û|s = ûs

h|s =
∫

�

[
Nu

s · b
]

d�

(66)

For later consideration, we note that equation (65) can be
rewritten as [

A B
T

B 0

]{
x
y

}
=
{

0
h

}
(67)

where we made the following simple identifications

A =
[

A BT

B 0

]
, B = {0, C}

x =
{

ε̂

σ̂

}
, y = û (68)

Examples of specific choices for the interpolating func-
tions (51), (56), or (64) respectively within the single field,
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the two field, and the three field formulations can be found
in standard textbooks (Bathe, 1996; Brezzi and Fortin,
1991; Hughes, 1987; Zienkiewicz and Taylor, 2000a) or
in the literature.

Toward incompressible elasticity
It is interesting to observe that the strain ε, the stress σ and
the symmetric gradient of the displacement ∇su can be
easily decomposed respectively in a deviatoric (traceless)
part and a volumetric (trace-related) part. In particular,
recalling that we indicate with d the Euclidean space
dimension, we may set

ε = e + θ

d
I with θ = tr (ε)

σ = s + pI with p = tr (σ)

d

∇su = ∇su + div u
d

I with div (u) = tr (∇su)

(69)

where θ, p, and div (u) are the volumetric (trace-related)
quantities, while e, s, and ∇su are the deviatoric (or
traceless) quantities, that is,

tr (e) = tr (s) = tr
(∇su

) = 0 (70)

Adopting these deviatoric-volumetric decompositions and
limiting the discussion for simplicity of notation to the
case of an isotropic material, the three field Hu–Washizu
functional (62) can be rewritten as

�HW,m(u, e, θ, s, p) = 1

2

∫
�

[2µe : e + kθ2] d�

−
∫

�

[s : (e − ∇su)] d� −
∫

�

[p(θ − div u)] d�

−
∫

�

[b · u] d� (71)

where we introduce the bulk modulus k = λ + 2µ/d . If
we now require a strong (pointwise) satisfaction of the
deviatoric compatibility condition e = ∇su (obtained from
the stationarity of functional (71) with respect to s) as
well as a strong (pointwise) satisfaction of the volumetric
constitutive equation p = kθ (obtained from the stationarity
of functional(71) with respect to θ), we end up with the
following simpler modified Hellinger–Reissner functional

�HR,m(u, p) = 1

2

∫
�

[2µ∇su : ∇su] d� − 1

2

∫
�

[
1

k
p2] d�

+
∫

�

[p div u] d� −
∫

�

[b · u] d� (72)

It is interesting to observe that taking the variation of func-
tional (72) with respect to p, we obtain the correct relation

between the pressure p and the volumetric component of
the displacement gradient, that is,

p = k div u =
(
λ + 2

d
µ

)
div u (73)

For the case of incompressibility (λ → ∞ and k → ∞),
functional (72) reduces to the following form

�HR,m(u, p) = 1

2

∫
�

[2µ∇su : ∇su] d� +
∫

�

[p div u] d�

−
∫

�

[b · u] d� (74)

which resembles the potential energy functional (49) for
the case of an isotropic material with the addition of
the incompressibility constraint div u = 0 and with the
difference that the quadratic term now involves only the
deviatoric part of the symmetric displacement gradient and
not the whole symmetric displacement gradient.

Requiring the stationarity of functional (74), we obtain
d�HR,m(u, p)[δu] =

∫
�

[2µ∇sδu : ∇su] d�

+
∫

�

[ div (δu) p] d� −
∫

�

[δu · b] d� = 0

d�HR,m(u, p)[δp] =
∫

�

[δp div u] d� = 0

(75)

Introducing the following approximation{
u ≈ uh = Nu

k ûk

p ≈ ph = N
p

k p̂k

(76)

as well as a similar approximation for the corresponding
variation fields, equation (75) can be rewritten as follows[

A BT

B 0

]{
û
p̂

}
=
{

f
0

}
(77)

where

A|ij = 2µ

∫
�

[
∇Nu

i : ∇Nu
j

]
d�, û|j = ûj

B|rj =
∫

�

[
Np

r div
(

Nu
j

) ]
d�, p̂|r = p̂r

f|i =
∫

�

[
Nu

i · b
]

d�

(78)

It is interesting to observe that this approach may result in
an unstable discrete formulation since the volumetric com-
ponents of the symmetric part of the displacement gradient
may not be controlled. Examples of specific choices for the
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interpolating functions (76) can be found in standard text-
books (Hughes, 1987; Zienkiewicz and Taylor, 2000a) or
in the literature.

A different stable formulation can be easily obtained as in
the case of Stokes problem. In particular, we may start from
the potential energy functional (49), which for an isotropic
material specializes as

�(u) = 1

2

∫
�

[
2µ
(∇su : ∇su

)+ λ ( div u)2] d�

−
∫

�

[b · u] d� (79)

Introducing now the pressure-like field π = λ div u, we can
rewrite functional (79) as

�m(u,π) = 1

2

∫
�

[
2µ
(∇su : ∇su

)− 1

λ
π2
]

d�

+
∫

�

[π div u] d� −
∫

�

[b · u] d� (80)

We may note that π is a pressure-like quantity, different,
however, from the physical pressure p, previously intro-
duced. In fact, π is the Lagrangian multiplier associated
to the incompressibility constraint and it can related to the
physical pressure p recalling relation (73)

p = k div u = π + 2

d
µ div u (81)

For the incompressible case (λ → ∞), functional (80) red-
uces to the following form:

�m(u, π) = 1

2

∫
�

[
2µ∇su : ∇su

]
d�

+
∫

�

[π div u] d� −
∫

�

[b · u] d� (82)

Taking the variation of (82) and introducing the following
approximation {

u ≈ uh = Nu
k ûk

π ≈ πh = Nπ
k π̂k

(83)

as well as a similar approximation for the corresponding
variation fields, we obtain a discrete problem of the fol-
lowing form:

[
A BT

B 0

]{
û
π̂

}
=
{

f
0

}
(84)

where

A|ij = 2µ

∫
�

[
∇sNu

i : ∇sNu
j

]
d�, û|j = ûj

B|rj =
∫

�

[
Nπ

r div
(

Nu
j

) ]
d�, π̂|r = π̂r

f|i =
∫

�

[
Nu

i · b
]

d�

(85)

It is interesting to observe that, in general, this approach
results in a stable discrete formulation since the volumetric
components of the symmetric part of the displacement
gradient are now controlled. Examples of specific choices
for the interpolating functions (83) can be found in standard
textbooks (Bathe, 1996; Brezzi and Fortin, 1991; Hughes,
1987; Zienkiewicz and Taylor, 2000a) or in the literature.

Enhanced strain formulation
Starting from the work of Simo and Rifai (1990), recently,
a lot of attention has been paid to the so-called enhanced
strain formulation, which can be variationally deduced for
example, from the Hu–Washizu formulation (62). As a
first step, the method describes the strain ε as the sum
of a compatible contribution, ∇su, and of an incompatible
contribution, ε̃, that is,

ε = ∇su + ε̃ (86)

Using this position into the Hu–Washizu formulation (62),
we obtain the following functional

�enh(u, ε̃, σ) = 1

2

∫
�

[(∇su + ε̃
)

: D
(∇su + ε̃

)]
d�

−
∫

�

[
σ : ε̃

]
d� −

∫
�

[b · u] d� (87)

Requiring the stationarity of the functional and introducing
the following approximation


u ≈ uh = Nu

k ûk

ε̃ ≈ ε̃h = Nε̃
k
ˆ̃εk

σ ≈ σh = Nσ
k σ̂k

(88)

as well as a similar approximation for the variation fields,
we obtain the following discrete problem:

A BT 0
B C DT

0 D 0


û
ε̂

σ̂

 =


f
0
0

 (89)
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where



A|ij =
∫

�

[
∇sNu

i : D∇sNu
j

]
d�, û|j = ûj

B|rj =
∫

�

[
Nε̃

r : D∇sNu
j

]
d�, ˆ̃ε|s = ˆ̃εs

C|rs =
∫

�

[
Nε̃

r : DNε̃
s

]
d�, σ̂|r = σ̂r

D|jr = −
∫

�

[
Nσ

j : Nε
r

]
d�, f|j =

∫
�

[
Nu

j · b
]

d�

(90)

For later consideration, we note that equation (89) can be
rewritten as [

A B
T

B 0

]{
x
y

}
=
{

d
0

}
(91)

where we made the following simple identifications:

A =
[

A BT

B C

]
, B = {0, D}

x =
{

û
ˆ̃ε
}

, d =
{

f
0

}
, y = σ̂ (92)

Examples of specific choices for the interpolating functions
can be found in standard textbooks (Zienkiewicz and Tay-
lor, 2000a) or in the literature.

However, the most widely adopted enhanced strain for-
mulation also requires the incompatible part of the strain to
be orthogonal to the stress σ

∫
�

[
σ : ε̃

]
d� = 0 (93)

If we use conditions (86) and (93) into the Hu–Washizu
formulation (62), we obtain the following simplified func-
tional:

�enh(u, ε̃) = 1

2

∫
�

[(∇su + ε̃
)

: D
(∇su + ε̃

)]
d�

−
∫

�

[b · u] d� (94)

which closely resembles a standard displacement-based
incompatible approach. Examples of specific choices for the
interpolating functions involved in this simplified enhanced
formulation can be found in standard textbooks
(Zienkiewicz and Taylor, 2000a) or in the literature.

3 STABILITY OF SADDLE-POINTS IN
FINITE DIMENSIONS

3.1 Solvability and stability

The examples discussed in Section 2 clearly show that, after
discretization, several formulations typically lead to linear
algebraic systems of the general form[

A BT

B 0

]{
x
y

}
=
{

f
g

}
(95)

where A and B are respectively an n × n matrix and an
m × n matrix, while x and y are respectively an n × 1
vector and m × 1 vector, as well as f and g. Discretizations
leading to such a system are often indicated as mixed finite
element methods and in the following, we present a simple,
algebraic version of the abstract theory that rules most
applications of mixed methods.

Our first need is clearly to express in proper form
solvability conditions for linear systems of type (95) in
terms of the properties of the matrices A and B. By
solvability we mean that for every right-hand side f and
g system, (95) has a unique solution. It is well known that
this property holds if and only if the (n + m) × (n + m)

matrix [
A BT

B 0

]
(96)

is nonsingular, that is, if and only if its determinant is
different from zero.

In order to have a good numerical method, however,
solvability is not enough. An additional property that we
also require is stability. We want to see this property
with a little more detail. For a solvable finite-dimensional
linear system, we always have continuous dependence of
the solution upon the data. This means that there exists
a constant c such that for every set of vectors x, y, f, g
satisfying (95) we have

‖x‖ + ‖y‖ ≤ c(‖f‖ + ‖g‖) (97)

This property implies solvability. Indeed, if we assume
that (97) holds for every set of vectors x, y, f, g satisfy-
ing (95), then, whenever f and g are both zero, x and y
must also be equal to zero. This is another way of saying
that the homogeneous system has only the trivial solution,
which implies that the determinant of the matrix (96) is
different from zero, and hence the system is solvable.

However, Formula (97) deserves another very important
comment. Actually, we did not specify the norms adopted
for x, y, f, g. We had the right to do so, since in finite
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dimension all norms are equivalent. Hence, the change of
one norm with another would only result in a change of the
numerical value of the constant c, but it would not change
the basic fact that such a constant exists. However, in
dealing with linear systems resulting from the discretization
of a partial differential equation we face a slightly different
situation. In fact, if we want to analyze the behaviour of
a given method when the meshsize becomes smaller and
smaller, we must ideally consider a sequence of linear
systems whose dimension increases and approaches infinity
when the meshsize tends to zero. As it is well known (and
it can be also easily verified), the constants involved in the
equivalence of different norms depend on the dimension of
the space. For instance, in R

n, the two norms

‖x‖1 :=
n∑

i=1

|xi | and ‖x‖2 :=
(

n∑
i=1

|xi |2
)1/2

(98)

are indeed equivalent, in the sense that there exist two
positive constants c1 and c2 such that

c1‖x‖1 ≤ ‖x‖2 ≤ c2‖x‖1 (99)

for all x in R
n. However, it can be rather easily checked

that the best constants one can choose in (99) are

‖x‖2 ≤ ‖x‖1 ≤ √
n‖x‖2 (100)

In particular, the first inequality becomes an equality, for
instance, when x1 is equal to 1 and all the other xi’s are
zero, while the second inequality becomes an equality, for
instance, when all the xi are equal to 1.

When considering a sequence of problems with increas-
ing dimension, we have to take into account that n and m

become unbounded. It is then natural to ask if, for a given
choice of the norms ‖x‖, ‖y‖, ‖f‖, and ‖g‖, it is possible to
find a constant c independent of the meshsize (say, h), that
is, a constant c that makes (97) hold true for all meshsizes.

However, even if inequality (97) holds with a constant
c independent of h, it will not provide a good concept of
stability unless the four norms are properly chosen (see
Remark 18). This is going to be our next task.

3.2 Assumptions on the norms

We start denoting by X, Y, F, G respectively the spaces of
vectors x, y, f, g. Then, we assume what follows.

1. The spaces X and Y are equipped with norms ‖ · ‖X

and ‖ · ‖Y for which the matrices A and B satisfy the
continuity conditions: there exist two constants Ma and

Mb, independent of the meshsize, such that for all x and
z in X and for all y in Y

xTAz ≤ Ma‖x‖X‖z‖X and xTBTy ≤ Mb‖x‖X‖y‖Y

(101)

Moreover, we suppose there exist symmetric positive
definite matrices Mx and My , respectively of dimen-
sions n × n and m × m, such that

‖x‖2
X = xTMxx ∀ x ∈ X (102)

and

‖y‖2
Y = yTMyy ∀ y ∈ Y (103)

2. The spaces F and G are equipped with norms ‖ · ‖F and
‖ · ‖G defined as the dual norms of ‖ · ‖X and ‖ · ‖Y ,
that is,

‖f‖F := sup
x∈X\{0}

xTf
‖x‖X

and ‖g‖G := sup
y∈Y\{0}

yTg
‖y‖Y

(104)

It is worth noting that

• assumptions (102) to (103) mean that the norms for
X and Y are both induced by an inner product or, in
other words, the norms at hand are hilbertian (as it
happens in most of the applications);

• for every x and f in R
n and for every y and g in R

m,
we have

xTf ≤ ‖x‖X‖f‖F and yTg ≤ ‖y‖Y‖g‖G

(105)

• combining the continuity condition (101) on || · ||X
and || · ||Y with the dual norm definition (105), for
every x ∈ X and for every y ∈ Y, we have the fol-
lowing relations:

‖Ax‖F = sup
z∈X\{0}

zTAx
‖z‖X

≤ Ma‖x‖X (106)

‖Bx‖G = sup
z∈Y\{0}

zTBx
‖z‖X

≤ Mb‖x‖X (107)

‖BTy‖F = sup
z∈X\{0}

zTBTy
‖z‖X

≤ Mb‖y‖Y (108)

• if A is symmetric and positive semidefinite, then for
every x, z ∈ X

|zTAx| ≤ (zTAz)1/2(xTAx)1/2 (109)
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so that (106) can be improved to

‖Ax‖F ≤ sup
z∈X\{0}

zTAx
‖z‖X

≤ M1/2
a (xTAx)1/2 (110)

We are now ready to introduce a precise definition of
stability.

Stability definition. Given a numerical method, that pro-
duces a sequence of matrices A and B when applied to a
given sequence of meshes (with the meshsize h going to
zero), we choose norms ‖ · ‖X and ‖ · ‖Y that satisfy the
continuity condition (101), and dual norms ‖ · ‖F and ‖ · ‖G

according to (104). Then, we say that the method is sta-
ble if there exists a constant c, independent of the mesh,
such that for all vectors x, y, f, g satisfying the general sys-
tem (95), it holds

‖x‖X + ‖y‖Y ≤ c(‖f‖F + ‖g‖G) (111)

Having now a precise definition of stability, we can look
for suitable assumptions on the matrices A and B that may
provide the stability result (111). In particular, to guar-
antee stability condition (111), we need to introduce two
assumptions involving such matrices. The first assumption,
the so-called inf–sup condition, involves only the matrix B
and it will be used throughout the whole section. To illus-
trate the second assumption we will first focus on a simpler
but less general case that involves a ‘strong’ requirement on
the matrix A. Among the problems presented in Section 2,
this requirement is verified in practice only for the Stokes
problem. Then, we shall tackle a more complex and clearly
more general case, corresponding to a ‘weak’ requirement
on the matrix A, suited for instance for discretizations of
the mixed formulations of thermal diffusion problems.

Later on we shall deal with some additional complica-
tions that occur for instance, in the (u, π)-formulation of
nearly incompressible elasticity (cf. (80)). Finally, we shall
briefly discuss more complicated problems, omitting the
proofs for simplicity.

3.3 A requirement on the B matrix: the inf–sup
condition

The basic assumption that we are going to use, throughout
the whole section, deals with the matrix B. We assume the
following:

Inf–sup condition. There exists a positive constant β,
independent of the meshsize h, such that:

∀ y ∈ Y ∃x ∈ X \ {0} such that xTBTy ≥ β‖x‖X‖y‖Y

(112)

Condition (112) requires the existence of a positive con-
stant β, independent of h, such that for every y ∈ Y we can
find a suitable x ∈ X, different from 0 (and depending on
y), such that (112) holds.

Remark 1. To better understand the meaning of (112), it
might be useful to see when it fails. We thus consider the
following m × n pseudodiagonal matrix (m < n)

B =


ϑ1 0 · · · 0 · · · · 0
0 ϑ2 0 · · · · · · · ·
· · · · · · · · · · ·
· · · · 0 · · · · · ·
0 · · 0 ϑm 0 · · · · 0

 (113)

with 0 ≤ ϑ1 ≤ ϑ2 ≤ ·· ≤ ϑm ≤ 1. To fix ideas, we suppose
that both X ≡ R

n and Y ≡ R
m are equipped with the stan-

dard Euclidean norms, which coincide with the correspond-
ing dual norms on F and G (cf. (104)). If ϑ1 = 0, choosing
y = (1, 0, . . . , 0)T �= 0, we have BTy = 0. Therefore, for
every x ∈ X, we get xTBTy = 0 and condition (112) cannot
hold since β must be positive. We then infer that condi-
tion (112) requires that

no y �= 0 satisfies BTy = 0

which, by definition, means that BT is injective. However,
the injectivity of BT is not sufficient for the fulfillment of
condition (112). Indeed, for 0 < ϑ1 ≤ ϑ2 ≤ · · · ≤ ϑm ≤ 1,
the matrix BT is injective and we have, still choosing
y = (1, 0, . . . , 0)T,

BTy = (ϑ1, 0, . . . , 0)T �= 0 (114)

Since for every x ∈ X it holds

xTBTy = ϑ1x1 ≤ ϑ1||x||X = ϑ1||x||X||y||Y (115)

we obtain that the constant β in (112) is forced to satisfy

0 < β ≤ ϑ1 (116)

As a consequence, if ϑ1 > 0 tends to zero with the meshsize
h, the matrix BT is still injective but condition (112) fails,
because β, on top of being positive, must be independent
of h. Noting that (see (114))

‖BTy‖F

‖y‖Y

= ϑ1 (117)

we then deduce that condition (112) requires that for y �= 0

the vector BTy is not ‘too small’ with respect to y
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which is a property stronger than the injectivity of the
matrix BT. We will see in Proposition 1 that all these
considerations on the particular matrix B in (113) does
extend to the general case.

We now rewrite condition (112) in different equivalent
forms, which will also make clear the reason why it is
called inf–sup condition.

Since, by assumption, x is different from zero, condi-
tion (112) can equivalently be written as

∀ y ∈ Y ∃x ∈ X\{0} such that
xTBTy
‖x‖X

≥ β‖y‖Y

(118)

This last form (118) highlights that given y ∈ Y, the most
suitable x ∈ X is the one that makes the left-hand side
of (118) as big as possible. Hence, the best we can do is
to take the supremum of the left-hand side, when x varies
among all possible x ∈ X different from 0. Hence, we may
equivalently require that

∀ y ∈ Y sup
x∈X\{0}

xTBTy
‖x‖X

≥ β‖y‖Y (119)

In a sense, we got rid of the task of choosing x. However,
condition (119) still depends on y and it clearly holds for
y = 0. Therefore, we can concentrate on the y’s that are
different from 0; in particular, for y �= 0 condition (119)
can be also written as

sup
x∈X\{0}

xTBTy
‖x‖X‖y‖Y

≥ β (120)

The worst possible y is therefore the one that makes the left-
hand side of (120) as small as possible. If we want (120) to
hold for every y ∈ Y we might as well consider the worst
case, looking directly at the infimum of the left-hand side
of (120) among all possible y’s, requiring that

inf
y∈Y\{0} sup

x∈X\{0}
xTBTy

‖x‖X‖y‖Y

≥ β (121)

The advantage of formulation (121), if any, is that we got
rid of the dependency on y as well. Indeed, condition (121)
is now a condition on the matrix B, on the spaces X and
Y (together with their norms) as well as on the crucial
constant β.

Let us see now the relationship of the inf–sup condition
with a basic property of the matrix B.

Proposition 1. The inf–sup condition (112) is equivalent
to require that

β‖y‖Y ≤ ‖BTy‖F ∀ y ∈ Y (122)

Therefore, in particular, the inf–sup condition implies that
the matrix BT is injective.

Proof. Assume that the inf–sup condition (112) holds, and
let y be any vector in Y. By the equivalent form (119) and
using definition (104) of the dual norm ‖ · ‖F , we have

β‖y‖Y ≤ sup
x∈X\{0}

xTBTy
‖x‖X

= ‖BTy‖F (123)

and therefore (122) holds true. Moreover, the matrix BT is
injective since (122) shows that y �= 0 implies BTy �= 0.

Assume conversely that (122) holds. Using again the
definition (104) of the dual norm ‖ · ‖F , we have

β‖y‖Y ≤ ‖BTy‖F = sup
x∈X\{0}

xTBTy
‖x‖X

(124)

which implies the inf–sup condition in the form (119).

Remark 2. Whenever the m × n matrix B satisfies the
inf–sup condition, the injectivity of BT implies that n ≥ m.
We point out once again (cf. Remark 1) that the injectivity
of BT is not sufficient for the fulfillment of the inf–sup
condition.

Additional relationships between the inf–sup and other
properties of the matrix B will be presented later on in
Section 3.5.

3.4 A ‘strong’ condition on the A matrix.
Ellipticity on the whole space — Stokes

As we shall see in the sequel, the inf–sup condition is a
necessary condition for having stability of problems of the
general form (95). In order to have sufficient conditions,
we now introduce a further assumption on the matrix A.
As discussed at the end of Section 3.2, we start considering
a strong condition on the matrix A. More precisely, we
assume the following:

Ellipticity condition. There exists a positive constant α,
independent of the meshsize h, such that

α‖x‖2
X ≤ xTAx ∀ x ∈ X (125)

We first notice that from (101) and (125) it follows that

α ≤ Ma (126)

We have now the following theorem.

Theorem 1. Let x, y, f, g satisfy the general system of
equations (95). Moreover, assume that A is symmetric and
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that the continuity conditions (101), the dual norm assump-
tions (105), the inf–sup (112) and the ellipticity require-
ment (125) are all satisfied. Then, we have

‖x‖X ≤ 1

α
‖f‖F + M

1/2
a

α1/2β
‖g‖G (127)

‖y‖Y ≤ 2M
1/2
a

α1/2β
‖f‖F + Ma

β2
‖g‖G (128)

Proof. We shall prove the result by splitting x = xf + xg

and y = yf + yg defined as the solutions of{
Axf + BTyf = f
Bxf = 0 (129)

and {
Axg + BTyg = 0
Bxg = g (130)

We proceed in several steps.
• Step 1 – Estimate of xf and Axf We multiply the first
equation of (129) to the left by xT

f and we notice that
xT
f BTyf ≡ yTBxf = 0 (by the second equation). Hence,

xT
f Axf = xTf (131)

and, using the ellipticity condition (125), relation (131),
and the first of the dual norm estimates (105), we have

α‖xf ‖2
X ≤ xT

f Axf = xTf ≤ ‖xf ‖X‖f‖F (132)

giving immediately

‖xf ‖X ≤ 1

α
‖f‖F (133)

and

xT
f Axf ≤ 1

α
‖f‖2

F (134)

Therefore, using (110) we also get

‖Axf ‖F ≤ M
1/2
a

α1/2
‖f‖F (135)

• Step 2 – Estimate of yf We use now the inf–sup con-
dition (112) with y = yf . We obtain that there exists x̃ ∈
X such that x̃TBTyf ≥ β‖̃x‖X‖yf ‖Y . Multiplying the first
equation of (129) by x̃T and using the first of the dual norm
estimates (105), we have

β‖̃x‖X‖yf ‖Y ≤ x̃TBTyf = x̃T(f − Axf )

≤ ‖̃x‖X‖f − Axf ‖F (136)

We now use the fact that in the inf–sup condition (112)
we had x̃ �= 0, so that in the above equation (136) we
can simplify by its norm. Then, using (135) and (126), we
obtain

‖yf ‖Y ≤ 1

β
‖f − Axf ‖F ≤

(
1

β
+ M

1/2
a

α1/2β

)
‖f‖F

≤ 2M
1/2
a

α1/2β
‖f‖F (137)

• Step 3 – Estimate of xT
gAxg by ‖yg‖Y We multiply the

first equation of (130) by xT
g . Using the second equation

of (130) and the second of the dual norm estimates (105),
we have

xT
gAxg = −xT

gBTyg ≡ yT
gBxg = yT

gg ≤ ‖yg‖Y ‖g‖G (138)

• Step 4 – Estimate of ‖yg‖Y by (xT
gAxg)

1/2 We proceed
as in Step 2. Using the inf–sup condition (112) with y = yg

we get a new vector, that we call again x̃, such that
x̃TBTyg ≥ β‖̃x‖X‖yg‖Y . This relation, the first equation
of (130), and the continuity property (109) yield

β‖̃x‖X‖yg‖Y ≤ x̃TBTyg = −x̃TAxg

≤ M1/2
a ‖̃x‖X(xT

gAxg)
1/2 (139)

giving

‖yg‖Y ≤ M
1/2
a

β
(xT

gAxg)
1/2 (140)

• Step 5 – Estimate of ‖xg‖X and ‖yg‖Y We first com-
bine (138) and (140) to obtain

‖yg‖Y ≤ Ma

β2
‖g‖G (141)

Moreover, using the ellipticity assumption (125) in (138)
and inserting (141), we have

α‖xg‖2
X ≤ xT

gAxg ≤ ‖yg‖Y ‖g‖G ≤ Ma

β2
‖g‖2

G (142)

which can be rewritten as

‖xg‖X ≤ M
1/2
a

α1/2β
‖g‖G (143)

The final estimate follows then by simply collecting the
separate estimates (133), (137), (143), and (141).

A straightforward consequence of Theorem 1 and Re-
mark 4 is the following stability result (cf. (111)):
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Corollary 1. Assume that a numerical method produces a
sequence of matrices A and B for which both the inf–sup
condition (112) and the ellipticity condition (125) are satis-
fied. Then the method is stable.

Remark 3. In certain applications, it might happen that
the constants α and β either depend on h (and tend to zero as
h tends to zero) or have a fixed value that is however very
small. It is therefore important to keep track of the possible
degeneracy of the constants in our estimates when α and/or
β are very small. In particular, it is relevant to know whether
our stability constants degenerate, say, as 1/β, or 1/β2, or
other powers of 1/β (and, similarly, of 1/α). In this respect,
we point out that the behavior indicated in (127) and (128)
is optimal. This means that we cannot hope to find a better
proof giving a better behavior of the constants in terms of
powers of 1/α and 1/β. Indeed, consider the system

 2
√

a b√
a a 0

b 0 0


x1
x2
y

 =


f1
f2
g

 0 < a, b � 1

(144)

whose solution is

x1 = g

b
, x2 = f2

a
− g

a1/2b
, y = f1

b
− f2

a1/2b
− g

b2

(145)

Since the constants α and β are given by

α = 2 + a − √
a2 + 4

2
= 4a

2
(

2 + a + √
a2 + 4

) ≈ a

and

β = b

we see from (145) that there are cases in which the
actual stability constants behave exactly as predicted by
the theory.

Remark 4. We point out that the symmetry condition
on the matrix A is not necessary. Indeed, with a slightly
different (and even simpler) proof one can prove stability
without the symmetry assumption. The dependence of the
stability constant upon α and β is however worse, as it can
be seen in the following example. Considering the system

 1 −1 b

1 a 0
b 0 0


x1
x2
y

 =


f1
f2
g

 0 < a, b � 1

(146)

one easily obtains

x1 = g

b
, x2 = f2

a
− g

ab
, y = f1

b
+ f2

ab
− (1 + a)g

ab2

(147)

Since α = a and β = b, from (147) we deduce that the
bounds of Theorem 1 cannot hold when A is not symmetric.

As announced in the title of the section the situation in
which A is elliptic in the whole space is typical (among
others) of the Stokes problem, as presented in (22) to (24).
Indeed, denoting the interpolating functions for u and p by
Nu

i and N
p
r respectively (cf. (39)), if we set

‖û‖2
X := µ

∫
�

∣∣∇(Nu
i ûi )

∣∣2 d� (148)

and

‖p̂‖2
Y :=

∫
�

∣∣Np
r p̂r

∣∣2 d� (149)

we can easily see that conditions (101) are verified with
Ma = 1 and Mb = √

(d/µ) respectively. Clearly the ellip-
ticity property (125) is also verified with α = 1, no matter
what is the choice of the mesh and of the interpolating
functions. On the other hand, the inf–sup Property (112) is
much less obvious, as we are going to see in Section 4, and
finite element choices have to be specially tailored in order
to satisfy it.

3.5 The inf–sup condition and the lifting
operator

In this section, we shall see that the inf–sup condition
is related to another important property of the matrix B.
Before proceeding, we recall that an m × n matrix B is
surjective if for every g ∈ R

m, there exists xg ∈ R
n such

that Bxg = g.
We have the following Proposition.

Proposition 2. The inf–sup condition (112) is equivalent
to require the existence of a lifting operator L: g → xg =
Lg such that, for every g ∈ R

m, it holds{
Bxg = g
β‖xg‖X ≡ β‖Lg‖X ≤ ‖g‖G ≡ ‖Bxg‖G

(150)

Therefore, in particular, the inf–sup condition implies that
the matrix B is surjective.

Proof. We begin by recalling that there exists a symmetric
(n × n) positive definite matrix Mx such that (cf. (102))

xTMxx = ‖x‖2
X (151)
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It is clear that the choice A ≡ Mx easily satisfies the first
of the continuity conditions (101) with Ma = 1, as well as
the ellipticity condition (125) with α = 1. Given g, if the
inf–sup condition holds, we can, therefore, use Theorem
1 and find a unique solution (̃xg, ỹg) of the following
auxiliary problem:{

Mx x̃g + BTỹg = 0,

B̃xg = g (152)

We can now use estimate (143) from Step 5 of the proof
of Theorem 1, recalling that in our case, α = Ma = 1 since
we are using the matrix Mx instead of A. We obtain

β‖̃xg‖X ≤ ‖g‖G (153)

It is then clear that setting Lg := x̃g (the first part of
the solution of the auxiliary problem (152)) we have that
estimate (150) in our statement holds true.

Assume conversely that we have the existence of a
continuous lifting L satisfying (150). First we recall that
there exists a symmetric (m × m) positive definite matrix
My such that (cf. (103))

yTMyy = ‖y‖2
Y (154)

Then, for a given y ∈ Y, we set first g := Myy (so that
yTg = ‖y‖2

Y ) and then we define xg := Lg (so that Bxg =
g). Hence,

xT
gBTy ≡ yTBxg = yTg = yTMyy = ‖y‖2

Y (155)

On the other hand, it is easy to see that using (150) we
have

β‖xg‖X ≤ ‖g‖G ≤ ‖y‖Y (156)

where the last inequality is based on the choice g = Myy
and the use of (108) with My in the place of BT. Hence,
for every y ∈ Y, different from zero, we constructed x =
xg ∈ X, different from zero, which, joining (155) and (156),
satisfies

xT
gBTy = ‖y‖2

Y ≥ β‖xg‖X‖y‖Y (157)

that is, the inf–sup condition in its original form (112).

3.6 A ‘weak’ condition on the A matrix.
Ellipticity on the kernel — thermal diffusion

We now consider that, together with the inf–sup condition
on B, the condition on A is weaker than the full Elliptic-
ity (125). In particular, we require the ellipticity of A to

hold only in a subspace X0 of the whole space X, with X0
defined as follows:

X0 := Ker(B) ≡ {x ∈ X such that Bx = 0} (158)

More precisely, we require the following:

Elker condition. There exists a positive constant α0, inde-
pendent of the meshsize h, such that

α0‖x‖2
X ≤ xTAx ∀ x ∈ X0 (159)

The above condition is often called elker since it
requires the ellipticity on the kernel. Moreover, from (101)
and (159), we get

α0 ≤ Ma (160)

The following theorem generalizes Theorem 1. For the sake
of completeness, we present here the proof in the case of a
matrix A that is not necessarily symmetric.

Theorem 2. Let x ∈ X and y ∈ Y satisfy system (1) and
assume that the continuity conditions (101), the dual norm
assumptions (105), the inf–sup (112), and the elker condi-
tion (159) are satisfied. Then, we have

‖x‖X ≤ 1

α0

‖f‖F + 2Ma

α0β
‖g‖G (161)

‖y‖Y ≤ 2Ma

α0β
‖f‖F + 2M2

a

α0β
2
‖g‖G (162)

Proof. We first set xg := Lg where L is the lifting operator
defined by Proposition 2. We also point out the following
estimates on xg: from the continuity of the lifting L (150),
we have

β‖xg‖X ≤ ‖g‖G (163)

and using (106) and (163), we obtain

‖Axg‖F ≤ Ma‖xg‖X ≤ Ma

β
‖g‖G (164)

Then, we set

x0 := x − xg = x − Lg (165)

and we notice that x0 ∈ X0. Moreover, (x0, y) solves the
linear system {

Ax0 + BTy = f − Axg,

Bx0 = 0
(166)

We can now proceed as in Steps 1 and 2 of the proof of
Theorem 1 (as far as we do not use (110), since we gave
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up the symmetry assumption). We note that our weaker
assumption elker (159) is sufficient for allowing the first
step in (132). Proceeding as in the first part of Step 1, and
using (164) at the end, we get

‖x0‖X ≤ 1

α0
‖f − Axg‖F ≤ 1

α0

(
‖f‖F + Ma

β
‖g‖G

)
(167)

This allows to reconstruct the estimate on x:

‖x‖X = ‖x0 + xg‖X ≤ 1

α0
‖f‖F +

(
Ma

α0β
+ 1

β

)
‖g‖G

≤ 1

α0

‖f‖F + 2Ma

α0β
‖g‖G (168)

where we have used (160) in the last inequality. Combin-
ing (106) and (168), we also have

‖Ax‖F ≤ Ma‖x‖X ≤ Ma

α0
‖f‖F + 2M2

a

α0β
‖g‖G (169)

which is weaker than (135) since we could not use the
symmetry assumption. Then, we proceed as in Step 2 to
obtain, as in (137)

β‖y‖Y ≤ ‖f − Ax‖F (170)

and using the above estimate (169) on Ax in (170), we
obtain

‖y‖Y ≤
(

1

β
+ Ma

α0β

)
‖f‖F + 2M2

a

α0β
2
‖g‖G

≤ 2Ma

α0β
‖f‖F + 2M2

a

α0β
2
‖g‖G (171)

and the proof is concluded.

A straightforward consequence of Theorem 2 is the fol-
lowing stability result (cf. (111)):

Corollary 2. Assume that a numerical method produces a
sequence of matrices A and B for which both the inf–sup
condition (112) and the elker condition (159) are satisfied.
Then the method is stable.

Remark 5. In the spirit of Remark 3, we notice that the
dependence of the stability constants from α0 and β is
optimal, as shown by the previous example (146), for which
α0 = a and β = b. It is interesting to notice that just adding
the assumption that A is symmetric will not improve the
bounds. Indeed, considering the system 1 1 b

1 a 0
b 0 0


x1
x2
y

 =


f1
f2
g

 0 < a, b � 1 (172)

one easily obtains

x1 = g

b
, x2 = f2

a
− g

ab
, y = f1

b
− f2

ab
+ (1 − a)g

ab2

(173)

Since α0 = a and β = b, system (172) shows the same
behavior as the bounds of Theorem 2 (and not better), even
though A is symmetric. In order to get back the better
bounds found in Theorem 1, we have to assume that A,
on top of satisfying the ellipticity in the kernel (159), is
symmetric and positive semidefinite in the whole R

n (a
property that the matrix A in (172) does not have for 0 ≤
a < 1). This is because, in order to improve the bounds, one
has to use (110) that, indeed, requires A to be symmetric
and positive semidefinite.

As announced in the title of the section, the situation in
which A is elliptic only in the kernel of B is typical (among
others) of the mixed formulation of thermal problems, as
presented in (22) to (24). As in (19), we denote the inter-
polating functions for θ and q by N θ

r and Nq
i , respectively,

and we set

‖q̂‖2
X :=

∫
�

[(
Nq

i q̂i

) · D−1
(

Nq
j q̂j

)]
d�

+ �2

k∗

∫
�

|div (Nq
i q̂i )|2 d� (174)

‖θ̂‖2
Y :=

∫
�

|N θ
r θ̂r |2 d� (175)

where � represents some characteristic length of the domain
� (for instance its diameter) and k∗ represent some charac-
teristic value of the thermal conductivity (for instance, its
average).

We can easily see that the continuity conditions (101) are
verified with Ma = 1 and Mb = �−1√k∗ respectively. On
the other hand, the full ellipticity property (125) is verified
only with a constant α that behaves, in most cases, like
α � h2, where h is a measure of the mesh size. Indeed,
the norm of q̂ contains the derivatives of the interpolating
functions, while the term q̂TAq̂ does not, as it can be
seen in (21). On the other hand, we are obliged to add the
divergence term in the definition (174) of the norm of q̂:
otherwise, we cannot have a uniform bound for Mb when
the meshsize goes to zero, precisely for the same reason

as before. Indeed, the term θ̂
T
Bq̂ contains the derivatives

of the interpolating functions Nq
i (see (21)), and the first

part of ‖q̂‖X does not. One can object that the constant
Mb does not show up in the stability estimates. It does,
however, come into play in the error estimates, as we are
going to see in Section 5.

It follows from this analysis that, keeping the norms
as in (174) and (175), the elker property (159) holds, in
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practical cases, only if the kernel of B is made of free-
divergence vectors. In that case, we would actually have
α0 = 1, no matter what is the choice of the mesh and of
the interpolating functions.

On the other hand, the inf–sup property (112) is still
difficult and it depends heavily on the choices of the
interpolating functions. As we are going to see in the next
section, the need to satisfy both the elker and the inf–sup
condition poses serious limitations on the choice of the
approximations. Apart from some special one-dimensional
cases, there is no hope that these two properties can hold
at the same time unless the finite element spaces have
been designed for that. However, this work has been
already done and there are several families of finite element
spaces that can be profitably used for these problems. We
also note that the elker condition (or, more precisely, the
requirement that the kernel of B is made only of free-
divergence vectors) poses some difficulties in the choice of
the element, but in most applications it constitutes a very
desirable conservation property for the discrete solutions.

3.7 Perturbation of the problem — nearly
incompressible elasticity

We now consider a possible variant of our general form
(95). Namely, we assume that we have, together with the
matrices A and B, a third matrix C, that we assume to be
an (m × m) matrix, and we consider the general form[

A BT

B −C

]{
x
y

}
=
{

f
g

}
(176)

For simplicity, we assume that the matrix C is given by
C = εMy , where the matrix My is attached to the norm
‖ · ‖Y as in (103). Clearly, the results will apply, almost
unchanged, to a symmetric positive definite matrix having
maximum and minimum eigenvalue of order ε. We have
the following result.

Theorem 3. Let x ∈ X and y ∈ Y satisfy the system{
Ax + BTy = f
Bx − εMyy = g

(177)

Assume that A is symmetric and positive semidefinite, and
that the continuity condition (101), the dual norm assump-
tions (105), the inf–sup (112) and the elker condition (159)
are satisfied. Then, we have

‖x‖X ≤ β2 + 4εMa

α0β
2

‖f‖F + 2M
1/2
a

α
1/2
0 β

‖g‖G (178)

and

‖y‖Y ≤ 2M
1/2
a

α
1/2
0 β

‖f‖F + 4Ma

Maε + β2
‖g‖G (179)

Proof. The proof can be performed with arguments similar
to the ones used in the previous stability proofs, but using
more technicalities. For simplicity, we are going to give
only a sketch, treating separately the two cases f = 0 and
g = 0.

• The case f = 0. We set x̃ = L(g + εMyy) and x0 = x −
x̃. Proceeding exactly as in the proof of Theorem 1 (Step
4 ), we obtain inequality (140):

‖y‖Y ≤ M
1/2
a

β
(xTAx)1/2 (180)

Then, we multiply the first equation of (176) times xT and
substitute the value of y obtained from the second equation.
We have

xTAx + 1

ε

[
(My)−1(Bx − g)

]T
Bx = 0 (181)

Using the fact that xTAx > 0, we easily deduce that

‖Bx‖G ≤ ‖g‖G (182)

This implies

‖̃x‖X ≤ 1

β
‖Bx‖G ≤ 1

β
‖g‖G (183)

We now multiply the first equation times xT
0 , and we have

xT
0 Ax = 0. We can then use (109) to get

xT
0 Ax0 = −xT

0 Ãx ≤ (xT
0 Ax0)

1/2(̃xTÃx)1/2 (184)

Simplifying by (xT
0 Ax0)

1/2 and using (183), we obtain

xT
0 Ax0 ≤ x̃TÃx ≤ Ma ‖̃x‖2

X ≤ Ma

β2
‖g‖2

G (185)

Using x = x0 + x̃, and then again (109) and (183), we
obtain

xTAx ≤ 4Ma

β2
‖g‖2

G (186)

that inserted in (180) gives an estimate for y

‖y‖Y ≤ 2Ma

β2
‖g‖G (187)
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On the other hand, using the elker condition (159), esti-
mates (183), (185), and (160) we have

‖x‖X ≤ ‖x0‖X + ‖̃x‖X ≤
(

M
1/2
a

α
1/2
0 β

+ 1

β

)
‖g‖G

= M
1/2
a + α

1/2
0

α
1/2
0 β

‖g‖G ≤ 2M
1/2
a

α
1/2
0 β

‖g‖G (188)

However, we note that using the second equation we might
have another possible estimate for y:

‖y‖Y ≤ 1

ε
‖Bx − g‖G ≤ 2

ε
‖g‖G (189)

We can combine (187) and (189) into

‖y‖Y ≤ min
{

2

ε
,

2Ma

β2

}
‖g‖G ≤ 4Ma

Maε + β2
‖g‖G (190)

• The case g = 0. We set this time x̃ = L(εMyy) and again
x0 := x − x̃. From (150), we have as usual

‖̃x‖X ≤ 1

β
‖B̃x‖G ≡ 1

β
‖Bx‖G (191)

Multiplying the first equation by xT
0 , we have xT

0 Ax = x0f
that gives, using (159) and (109)

xT
0 Ax0 ≤ 1

α
1/2
0

‖f‖F (xT
0 Ax0)

1/2 + (xT
0 Ax0)

1/2(̃xTÃx)1/2

(192)

and finally,

(xT
0 Ax0)

1/2 ≤ 1

α
1/2
0

‖f‖F + (̃xTÃx)1/2 (193)

In particular, using once more, (109), (193), and (191), we
obtain

|xT
0 Ãx| ≤ 1

α
1/2
0

‖f‖F (̃xTÃx)1/2 + x̃TÃx

≤ M
1/2
a

α
1/2
0 β

‖f‖F ‖Bx‖G + x̃TÃx (194)

Take now the product of the first equation times x̃T and
using y = ε−1(My)−1Bx from the second equation, we have
x̃TBTy = ε−1̃xTBT(My)−1Bx = ε−1‖Bx‖2

G. Hence,

x̃TAx + 1

ε
‖Bx‖2

G = x̃Tf ≤ 1

β
‖f‖F‖Bx‖G (195)

Using x̃TAx = x̃TÃx + x̃TAx0 and the estimate (194)
in (195), we deduce

1

ε
‖Bx‖2

G ≤ 1

β
‖f‖F‖Bx‖G + M

1/2
a

α
1/2
0 β

‖f‖F‖Bx‖G (196)

that finally gives

‖Bx‖G ≤ ε

(
1

β
+ M

1/2
a

α
1/2
0 β

)
‖f‖F ≤ 2εM

1/2
a

α
1/2
0 β

‖f‖F (197)

which is a crucial step in our proof. Indeed, from (197) and
the second equation, we obtain our estimate for y

‖y‖Y ≤ 1

ε
‖Bx‖G ≤ 2M

1/2
a

α
1/2
0 β

‖f‖F (198)

From (191) and (197), we have

‖̃x‖X ≤ 1

β
‖Bx‖G ≤ 2εM

1/2
a

α
1/2
0 β2

‖f‖F (199)

Finally, from (159), (193), and (199), we obtain

‖x0‖X ≤ 1

α
1/2
0

(xT
0 Ax0)

1/2 ≤
(

1

α0
+ 2εMa

α0β
2

)
‖f‖F

= β2 + 2εMa

α0β
2

‖f‖F (200)

which together with (199) gives us the estimate for x

‖x‖X ≤
(

2εM
1/2
a

α
1/2
0 β2

+ 2εMa + β2

α0β
2

)
‖f‖F ≤ 4εMa + β2

α0β
2

‖f‖F

(201)

Collecting (190), (188), (198), and (201), we have the
result.

Remark 6. We notice that the dependence of the stability
constants upon α0 and β in Theorem 3 are optimal, as shown
by the system

2a
√

a −√
a 0 0√

a 2 1 b 0
−√

a 1 2 0 b

0 b 0 −ε 0
0 0 b 0 −ε




x1
x2
x3
y1
y2

 =


2f

0
0
0

2g


0 < a, b, ε � 1 (202)

Indeed, we have α0 = 2a, β = b, and the solution is given
by

x1 = f (b2 + ε)

ab2
+ g

a1/2b
, x2 = − f ε

a1/2b2
− 3gε

b(3ε + b2)
,
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x3 = f ε

a1/2b2
+ g(3ε + 2b2)

b(3ε + b2)
,

y1 = − f

a1/2b
− 3g

3ε + b2
, y2 = f

a1/2b
− 3g

3ε + b2

Remark 7. It is also worth noticing that assuming full
ellipticity of the matrix A as in (125) (instead of ellipticity
only in the kernel as we did here) would improve the
estimates for x. In particular, we could obtain estimates that
do not degenerate when β goes to zero, as far as ε remains
strictly positive. For the case f = 0, this is immediate from
the estimate of y (190): from the first equation, we have
easily

‖x‖ ≤ 1

α
Mb‖y‖Y ≤ 4MaMb

α(Maε + β2)
‖g‖G (203)

In the case g = 0, we can combine the two equations to get

xTAx + ε‖y‖2
Y = xTf (204)

that gives (always using (125))

‖x‖X ≤ 1

α
‖f‖F (205)

that then gives

‖y‖Y ≤ 1

ε
‖Bx‖G ≤ Mb

εα
‖f‖F (206)

This could be combined with (198) into

‖y‖Y ≤ min

{
Mb

εα
,

2M
1/2
a

α1/2β

}
‖f‖F

≤ 4M
1/2
a Mb

2M
1/2
a αε + α1/2βMb

‖f‖F (207)

Collecting the two cases we have

‖x‖X ≤ 1

α
‖f‖F + 4MaMb

α1/2(Maε + β2)
‖g‖G (208)

and

‖y‖Y ≤ 4M
1/2
a Mb

2M
1/2
a αε + α1/2βMb

‖f‖F + 4Ma

Maε + β2
‖g‖G

(209)

which do not degenerate for β going to zero.

As announced in the title of the section, systems of
the type (176) occur, for instance, in the so-called (u, π)

formulation of nearly incompressible elasticity. Sometimes
they are also obtained by penalizing systems of the original
type (95) in order to obtain a partial cure in cases in which

β is zero or tending to zero with the meshsize (as it could
happen, for instance, for a discretization of Stokes problem
that does not satisfy the inf–sup condition), in the spirit
of Remark 7. Indeed, the (u,π) formulation of nearly
incompressible elasticity, in the case of an isotropic and
homogeneous body, could be seen, mathematically, as a
perturbation of the Stokes system with ε = 1/λ, and the
elements to be used are essentially the same.

3.8 Composite matrices

In a certain number of applications, one has to deal with
formulations of mixed type where more than two fields are
involved. These give rise to matrices that are naturally split
as 3 × 3 or 4 × 4 (or more) block matrices. For the sake of
completeness, we show how the previous theory can often
apply almost immediately to these more general cases. As
an example, we consider matrices of the typeA BT 0

B 0 CT

0 C 0


x1
x2
y1

 =


f1
f2
g

 (210)

Matrices of the form (210) are found (among several
other applications) in the discretization of formulations
of Hu–Washizu type. However, in particular, for elas-
ticity problems, there are no good examples of finite
element discretizations of the Hu–Washizu principle that
satisfy the following two requirements at the same time:
not reducing more or less immediately (in the linear
case) to known discretizations of the minimum poten-
tial energy or of the Hellinger–Reissner principle, and
having been proved to be stable and optimally conver-
gent in a sound mathematical way. Actually, the only
way, so far, has been using stabilized formulations (see
for instance Behr, Franca and Tezduyar (1993)) that we
decided to avoid here. Still, we hope that the follow-
ing brief discussion could also be useful for the possi-
ble development of good Hu–Washizu elements in the
future.

Coming back to the analysis of (210), we already obser-
ved that systems of this type can be reconduced to the
general form (95)[

A B
T

B 0

]{
x
y

}
=
{

f
g

}
(211)

after making the following simple identifications:

A =
[

A BT

B 0

]
, B = {0, C}

x =
{

x1
x2

}
, y = y1 (212)
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The stability of system (211) can then be studied using
the previous analysis. Sometimes it is, however, more
convenient to reach the compact form (211) with a different
identification:

A =
[

A 0
0 0

]
, B = {

B, CT}
x =

{
x1
y1

}
, y = x2 (213)

Indeed, in this case, the matrix A is much simpler. In
particular, as it happens quite often in practice, when
the original matrix A in (210) is symmetric and positive
semidefinite, the same properties will be shared by A. We
are not going to repeat the theory of the above sections
for the extended systems (210). We will just point out the
meaning of conditions elker and inf–sup, applied to the
system (212) to (213), in terms of the original matrices A,
B, and C.

The kernel of B, as given in (213), is made of the pairs
(x1, y1) such that

Bx1 + CTy1 = 0 (214)

These include, in particular, all the pairs (0, y1), where y1
is in the kernel of CT:

Ker(CT) := {y1| such that CTy1 = 0} (215)

There is no hope that the matrix A, as defined in (213),
can be elliptic on those pairs. Hence, we must require that
those pairs are actually reduced to the pair (0, 0), that is,
we must require that

Ker(CT) = {0} (216)

This does not settle the matter of elker, since there are many
other pairs (x1, y1) satisfying (214). As A acts only on the
x1 variables, we must characterize the vectors x1 such that
(x1, y1) satisfies (214) for some y1. These are

K := {x1| such that zTBx1 = 0 ∀ z ∈ Ker(C)} (217)

Hence we have the following result: condition elker will
hold, for the system (212) to (213) if and only if

∃̃α > 0 such that α̃‖x1‖2 ≤ xT
1 Ax1 ∀ x1 ∈ K (218)

On the other hand, it is not difficult to see that condition
inf–sup for (212) to (213) reads

∃̃β > 0 such that sup
(x1,y1)

xT
2 Bx1 + xT

2 CTy1

‖x1‖ + ‖y1‖
≥ β̃‖x2‖ ∀ x2

(219)

It is clear that a sufficient condition would be to have
the inf–sup condition to hold for at least one of the two
matrices B, CT. In many applications, however, this is
too strong a requirement. A weaker condition (although
stronger than (219)) can be written as

∃̃β > 0 such that β̃‖x2‖ ≤ ‖Cx2‖ + ‖BTx2‖ ∀ x2
(220)

More generally, many variations are possible, according to
the actual structure of the matrices at play.

4 APPLICATIONS

In this section, we give several examples of efficient mixed
finite element methods, focusing our attention mostly on the
thermal problem (Section 4.1) and on the Stokes equation
(Section 4.2). For simplicity, we mainly consider triangular
elements, while we briefly discuss their possible extensions
to quadrilateral geometries and to three-dimensional cases.
Regarding Stokes equation, we point out (as already men-
tioned) that the same discretization spaces can be profitably
used to treat the nearly incompressible elasticity problem,
within the context of the (u, π) formulation (80). We also
address a brief discussion on elements for the elasticity
problem in the framework of the Hellinger–Reissner prin-
ciple (Section 4.3).

We finally remark that, for all the schemes that we
are going to present, a rigorous stability and convergence
analysis has been established, even though we will not
detail the proofs.

4.1 Thermal diffusion

We consider the thermal diffusion problem described in
Section 2.1 in the framework of the Hellinger–Reissner
variational principle. We recall that the discretization of
such a problem leads to solve the following algebraic
system: [

A BT

B 0

]{
q̂
θ̂

}
=
{

0
g

}
(221)

where

A|ij =
∫

�

[
Nq

i · D−1Nq
j

]
d�, q̂|i = q̂i

B|rj = −
∫

�

[
N θ

r div
(

Nq
j

) ]
d�, θ̂|r = θ̂r

g|r =
∫

�

[
N θ

r b
]

d�

(222)
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Above, Nq
i and N θ

r are the interpolation functions for the
flux q and the temperature θ respectively. Moreover, q̂ and
θ̂ are the vectors of flux and temperature unknowns, while
i, j = 1, . . . , n and r = 1, . . . , m, where n and m obviously
depend on the chosen approximation spaces as well as on
the mesh.

Following the notation of the previous section, the norms
for which the inf–sup and the elker conditions should be
checked are (cf. (174) and (175))

‖q̂‖2
X :=

∫
�

[(
Nq

i q̂i

) · D−1
(

Nq
j q̂j

)]
d�

+ �2

k∗

∫
�

|div (Nq
i q̂i)|2 d� (223)

and

‖θ̂‖2
Y :=

∫
�

|N θ
r θ̂r |2 d� (224)

where � is some characteristic length of the domain
� and k∗ is some characteristic value of the thermal
conductivity.

Before proceeding, we remark the following:

• Since no derivative operator acts on the interpolat-
ing functions N θ

r in the matrix B, we are allowed
to approximate the temperature θ without requiring
any continuity across the elements. On the contrary,
the presence of the divergence operator acting on
the interpolating functions Nq

i in the matrix B sug-
gests that the normal component of the approxi-
mated flux should not exhibit jumps between adjacent
elements.

• The full ellipticity for A (i.e. property (125)) typi-
cally holds only with a constant α � h2, once the
norm (223) has been chosen. However, if a method
is designed in such a way that

q̂0 = (q̂0
i )ni=1 ∈ Ker(B) implies div (Nq

i q̂
0
i ) = 0

(225)

the weaker elker condition (159) obviously holds with
α0 = 1.
Condition (225) is verified if, for instance, we insist
that

Span{div Nq
i ; i = 1, . . . , n} ⊆

Span{N θ
r ; r = 1, . . . , m} (226)

that is, the divergences of all the approximated fluxes
are contained in the space of the approximated tem-
peratures. Indeed, condition (226) implies that, for
every q̂0 ∈ Ker(B), there exists θ̂0 = (θ̂0

r )
m
r=1 such that

div (Nq
i q̂

0
i ) = −N θ

r θ̂0
r . It follows that

0 = θ̂
T
0 Bq̂0 = −

∫
�

(N θ
r θ̂0

r )div (Nq
i q̂

0
i ) d�

=
∫

�

|div (Nq
i q̂

0
i )|2 d� (227)

so that div (Nq
i q̂

0
i ) = 0.

Condition (226) can be always achieved by ‘enriching’
the temperature approximation, if necessary. However,
we remark that a careless enlargement of the approxi-
mated temperatures can compromise the fulfillment of
the inf–sup condition (112), as shown in the following
easy result.

Proposition 3. Suppose that a given method satis-
fies condition (226). Then the inf–sup condition (112)
implies

Span{div Nq
i ; i = 1, . . . , n}

≡ Span{N θ
r ; r = 1, . . . , m} (228)

that is, the divergences of all the approximated fluxes
coincide with the space of the approximated tempera-
tures.

Proof. By contradiction, suppose that Span{div Nq
i ;

i = 1, . . . , n} is strictly contained in Span{N θ
r ;

r = 1, . . . ,m}. It follows that there exists
θ̂⊥ = (θ̂⊥

r )mr=1 ∈ R
m\{0} such that

q̂T
∗BTθ̂⊥ = −

∫
�

(N θ
r θ̂⊥

r )div (Nq
i q̂

∗
i ) d� = 0 ∀ q̂∗ ∈ R

n

(229)

Therefore,

sup
q̂∗∈Rn\{0}

q̂T∗BTθ̂⊥
‖q̂∗‖X

= 0 (230)

and the inf–sup condition does not hold (cf. (119)).

We also remark that the converse of Proposition 3
does not hold, that is, condition (228) is not sufficient
for the fulfillment of inf–sup (although it does imply
elker).

From the considerations above, it should be clear that

• degrees of freedom associated with the normal com-
ponent of the approximated flux are needed to guar-
antee its continuity across adjacent elements;

• the satisfaction of both the elker and the inf–sup
condition requires a careful and well-balanced choice
of the interpolating fields.
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In the following, we are going to present several elements
designed accordingly to the guidelines above, all satisfying
property (228).

4.1.1 Triangular elements

Throughout this section, we will always suppose that the
domain � ⊂ R

2, on which the thermal problem is posed,
is decomposed by means of a triangular mesh Th with
meshsize h. Moreover, we define Eh as the set of all the
edges of the triangles in Th.

• The RT0 − P0 element. We now introduce the simplest
triangular element proposed for thermal problems. For the
discretization of the thermal flux q, we take the so-called
lowest-order Raviart–Thomas element (RT0 element), pre-
sented in (Raviart and Thomas, 1977); accordingly, the
approximated flux qh is described as a piecewise linear
(vectorial) field such that

i. the normal component qh · n is constant on each edge
e of Eh;

ii. the normal component qh · n is continuous across each
edge e of Eh.

To approximate the temperature, we simply use piecewise
constant functions in each element (P0 element).

On the generic triangle T ∈ Th, a set of element degrees
of freedom for qh is given by its 3 normal fluxes on the
edges of the triangle, that is,∫

e

qh · n ds ∀ e edge of T (231)

Therefore, the space for the element approximation of q
has dimension 3 and a basis is obtained by considering the
(vectorial) shape functions

Nq
k = Nq

k (x, y) = 1

2Area(T )

{
x − xk

y − yk

}
k = 1, 2, 3

(232)

Above, {xk, yk}T denotes the position vector of the kth
vertex (local numbering) of the triangle T .

We also remark that, because of (232), qh can be locally
described by

qh = p0 + p0

{
x

y

}
=
{

a0 + p0x

b0 + p0y

}
(233)

where a0, b0, p0 ∈ R.
As far as the approximated temperature is concerned, an

element basis for θh is given by the shape function

N θ = N θ(x, y) = 1 (234)

θq

Figure 1. Degrees of freedom for RT0 –P0 element.

The element degrees of freedom for both qh and θh are
schematically depicted in Figure 1.

• The RTk − Pk family. We now present the extension
to higher orders of the RT0 − P0 method just described
(cf. Raviart and Thomas, 1977). Given an integer k ≥ 1
and using the definition introduced in Nedelec (1980), for
the flux qh, we take a field such that (RTk element) on each
triangle T of Th, we have

qh = pk(x, y) + pk(x, y)

{
x

y

}
(235)

where pk(x, y) (resp. pk(x, y)) is a vectorial (resp. scalar)
polynomial of degree at most k. Moreover, we require that
the normal component qh · n is continuous across each edge
e of Eh. This can be achieved by selecting the following
element degrees of freedom:

i. the moments of order up to k of qh · n on the edges of
T ;

ii. the moments of order up to k − 1 of qh on T .

For the discretized temperature θh, we take piecewise
polynomials of degree at most k (Pk element).

The element degrees of freedom for the choice k = 1 are
shown in Figure 2.

• The BDM1 − P0 element. Another method, widely used
to treat the thermal diffusion problem, arises from the
approximation of the flux q by means of the so-called

q θ

Figure 2. Degrees of freedom for RT1 –P1 element.
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lowest-order Brezzi–Douglas–Marini element (BDM1 ele-
ment), proposed and analyzed in Brezzi et al. (1985). It
consists in discretizing q by vectorial functions qh such
that

i. qh is linear in triangle T of Th;
ii. the normal component qh · n is continuous across each

edge e of Eh.

For the approximated temperature θh, we again use
piecewise constant functions on each triangle.

Focusing on the generic triangle T ∈ Th, we remark that
the approximation space for q has dimension 6, since full
linear polynomials are employed. A suitable set of element
degrees of freedom is provided by the moments up to order
1 of the normal fluxes qh · n across each edge e of T ,
explicitly given by the values

∫
e

qh · n ds∫
e

sqh · n ds

(236)

where s is a local coordinate on e ranging from −1 to 1.
The element degrees of freedom for the resulting method

are shown in Figure 3.

• The BDMk+1 − Pk family. As for the RT0 –P0 scheme,
also the BDM1 –P0 finite element method is the lowest order
representative of a whole class. Indeed, given an integer
k ≥ 1, we can select the approximations presented in Brezzi
et al. (1985).

For the discretized flux qh, the normal component qh · n
is continuous across each edge e of Eh. Moreover, qh is
a vectorial polynomial of degree at most k + 1 on each
triangle T of Th (BDMk+1 element). Also, in this case, the
continuity of the normal component can be obtained by a
proper choice of the degrees of freedom.

For the approximated temperature θh, we use the discon-
tinuous Pk element. Figure 4 shows the element degrees of
freedom for the case k = 1.

q θ

Figure 3. Degrees of freedom for BDM1 –P0 element.

q θ

Figure 4. Degrees of freedom for BDM2 –P1 element.

4.1.2 Quadrilateral elements

We now briefly consider the extension of some of the
methods presented in the previous section to quadrilateral
meshes. In this case, we define our approximating spaces
on the reference element K̃ = [−1, 1]2 equipped with local
coordinates (ξ, η). As far as the flux is concerned, the cor-
responding approximation space on each physical element
K must be obtained through the use of a suitable transfor-
mation that preserves the normal component of vectorial
functions. This is accomplished by the following (con-
travariant) Piola’s transformation of vector fields. Suppose
that

F: K̃ −−−→ K; (x, y) = F(ξ, η)

is an invertible map from K̃ onto K , with Jacobian matrix
J(ξ, η). Given a vector field q = q(ξ, η) on K̃ , its Piola’s
transform P(q) = P(q)(x, y) is the vector field on K ,
defined by

P(q)(x, y) := 1

J (ξ, η)
J(ξ, η)q(ξ, η); (x, y) = F(ξ, η)

where J (ξ, η) = | det J(ξ, η)|. Therefore, if

Q(K̃) = Span{qh
i ; i = 1, . . . , nel}

is an nel-dimensional flux approximation space defined on
the reference element K̃ , the corresponding space on the
physical element K will be

Q(K) = Span{P(qh
i ); i = 1, . . . , nel}

• The RT[0] − P0 element. In the reference element K̃ , we
prescribe the approximated flux qh as (RT[0] element)

qh =
{

a + bξ

c + dη

}
, a, b, c, d ∈ R (237)
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q θ

Figure 5. Degrees of freedom for RT[0] –P0 element.

Because of (237), it is easily seen that the four values∫
e

qh · n ds ∀ e edge of K̃ (238)

can be chosen as a set of degrees of freedom. More-
over, div qh is constant in K̃ , suggesting the choice of a
constant approximated temperature θh in K̃ (P0 element).
The degrees of freedom for both qh and θh are shown in
Figure 5.

• The BDM[1] − P0 element. For the discrete flux qh on K̃ ,
we take a field such that (BDM[1] element)

qh = p1(ξ, η) + a

{
ξ2

−2ξη

}
+ b

{
2ξη

−η2

}
= p1(ξ, η) + a(∇(ξ2η))⊥ + b(∇(ξη2))⊥ (239)

Above, p1(ξ, η) is a vectorial linear polynomial, and a, b

are real numbers. This space is carefully designed in order
to have

i. qh · n linear on each edge e of K̃ .
ii. div qh constant in K̃ .

Again, for the approximated temperature θh, we take
constant functions (P0 element). The element degrees of
freedom for both qh and θh are shown in Figure 6.

4.1.3 Three-dimensional elements

All the elements presented above have their three-dimen-
sional counterpart. In this case, the normal component of
the approximated flux qh should not exhibit jumps across
faces of adjacent elements.

In Figure 7(a), we display the tetrahedral version of the
RT0 − P0 element (cf. Figure 1), consisting of a piece-
wise constant approximation for the temperature θ and
of the following element approximating functions for qh

q θ

Figure 6. Degrees of freedom for BDM[1] –P0 element.

(a)

(b)

(c)

q θ

Figure 7. 3-D elements for the thermal problem.

(see Nedelec, 1980):

qh|T = p0 + p0


x

y

z

 =


a0 + p0x

b0 + p0y

c0 + p0z


a0, b0, c0, p0 ∈ R (240)

Therefore, in each tetrahedron T , the space for the approxi-
mated flux has dimension 4 and the degrees of freedom are
precisely the values

∫
f

qh · n dσ on each tetrahedron face f .
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The three-dimensional version of the BDM1 − P0 ele-
ment (cf. Figure 3) is shown in Figure 7(b). The approx-
imated temperature is still piecewise constant, while the
discretized flux qh|T is a fully linear vectorial function.

We also present the extension of the RT[0] − P0 to the
case of cubic geometry, as depicted in Figure 7(c).

Remark 8. We conclude our discussion on the thermal
problem by noticing the obvious fact that the linear sys-
tem (221) has an indefinite matrix, independent of the
chosen approximation spaces. This is a serious source
of trouble. For the discretizations considered above, we
can however overcome this drawback. Following Fraeijs
de Veubeke (1965), one can first work with fluxes that
are totally discontinuous, forcing back the continuity of
the normal components by means of suitable interelement
Lagrange multipliers, whose physical meaning comes out
to be ‘generalized temperatures’ (for instance, approxima-
tions of the temperature mean value on each edge). As
the fluxes are now discontinuous, it is possible to elimi-
nate them by static condensation at the element level. This
will give a system involving only the temperatures and the
interelement multipliers. At this point, however, it becomes
possible to eliminate the temperatures as well (always at the
element level), leaving a final system that involves only the
multipliers. This final system has a symmetric and positive
definite matrix, a very useful property from the computa-
tional point of view. For a detailed discussion about these
ideas, we refer to Arnold and Brezzi (1985), Marini (1985),
and Brezzi et al. (1986, 1987, 1988). For another way
to eliminate the flux variables (although with some geo-
metrical restrictions) see also Baranger, Maitre and Oudin
(1996). For yet another procedure to reduce the number of
unknowns in (221) and getting a symmetric positive definite
matrix, see Alotto and Perugia (1999).

4.2 Stokes equation

As detailed in Section 2.2, the discretization of the Stokes
problem leads to solving the following algebraic system:[

A BT

B 0

]{
û
p̂

}
=
{

f
0

}
(241)

where

A|ij = µ

∫
�

[
∇Nu

i : ∇Nu
j

]
d�, û|i = ûi

B|rj = −
∫

�

[
Np

r div
(

Nu
j

) ]
d�, p̂|r = p̂r

f|i =
∫

�

[
Nu

i · b
]

d�

(242)

Above, Nu
i and N

p
r are the interpolation functions for the

velocity u and the pressure p respectively. Also, û and
p̂ are the vectors containing the velocity and the pressure
unknowns. In the sequel, we will always consider the
case of homogeneous boundary conditions for the velocity
field along the whole boundary ∂�. As a consequence,
the pressure field is determined only up to a constant.
Uniqueness can, however, be recovered, for instance, by
insisting that the pressure has zero mean value over the
domain � or by fixing its value at a given point.

We also remark that, since there is no derivative of
N

p
r in the definition of the matrix B, both continuous and

discontinuous pressure approximations can be chosen. On
the contrary, the symmetric gradients of Nu

i entering in the
matrix A suggest that the approximated velocities should
be continuous across adjacent elements.

If we introduce the norms

‖û‖2
X := µ

∫
�

∣∣∇(Nu
i ûi )

∣∣2 d� (243)

and

‖p̂‖2
Y :=

∫
�

∣∣Np
r p̂r

∣∣2 d� (244)

the continuity conditions (101) and the ellipticity condi-
tion (125) of the previous section are clearly satisfied,
namely, with Ma = 1, Mb = √

(d/µ), and α = 1. There-
fore, a stable method is achieved provided the only inf–sup
condition (112) is fulfilled.

4.2.1 Triangular elements with continuous pressure
interpolation

In this section, we describe some stable triangular element
for which the pressure field is interpolated by means of
continuous functions.
• The MINI element. Given a triangular mesh Th, of �, for
the approximated velocity uh we require that (cf. Arnold,
Brezzi and Fortin, 1984)

i. for each T ∈ Th, the two components of uh are the
sum of a linear function plus a standard cubic bubble
function;

ii. the two components of uh are globally continuous
functions on �.

Concerning the discretized pressure ph, we simply take
piecewise linear and globally continuous functions.

For the generic element T ∈ Th, the elemental degrees
of freedom for uh are its (vectorial) values at the triangle
vertexes and barycenter. A basis for the element approxi-
mation space of each component of uh can be obtained by
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u p

Figure 8. Degrees of freedom for MINI element.

considering the following four shape functions:{
Nk = Nk(x, y) = λk k = 1, 2, 3
Nb = Nb(x, y) = 27λ1λ2λ3

(245)

where
{
λk = λk(x, y), k = 1, 2, 3

}
denote the usual area

coordinates on T .
Furthermore, a set of elemental degrees of freedom for

ph is given by its values at the triangle vertexes, while the
three shape functions to be used are obviously

Nk = λk k = 1, 2, 3 (246)

The element degrees of freedom for both uh and ph

are schematically depicted in Figure 8. We finally remark
that the bubble functions for the velocity are internal
modes, so that they can be eliminated on the element level
by means of the so-called static condensation procedure
(cf. Hughes (1987), for instance). As a consequence, these
additional degrees of freedom do not significantly increase
the computational costs.

• The Hood–Taylor elements. These elements arise from
the experimental evidence that using a velocity approxi-
mation of one degree higher than the approximation for
pressure gave reliable results (cf. Hood and Taylor, 1973).
We are therefore led to consider, for each integer k with
k ≥ 1, the following interpolation fields.

The approximated velocity uh is such that

i. for each T ∈ Th, the two components of uh are poly-
nomials of degree at most k + 1;

ii. the two components of uh are globally continuous
functions on �.

For the approximated pressure ph, we ask that

i. for each T ∈ Th, ph is a polynomial of degree at
most k;

ii. ph is a globally continuous function on �.

Figure 9 shows the uh and ph element degrees of freedom,
for the lowest-order Hood–Taylor method (i.e. k = 1).

u p

Figure 9. Degrees of freedom for the lowest-order Hood–Taylor
element.

Remark 9. A first theoretical analysis of the lowest-order
Hood–Taylor method (k = 1) was developed in Bercovier
and Pironneau (1977), later improved in Verfürth (1984).
The case k = 2 was treated in Brezzi and Falk (1991),
while an analysis covering every choice of k was presented
in Boffi (1994). We also remark that the discontinuous
pressure version of the Hood–Taylor element typically
results in an unstable method. However, stability can be
recovered by imposing certain restrictions on the mesh for
k ≥ 3 (see Vogelius (1983) and Scott and Vogelius (1985)),
or by taking advantage of suitable stabilization procedures
for k ≥ 1; see Mansfield (1982) and Boffi (1995).
• The (P1-iso-P2) − P c

1 element. This is a ‘composite’ ele-
ment whose main advantage is the shape function sim-
plicity. We start by considering a triangular mesh Th with
meshsize h. From Th, we build another finer mesh Th/2 by
splitting each triangle T of Th into four triangles using the
edge midpoints of T , as sketched in Figure 10.

The approximated velocity uh is now defined using the
finer mesh Th/2 according to the following prescriptions:

i. for each triangle of Th/2, the two components of uh are
linear functions;

ii. the two components of uh are globally continuous
functions on �.

On the other hand, the interpolated pressure ph is piece-
wise linear in the coarser mesh Th, and globally continuous
on �.

For every triangle T ′ of finer mesh Th/2, the degrees
of freedom of uh are its values at the vertexes, while
an element basis is given by taking the shape functions
Nk = λk (k = 1, 2, 3) relative to T ′.

Figure 10. Splitting of a triangle T ∈ Th.
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u p

Figure 11. Degrees of freedom for (P1-iso-P2) − P c
1 element.

Instead, by considering the generic triangle T of the
coarser mesh Th, the point values at the three vertexes
provide a set of degrees of freedom for ph. Therefore, the
shape functions Nk = λk (k = 1, 2, 3), relative to T , can be
chosen as a basis for the element pressure approximation.

The element degrees of freedom for both uh and ph are
schematically depicted in Figure 11.

Remark 10. A popular way to solve system (241) con-
sists in using a penalty method. More precisely, instead
of (241), one considers the perturbed system[

A BT

B −σC

]{
û
p̂

}
=
{

f
0

}
(247)

where the ‘mass’ matrix C is defined by

C|rs =
∫

�

[
Np

r Np
s

]
d� (248)

and σ > 0 is a ‘small’ parameter. In the case of discontinu-
ous pressure approximations, the pressure unknowns can be
eliminated from (247) on the element level, leading there-
fore to the following system for û:(

A + σ−1BTC−1B
)

û = f (249)

with C ‘easy-to-invert’ (namely, block diagonal). When
continuous pressure approximations are considered, the
inverse of C is in general a full matrix, so that the elimi-
nation of the pressure unknowns seems impossible on the
element level. We have, however, the right to choose a
different penalizing term in (247): for instance, we could
replace C by a diagonal matrix C̃, obtained from C by a
suitable mass lumping procedure (cf. Hughes, 1987). The
pressure elimination becomes now easy to perform, leading
to (cf. (249)) (

A + σ−1BTC̃−1B
)

û = f (250)

A drawback of this approach, however, not so serious
for low-order schemes, stands in a larger bandwidth for
the matrix

(
A + σ−1BTC̃−1B

)
. For more details about this

strategy, we refer to Arnold, Brezzi and Fortin (1984).

4.2.2 Triangular elements with discontinuous
pressure interpolation

In this section, we describe some stable triangular element
for which the pressure field is interpolated by means of
discontinuous functions. It is worth noticing that all these
elements have velocity degrees of freedom associated with
the element edges. This feature is indeed of great help in
proving the inf–sup condition for elements with discontin-
uous pressure interpolation (cf. Remark 16).

• The Crouzeix–Raviart element. Our first example of dis-
continuous pressure elements is the one proposed and
analyzed in Crouziex and Raviart (1973). It consists in
choosing the approximated velocity uh such that

i. for each T ∈ Th, the two components of uh are the sum
of a quadratic function plus a standard cubic bubble
function;

ii. the two components of uh are globally continuous
functions on �.

Moreover, for the discretized pressure ph, we simply
take the piecewise linear functions, without requiring any
continuity between adjacent elements.

The elemental approximation of each component of uh

can be described by means of the following seven shape
functions

Nk = λk k = 1, 2, 3
N4 = 4λ2λ3, N5 = 4λ1λ3, N6 = 4λ1λ2
Nb = 27λ1λ2λ3

(251)

The degrees of freedom are the values at the triangle
vertexes and edge midpoints, together with the value at
the barycenter.

Concerning the pressure approximation in the generic
triangle T , we take the three shape functions

N1 = 1
N2 = x

N3 = y

(252)

and the degrees of freedom can be chosen as the values at
three internal and noncollinear points of the triangle.

Figure 12 displays the element degrees of freedom for
both uh and ph.

• The Pk+2 − Pk family. We now present a class of mixed
methods consisting in choosing, for any integer k with
k ≥ 0, the following interpolation fields.

For the approximated velocity uh, we require that

i. for each T ∈ Th, the two components of uh are poly-
nomials of degree at most k + 2;
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u p

Figure 12. Degrees of freedom for Crouzeix–Raviart element.

ii. the two components of uh are globally continuous
functions on �.

Instead, the approximated pressure ph is a polynomial
of degree at most k for each T ∈ Th, with no continuity
imposed across the triangles.

Figure 13 shows the local degrees of freedom, for both
uh and ph, of the lowest-order method (i.e. k = 0), which
has been proposed and mathematically analyzed in Fortin
(1975).

Remark 11. For the Pk+2 − Pk family, the discretization
error in energy norm is of order hk+1 for both the veloc-
ity and the pressure, even though the Pk+2-approximation
should suggest an order hk+2 for the velocity field. This
‘suboptimality’ is indeed a consequence of the poor pres-
sure interpolation (polynomials of degrees at most k). How-
ever, taking advantage of a suitable augmented Lagrangian
formulation, the Pk+2 − Pk family can be improved to
obtain a convergence rate of order hk+3/2 for the velocity,
without significantly increasing the computational costs. We
refer to Boffi and Lovadina (1997) for details on such an
approach.

• The (P1-iso-P2) − P0 element. Another stable element
can be designed by taking the P1-iso-P2 element for
the approximated velocity, and a piecewise constant
approximation for the pressure. More precisely, as for
the (P1-iso-P2) − P c

1 element previously described, we
consider a triangular mesh Th with meshsize h. We then
build a finer mesh Th/2 according to the procedure sketched
in Figure 10.

u p

Figure 13. Degrees of freedom for P2 –P0 element.

u p

Figure 14. Degrees of freedom for (P1-iso-P2) − P0 element.

We recall that the approximated velocity uh is given
using the finer mesh Th/2 and requiring that

i. for each triangle of Th/2, the two components of uh are
linear functions;

ii. the two components of uh are globally continuous
functions on �.

Instead, the pressure approximation is defined on the
coarser mesh Th by selecting the piecewise constant func-
tions.

The local degrees of freedom for both uh and ph are
shown in Figure 14.

• The non-conforming P NC
1 − P0 element. We present an

element, attributable to Crouziex and Raviart (1973), for
which the approximated velocity uh is obtained by requiring
that

i. for each triangle the two components of uh are linear
functions;

ii. continuity of uh across adjacent elements is imposed
only at edge midpoints.

For the approximated pressure ph, we simply take the
piecewise constant functions.

Given a triangle T ∈ Th, the degrees of freedom for
the approximating velocity uh are the values at the three
edge midpoints. Furthermore, for each component of uh,
an element basis on triangle T is provided by

Nk = 1 − 2λk k = 1, 2, 3

The lack of continuity for the discrete velocity implies
that the differential operators (gradient and divergence)
acting on uh should be taken element-wise. For instance,
the matrix B should be written as

B|rj = −
∑
T ∈Th

∫
T

[
Np

r div
(

Nu
j

)]
d� (253)

The degrees of freedom are displayed in Figure 15. We
remark that applicability of the P NC

1 − P0 element is limited
to problems with Dirichlet boundary conditions for the
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u p

Figure 15. Degrees of freedom for P NC
1 − P0 element.

displacement field imposed on the whole ∂�. For other
situations (e.g. a pure traction problem), the scheme exhibits
spurious mechanisms, because of its inability to control
the rigid body rotations (cf. Hughes, 1987). Two stable
modifications of the P NC

1 − P0 element have been proposed
and analyzed in Falk (1991) and, recently, in Hansbo and
Larson (2003).

4.2.3 Quadrilateral elements

Many of the triangular elements presented above have their
quadrilateral counterpart. As an example, we here show
the so-called Q2 − Qc

1 element, which is the quadrilat-
eral version of the lowest-order Hood–Taylor element (cf.
Figure 9). Accordingly, the velocity is approximated by
biquadratic and continuous functions, while the pressure is
discretized by means of bilinear and continuous functions,
as depicted in Figure 16.

Another very popular scheme is the Q2 − P1 element,
based on the same approximated velocities as before.
Instead, the interpolating functions for the pressure are
piecewise linear, without requiring any continuity across
the elements. The local degrees of freedom are displayed
in Figure 17.

4.2.4 Three-dimensional elements

Several elements previously described extend to the
case of three-dimensional problems. In Figure 18(a), we
show a continuous pressure tetrahedral element, which is
nothing but the 3-D version of the MINI element (cf.

u p

Figure 16. Degrees of freedom for Q2 − Qc
1 element.

u p

Figure 17. Degrees of freedom for Q2 − P1 element.

Figure 8). Also, the non-conforming P NC
1 − P0 element

(cf. Figure 15) has its three-dimensional counterpart, as
depicted in Figure 18(b). We remark that the degrees of
freedom for the velocity are given by the values at the
barycenter of each tetrahedron face. Figure 18(c) shows an
example of cubic element, which is exactly the 3-D version
of the popular Q2 − P1 element (cf. Figure 17).

Finally, we refer to Stenberg (1987) for the analysis,
based on the so-called macroelement technique introduced
in Stenberg (1984), of the lowest-order 3-D Hood–Taylor
method, and to Boffi (1997) for the higher-order case.

4.2.5 Stabilized formulations

From the above discussion, it should be clear that the fulfill-
ment of the inf–sup condition requires a careful choice of
the discretization spaces for the velocity and the pressure.
A first strategy to obtain stability has been to derive the

u p

(a)

(b)

(c)

Figure 18. 3-D Stokes elements.
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numerical scheme from a perturbation of functional (37),
by considering (see Brezzi and Pitkäranta, 1984)

L̃(u, p) = 1

2
µ

∫
�

[∇u : ∇u] d� −
∫

�

[b · u] d�

−
∫

�

[
p div u

]
d� − α

2

∑
K∈Th

∫
K

h2
K

∣∣∇p
∣∣2 d� (254)

where α is a positive parameter and hK is the diameter of
the element K ∈ Th. The ‘perturbation term’

α

2

∑
K∈Th

∫
K

h2
K

∣∣∇p
∣∣2 d�

has a stabilizing effect on the discretized Euler–Lagrange
equations emanating from (254). It however introduces a
consistency error, so that the convergence rate in energy
norm cannot be better than O(h), even though higher-
order elements are used. Following the ideas in Hughes and
Franca (1987) and Hughes et al. (1986), this drawback may
be overcome by means of a suitable augmented Lagrangian
formulation. Instead of considering (37) or (254), one can
introduce the augmented functional

Lagm(u, p) = 1

2
µ

∫
�

[∇u : ∇u] d�

−
∫

�

[b · u] d� −
∫

�

[
p div u

]
d�

− 1

2

∑
K∈Th

∫
K

α(K)
∣∣µ�u − ∇p + b

∣∣2 d� (255)

where, for each element K ∈ Th, α(K) is a positive
parameter at our disposal. Because of the structure of
the ‘additional term’ in (255), both the functionals (37)
and (255) have the same critical point, that is, the solu-
tion of the Stokes problem. Therefore, the discretized
Euler–Lagrange equations associated with (255) deliver a
consistent method, whenever conforming approximations
have been selected. As before, the augmented term may
have a stabilizing effect, allowing the choice of a wider
class of elements. For instance, if

α(K) = ᾱh2
K

where ᾱ is sufficiently ‘small’, any finite element approx-
imation of velocity and pressure (as far as the pressure is
discretized with continuous finite elements) leads to a sta-
ble scheme, with respect to an appropriate norm (see Franca
and Hughes, 1988).

This approach has several interesting variants. Indeed,
considering the Euler–Lagrange equations associated

with (255) we have

µ

∫
�

[∇u : ∇v] d� −
∫

�

[b · v] d� −
∫

�

[
p div v

]
d�

−
∫

�

[
q div u

]
d� −

∑
K∈Th

∫
K

α(K)
[
µ�u − ∇p + b

]
· [µ�v − ∇q

]
d� = 0 (256)

for all test functions u and q. The term in second line
of (256) represents our consistent perturbation. A careful
analysis can show that its stabilizing effect still works if
we change it into

+
∑
K∈Th

∫
K

α(K)
[
µ�u − ∇p + b

] · [µ�v + ∇q
]

d�

(257)

(that is, changing the sign of the whole term, but changing
also the sign of ∇q in the second factor) or simply into

+
∑
K∈Th

∫
K

α(K)
[
µ�u − ∇p + b

] · ∇q d� (258)

For a general analysis of these possible variants, we refer
to Baiocchi and Brezzi (1993). A deeper analysis shows
that, in particular, the formulation (257) can be interpreted
as changing the space of velocities with the addition of
suitable bubble functions and then eliminate them by static
condensation. This was pointed out first in Pierre (1989),
and then in a fully systematic way in Baiocchi, Brezzi and
Franca (1993).

Other possible stabilizations can be obtained by adding
penalty terms that penalize the jumps in the pressure vari-
able over suitable macroelements. See, for instance, Sil-
vester and Kechar (1990). This as well can be seen as
adding suitable bubbles on the macroelements and elimi-
nating them by static condensation.

For a more general survey of these and other types
of stabilizations, see Brezzi and Fortin (2001) and the
references therein.

Another approach to get stable elements is based on the
so-called Enhanced Strain Technique, introduced in Simo
and Rifai (1990) in the context of elasticity problems. As
already mentioned in Section 2.3, the basic idea consists
in enriching the symmetric gradients ∇suh with additional
local modes. An analysis of this strategy for displacement-
based elements has been developed in Reddy and Simo
(1995) and Braess (1998). Within the framework of the
(u,π) formulation for incompressible elasticity problems
(and therefore for the Stokes problem), the enhanced strain
technique has been successfully used in Pantuso and Bathe
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(1995) (see also Lovadina (1997) for a stability and con-
vergence analysis), and more recently in Lovadina and
Auricchio (2003) and Auricchio et al. (200x).

4.3 Elasticity

We now briefly consider the elasticity problem in the frame-
work of the Hellinger–Reissner variational principle (59).
We recall that after discretization we are led to solve a
problem of the following type (cf. (57), (58), and (61)):[

A BT

B 0

]{
σ̂

û

}
=
{

0
g

}
(259)

where

A|ij =
∫

�

[
Nσ

i : D
−1Nσ

j

]
d�, σ̂|j = σ̂j

B|rj =
∫

�

[
Nu

r · div
(

Nσ
j

) ]
d�, û|r = ûr

g|r = −
∫

�

[
Nu

r · b
]

d�

(260)

Above, Nσ
i and Nu

r are the interpolation functions for the
stress σ and the displacement u respectively. Moreover, σ̂

and û are the vectors of stress and displacement unknowns.
We note that since the divergence operator acts on the
shape functions Nσ

i (see the B matrix in (260)), the approx-
imated normal stress σhn should be continuous across
adjacent elements. On the contrary, no derivative opera-
tor acts on the shape functions Nu

r , so that we are allowed
to use discontinuous approximation for the displacement
field. Analogously to the thermal diffusion problem (see
Section 4.1), the proper norms for σ̂ and û are as follows
(cf. (223) and (224)):

‖σ̂‖2
X :=

∫
�

[(
Nσ

i σ̂i

)
: D

−1
(

Nσ
j σ̂j

)]
d�

+ �2

D∗

∫
�

|div (Nσ
i σ̂i)|2 d� (261)

and

‖û‖2
Y :=

∫
�

|Nu
r ûr |2 d� (262)

where � is some characteristic length of the domain � and
D∗ is some characteristic value of the elastic tensor.

Despite the apparent similarity with the correspond-
ing (221) to (222) of the thermal diffusion problem, finding
approximation spaces for (259) to (260), which satisfy both
the inf–sup and the elker conditions, is much more difficult
(see e.g. Brezzi and Fortin (1991) for a discussion on such

T1 T3

T2

Figure 19. Splitting of a generic triangle for the Johnson–Mercier
element.

a point). Here below, we present two triangular elements
proposed and analyzed in Johnson and Mercier (1978) and
Arnold and Winther (2002) respectively.

• The Johnson–Mercier element. This method takes advan-
tage of a ‘composite’ approximation for the stress field.
More precisely, we first split every triangle T ∈ Th into
three subtriangles Ti (i = 1, 2, 3) using the barycenter of
T (see Figure 19).

For the approximated stress σh, we then require that

i. in each subtriangle Ti the components of σh are linear
functions;

ii. the normal stress σhn is continuous across adjacent
triangles and across adjacent subtriangles.

Accordingly, the discrete stress σh is not a polynomial
on T , but only on the subtriangles Ti . For the generic ele-
ment T ∈ Th, it can be shown (see Johnson and Mercier,
1978) that the elemental degrees of freedom are the follow-
ing.

i. On the three edges of T : the moments of order 0 and
1 for the vector field σhn (12 degrees of freedom);

ii. On T : the moments of order 0 for the symmetric tensor
field σh (3 degrees of freedom).

Moreover, each component of the approximated displace-
ment uh is chosen as a piecewise constant function.

Figure 20 displays the element degrees of freedom for
both σh and uh.

σ u

Figure 20. Degrees of freedom for the Johnson–Mercier element.
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• The Arnold–Winther element. This triangular element has
been recently proposed and analyzed in Arnold and Winther
(2002), where higher-order schemes are also considered.
For the approximated stress σh, we impose that

i. on each T ∈ Th, σh is a symmetric tensor whose
components are cubic functions, but div σh is a linear
vector field;

ii. the normal stress σhn is continuous across adjacent
triangles.

For each element T ∈ Th, the approximation space for the
stress field has dimension 24 and the elemental degrees of
freedom can be chosen as follows (see Arnold and Winther,
2002):

i. the values of the symmetric tensor field σh at the
vertices of T (9 degrees of freedom);

ii. the moments of order 0 and 1 for the vector field σhn
on each edge of T (12 degrees of freedom);

iii. the moment of order 0 for σh on T (3 degrees of
freedom).

Furthermore, the components of the approximated dis-
placement uh are piecewise linear functions, without requir-
ing any continuity across adjacent elements.

In Figure 21, the element degrees of freedom for both
σh and uh are schematically depicted.

Remark 12. Other methods exploiting ‘composite’ app-
roximations as for the Johnson–Mercier element have
been proposed and analyzed in Arnold, Douglas and Gupta
(1984).

Following the ideas in Fraeijs de Veubeke (1975), a
different strategy to obtain reliable schemes for the elas-
ticity problem in the context of the Hellinger–Reissner
variational principle consists in the use of unsymmetric
approximated stresses. Symmetry is then enforced back in
a weak form by the introduction of a suitable Lagrange
multiplier. We refer to Amara and Thomas (1979), Arnold,
Brezzi and Douglas (1984), Brezzi et al. (1986), and Sten-
berg (1988) for the details on such an approach.

σ u

Figure 21. Degrees of freedom for the Arnold–Winther element.

5 TECHNIQUES FOR PROVING THE
INF–SUP CONDITION

In this section we give some hints on how to prove the
inf–sup condition (118). We also show how the stability
results detailed in Section 3 can be exploited to obtain
error estimates. We focus on the Stokes problem, as a
representative example, but analogous strategies can be
applied to analyze most of the methods considered in
Section 4.

We begin recalling (cf. (38)) that a weak form of the
Stokes problem with homogeneous boundary conditions for
the velocity consists in finding (u, p) such that

µ

∫
�

[(∇δu) : ∇u] d� −
∫

�

[
div (δu) p

]
d�

=
∫

�

[δu · b] d�∫
�

[
δp div u

]
d� = 0

(263)

for any admissible velocity variation δu and any admissible
pressure variation δp. On the other hand, as detailed in
Section 4.2, the discretized problem consists in solving[

A BT

B 0

]{
û
p̂

}
=
{

f
0

}
(264)

where

A|ij = µ

∫
�

[
∇Nu

i : ∇Nu
j

]
d�, û|i = ûi

B|rj = −
∫

�

[
Np

r div
(

Nu
j

) ]
d�, p̂|r = p̂r

f|i =
∫

�

[
Nu

i · b
]

d�

(265)

with i, j = 1, . . . , n and r = 1, . . . , m.
With our notation for the Stokes problem, the inf–sup

condition in its equivalent form (119) consists in requiring
the existence of a positive constant β, independent of h,
such that

∀ q̂ ∈ Y sup
ẑ∈X\{0}

ẑTBTq̂
‖ẑ‖X

≥ β‖q̂‖Y (266)

where X ≡ R
n and Y ≡ R

m.
Moreover, in what follows, we need to introduce the

space X for vectorial functions v, defined by

X =
{

v : v|∂� = 0, ‖v‖2
X := µ

∫
�

|∇v|2 d� < +∞
}

(267)
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and the space Y for scalar functions q, defined by

Y =
{
q : ‖q‖2

Y :=
∫

�

|q|2 d� < +∞
}

(268)

Remark 13. It is worth noticing that, whenever an
approximated velocity uh = Nu

i ûi is considered, the follow-
ing holds (cf. (243))

‖û‖X =
(
µ

∫
�

|∇Nu
i ûi |2 d�

)1/2

= ‖uh‖X (269)

Therefore, the X-norm we have tailored for vector û ∈ X
coincides with the X-norm of the reconstructed function uh.
Similarly (cf. (244)), if ph = N

p
r p̂r , we have

‖p̂‖Y =
(∫

�

|Np
r p̂r |2 d�

)1/2

= ‖ph‖Y (270)

5.1 Checking the inf–sup condition

As already mentioned, a rigorous proof of the inf–sup
condition is typically a difficult task, mainly because several
technical mathematical problems have to be overcome.
In this section, we present two of the most powerful
tools for proving the inf–sup property. The first technique
(Fortin’s trick ) can be used, for instance, to study the
stability of the P NC

1 − P0 element (cf. Figure 15) and the
Crouzeix–Raviart element (cf. Figure 12), as we are going
to detail below. The second one (Verfürth’s trick ) can be
applied basically to all the approximations with continuous
pressure and it will be exemplified by considering the MINI
element (cf. Figure 8).

Although we are aware that the subsequent analysis is
not completely satisfactory from the mathematical point
of view, it nonetheless highlights some of the basic ideas
behind the analysis of mixed finite element methods.

We first need to recall the following important theorem of
functional analysis; see Ladyzhenskaya (1969) and Temam
(1977), for instance).

Theorem 4. There exists a constant βc > 0 such that, for

every q ∈ Y with
∫

�

q d� = 0, it holds

sup
v∈X\{0}

−
∫

�

qdiv v d�

‖v‖X
≥ βc‖q‖Y (271)

Remark 14. We remark that estimate (271) is nothing but
the infinite-dimensional version of the inf–sup condition
written in its equivalent form (119).

5.1.1 Fortin’s trick

The next result provides a criterion for proving the inf–sup
condition, called Fortin’s trick (see Fortin, 1977) or, more
precisely, Fortin’s trick applied to the Stokes problem.

Proposition 4. Suppose there exists a linear operator
�̂h:X −−−→ X ≡ R

n such that

‖�̂hv‖X ≤ C�̂‖v‖X ∀ v ∈ X (272)

and

(�̂hv)TBTq̂ = −
∫

�

div v(Np
r q̂r ) d� ∀ q̂ ∈ Y ≡ R

m

(273)

with C�̂ independent of h. Then it holds

∀ q̂ ∈ Y sup
ẑ∈X\{0}

ẑTBTq̂
‖ẑ‖X

≥ βc

C�̂

‖q̂‖Y (274)

that is, the inf–sup condition (266) is fulfilled with β =
βc/C�̂.

Proof. Take any q̂ ∈ Y. We notice that from Theorem 4
and Remark 13, we get

sup
v∈X\{0}

−
∫

�

div v(Np
r q̂r ) d�

‖v‖X
≥ βc‖Np

r q̂r‖Y = βc‖q̂‖Y

(275)

Therefore, from (273), we have

sup
v∈X\{0}

(�̂hv)TBTq̂
‖v‖X

≥ βc‖q̂‖Y (276)

Using (272), from (276) it follows

sup
v∈X:̂�hv�=0

(�̂hv)TBTq̂

‖�̂hv‖X

≥ 1

C�̂

sup
v∈X\{0}

(�̂hv)TBTq̂
‖v‖X

≥ βc

C�̂

‖q̂‖Y (277)

Since, obviously,
{
�̂hv; v ∈ X

} ⊆ X, from (277) we
obtain

sup
ẑ∈X\{0}

ẑTBTq̂
‖ẑ‖X

≥ sup
v∈X:̂�hv�=0

(�̂hv)TBTq̂

‖�̂hv‖X

≥ βc

C�̂

‖q̂‖Y �

(278)

We now apply Proposition 4 to the P NC
1 − P0 element

and the Crouzeix–Raviart element, skipping, however, the
proof of (272). In both cases, the strategy for building the
operator �̂h is the following:
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1. On each triangle T ∈ Th, we first define a suitable linear
operator �h,T : v �−−−→ �h,T v, valued in the space of
velocity approximating functions on T , and satisfying∫

T

qhdiv (�h,T v) d� =
∫

T

qhdiv v d� (279)

for every v ∈ X and every discrete pressure qh. This
will be done by using, in particular, the element degrees
of freedom for the velocity approximation.

2. By assembling all the element contributions, we obtain
a global linear operator

�h:


X −−−→ Span{Nu

i ; i = 1, . . . , n}

v �−−−→ �hv =
∑
T ∈Th

�h,T v = Nu
i v̂i

(280)

3. We finally define �̂h:X −−−→ R
n by setting

�̂hv = v̂ if �hv = Nu
i v̂i (281)

that is, �̂hv returns the components of the func-
tion �hv with respect to the global velocity basis
{Nu

i ; i = 1, . . . , n}. From the definition of the matrix
B, property (279), (280), and (281), it follows that con-
dition (273) is satisfied.

• The P NC
1 − P0 element. Fix T ∈ Th, and recall that any

approximated pressure qh is a constant function on T . We
wish to build �h,T in such a way that∫

T

qhdiv (�h,T v) d� =
∫

T

qhdiv v d� (282)

From the divergence theorem, (282) can be alternatively
written as∫

∂T

qh(�h,T v) · n ds =
∫

∂T

qhv · n ds (283)

Denoting with Mk (k = 1, 2, 3) the midpoint of the edge ek,
we define �h,T v as the unique (vectorial) linear function
such that

�h,T v(Mk) = 1

|ek|
∫

ek

v ds k = 1, 2, 3 (284)

From the divergence theorem and the Midpoint rule, it
follows that∫

T

qhdiv (�1,T v) d� =
∫

∂T

qh(�1,T v) · n ds

=
∫

∂T

qhv · n ds =
∫

T

qhdiv v d� (285)

for every constant function qh. It is now sufficient to define
the global linear operator �h as

�hv =
∑
T ∈Th

�h,T v = Nu
i v̂i

and the corresponding operator �̂h satisfies condition (273)
(cf. also (253)).

• The Crouzeix–Raviart element. Fix T ∈ Th, and recall
that any approximated pressure qh is now a linear function
on T . Hence, qh can be uniquely decomposed as qh =
q0 + q1, where q0 is a constant (the mean value of qh on
T ), and q1 is a linear function having zero mean value. We
now construct a linear operator �1,T : v �−−−→ �1,T v, where
�1,T v is a quadratic vectorial polynomial such that∫

T

div (�1,T v) d� =
∫

T

div v d� (286)

or, alternatively,∫
∂T

(�1,T v) · n ds =
∫

∂T

v · n ds (287)

Denoting with Vk (resp., Mk) the vertexes of T (resp., the
midpoint of the edge ek), the Cavalieri–Simpson rule shows
that condition (287) holds if we set

�1,T v(Vk) = v(Vk) k = 1, 2, 3

�1,T v(Mk) = 3

2|ek|
∫

ek

v ds − v(Vk1
) + v(Vk2

)

4

k = 1, 2, 3

(288)

Above, we have denoted with Vk1
and Vk2

the endpoints
of side ek. So far, we have not used the bubble functions
available for the approximated velocity. We now use these
two additional degrees of freedom by defining vb,T (v) as
the unique vectorial bubble function such that∫

T

q1div vb,T (v) d� =
∫

T

q1div (v − �1,T v) d� (289)

for every linear function q1 having zero mean value on T .
We claim that if �h,T v = vb,T (v) + �1,T v, then∫

T

qhdiv (�h,T v) d� =
∫

T

qhdiv v d� (290)

for every linear polynomial qh = q0 + q1. In fact, using
(286), (289), and the obvious fact that

∫
T

div vb,T (v)
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d� = 0, we have∫
T

qhdiv (�h,T v) d� =
∫

T

(q0 + q1)div (vb,T (v)

+ �1,T v) d� =
∫

T

q0div (vb,T (v) + �1,T v) d�

+
∫

T

q1div (vb,T (v) + �1,T v) d�

=
∫

T

q0div (�1,T v) d� +
∫

T

q1div v d�

=
∫

T

q0div v d� +
∫

T

q1div v d�

=
∫

T

qhdiv v d� (291)

Hence, the operator �̂h arising from the global linear
operator

�hv =
∑
T ∈Th

(
vb,T (v) + �1,T v

) = vb(v) + �1v = Nu
i v̂i

fulfills condition (273).

Remark 15. Conditions (288) reveal that the operator �1
(built by means of the local contributions �1,T ) exploits,
in particular, the point values of v at all the vertexes of
the triangles in Th. However, this definition makes no
sense for an arbitrary v ∈ X, since functions in X are
not necessarily continuous. To overcome this problem,
one should define a more sophisticated operator �1 for
instance, taking advantage of an averaging procedure. More
precisely, one could define the function �1v as the unique
piecewise quadratic polynomial such that �1v|∂� = 0 and

�1v(V ) = 1

Area(D(V ))

∫
D(V )

v d�

�1v(M) = 3

2|eM |
∫

eM

v ds − �1v(VM1
) + �1v(VM2

)

4
(292)

Above, V is any internal vertex of triangles in Th and D(V )

is the union of the triangles having V as a vertex. Moreover,
eM is any internal edge having M as midpoint and VM1

, VM2

as endpoints. In this case, it is possible to prove that for the
resulting �̂h, the very important property (272) holds with
C�̂ independent of h.

Remark 16. It is interesting to observe that condi-
tion (283) and (287) suggest the following important fact
about the discretization of the Stokes problem. Any rea-
sonable discontinuous pressure approximation contains at
least all the piecewise constant functions: relations (283)

and (287) show that having some velocity degrees of free-
dom associated with the triangle edges greatly helps in
proving the inf–sup condition.

5.1.2 Verfürth’s trick

We now describe another technique for proving the inf–sup
condition, which can be profitably used when elements with
continuous pressure interpolation are considered: the so-
called Verfürth’s trick (see Verfürth, 1984). We begin by
noting that, because of to the pressure continuity, it holds

ẑTBTq̂ = −
∫

�

(
Np

r q̂r

)
div

(
Nu

j ẑj

)
d�

=
∫

�

(∇Np
r q̂r ) · Nu

j ẑj d� (293)

for every ẑ ∈ X and q̂ ∈ Y. In some cases, it is much easier
to use the form (293) and prove a modified version of the
inf–sup condition (266) with a norm for Y different from
the one defined in (270) and involving the pressure gra-
dients; see Bercovier and Pironneau (1977) and Glowinski
and Pironneau (1979). More precisely, given a mesh Th, we
introduce in Y the norm

‖p̂‖Y∗ :=
∑

K∈Th

h2
K

∫
K

|∇Np
r p̂r |2 d�

1/2

(294)

where hK denotes the diameter of the generic element K .
The key point of Verfürth’s trick is a smart use of the

properties of interpolation operator in order to prove that
the inf–sup condition with the norm Y∗ implies the usual
one. Indeed, we have the following result.

Proposition 5. Suppose that

(H1) for every velocity v ∈ X there exists a discrete veloc-
ity vI = Nu

j v̂I
j such that

∑
K∈Th

h−2
K

∫
K

|Nu
j v̂I

j − v|2 d�

1/2

≤ c0‖v‖X (295)

‖v̂I‖X ≤ c1‖v‖X (296)

with c0, c1 independent of h and v;
(H2) there exists a constant β∗ > 0 independent of h such

that

∀ q̂ ∈ Y sup
ẑ∈X\{0}

ẑTBTq̂
‖ẑ‖X

≥ β∗‖q̂‖Y∗ (297)

(i.e. the inf–sup condition holds with the modified
Y-norm (294)).
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Then the inf–sup condition (with respect to the original
norm (270))

∀ q̂ ∈ Y sup
ẑ∈X\{0}

ẑTBTq̂
‖ẑ‖X

≥ β‖q̂‖Y (298)

is satisfied with β independent of h.

Proof. Given q̂ ∈ Y, we observe that using (296) and (293)
it holds

sup
ẑ∈X\{0}

ẑTBTq̂
‖ẑ‖X

≥ sup
v∈X\{0}

v̂T
I BTq̂

‖v̂I‖X

≥ sup
v∈X\{0}

v̂T
I BTq̂

c1‖v‖X

= sup
v∈X\{0}

∫
�

(∇Np
r q̂r ) · Nu

j v̂I
j d�

c1‖v‖X
(299)

Furthermore, from Theorem 4, there exists w ∈ X such
that

−
∫

�

div w(Np
r q̂r ) d�

‖w‖X
=

∫
�

(∇Np
r q̂r) · w d�

‖w‖X
≥ βc‖q̂‖Y

(300)

For such a velocity w and the corresponding discrete
velocity wI = Nu

j ŵI
j , we obviously have

sup
v∈X\{0}

∫
�

(∇Np
r q̂r ) · Nu

j v̂I
j d�

c1‖v‖X
≥

∫
�

(∇Np
r q̂r ) · Nu

j ŵI
j d�

c1‖w‖X
(301)

Subtracting and adding w, we obtain∫
�

(∇Np
r q̂r ) · Nu

j ŵI
j d�

c1‖w‖X
=

∫
�

(∇Np
r q̂r ) · (Nu

j ŵI
j − w) d�

c1‖w‖X

+

∫
�

(∇Np
r q̂r ) · w d�

c1‖w‖X
(302)

To treat the first term in the right-hand side of (302), we
observe that using (295) and recalling (294), we have

−
∫

�

(∇Np
r q̂r ) · (Nu

j ŵI
j − w) d�

= −
∑
K∈Th

∫
K

(∇Np
r q̂r) · (Nu

j ŵI
j − w) d�

= −
∑
K∈Th

∫
K

hK(∇Np
r q̂r ) · h−1

K (Nu
j ŵI

j − w) d�

≤
∑

K∈Th

h2
K

∫
K

|∇Np
r q̂r |2 d�

1/2

×
∑

K∈Th

h−2
K

∫
K

|Nu
j ŵI

j − w|2 d�

1/2

≤ c0‖q̂‖Y∗‖w‖X (303)

which gives∫
�

(∇Np
r q̂r ) · (Nu

j ŵI
j − w) d� ≥ −c0‖q̂‖Y∗‖w‖X (304)

Therefore, we get∫
�

(∇Np
r q̂r ) · (Nu

j ŵI
j − w) d�

c1‖w‖X
≥ −c0

c1
‖q̂‖Y∗ (305)

For the second term in the right-hand side of (302), we
notice that (cf. (300))∫

�

(∇Np
r q̂r ) · w d�

c1‖w‖X
≥ βc

c1
‖q̂‖Y (306)

Therefore, from (299), (301), (302), (305), and (306), we
obtain

sup
ẑ∈X\{0}

ẑTBTq̂
‖ẑ‖X

≥ βc

c1

‖q̂‖Y − c0

c1

‖q̂‖Y∗ (307)

We now multiply the modified inf–sup condition (297)
by c0/(β∗c1) to get

c0

β∗c1

sup
ẑ∈X\{0}

ẑTBTq̂
‖ẑ‖X

≥ c0

c1

‖q̂‖Y∗ (308)

By adding (307) and (308), we finally have(
1 + c0

β∗c1

)
sup

ẑ∈X\{0}
ẑTBTq̂
‖ẑ‖X

≥ βc

c1

‖q̂‖Y (309)

that is, the inf–sup condition (298) holds with β = (βc/c1)

(1 + (c0/β∗c1))
−1.

Remark 17. We notice that hypothesis (H1) of Proposi-
tion 5 is not very restrictive. Indeed, given a velocity v ∈ X,
the corresponding vI can be chosen as a suitable discrete
velocity interpolating v, and (295) and (296) are both sat-
isfied basically for every element of practical interest (see
e.g. Brezzi and Fortin (1991) and Ciarlet (1978) for more
details).
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The Verfürth trick was originally applied to the Hood–
Taylor element depicted in Figure 9 (see Verfürth, 1984),
but it was soon recognized as a valuable instrument for
analyzing all continuous pressure elements. Here we show
how to use it for the analysis of the MINI element (whose
original proof was given using Fortin’s trick in Arnold,
Brezzi and Fortin, 1984).
• The MINI element. We now give a hint on how to verify
hypothesis (H2) of Proposition 5 for the MINI element (cf.
Figure 8).

For a generic q̂ ∈ Y, we take its reconstructed discrete
pressure qh = N

p
r q̂r . Since qh is a piecewise linear and

continuous function, it follows that ∇qh = ∇N
p
r q̂r is a

well-defined piecewise constant vector field. We now con-
struct a discrete (bubble-type) velocity vh = Nu

j v̂j , defined
on each triangle T ∈ Th as

vh = h2
T bT ∇qh (310)

where bT is the usual cubic bubble (i.e. in area coordinates,
bT = 27λ1λ2λ3). Recalling (293) and using (310), we then
obtain

v̂TBTq̂ =
∫

�

(∇Np
r q̂r ) · Nu

j v̂j d� =
∫

�

∇qh · vh d�

=
∑
T ∈Th

h2
T

∫
T

|∇Np
r q̂r |2bT d� (311)

It is easy to show that for regular meshes (roughly:
for meshes that do not contain ‘too thin’ elements, see
e.g. Ciarlet (1978) for a precise definition), there exists a
constant C1 > 0, independent of h, such that

∀ T ∈ Th

∫
T

|∇Np
r q̂r |2bT d� ≥ C1

∫
T

|∇Np
r q̂r |2 d�

(312)

Therefore, from (311), (312), and (294) we get

v̂TBTq̂ ≥ C1

∑
T ∈Th

h2
T

∫
T

|∇Np
r q̂r |2 d� = C1‖q̂‖2

Y∗ (313)

Furthermore, using standard scaling arguments (cf. Brezzi
and Fortin, 1991), it is possible to prove that there exists
C2 > 0 independent of h such that

‖v̂‖X = ‖vh‖X ≤ C2

∑
T ∈Th

h2
T

∫
T

|∇Np
r q̂r |2 d�

1/2

= C2‖q̂‖Y∗ (314)

Hence, estimates (313) and (314) imply

v̂TBTq̂
‖v̂‖X

≥ C1

C2

‖q̂‖Y∗ (315)

and condition (297) then follows with β∗ = C1/C2, since

sup
ẑ∈X\{0}

ẑTBTq̂
‖ẑ‖X

≥ v̂TBTq̂
‖v̂‖X

(316)

5.2 Appendix — error estimates

In this brief Appendix, we present the guidelines to obtain
error estimates, once the stability conditions have been
established. We only consider the easiest case of conform-
ing schemes (i.e. when the velocity is approximated by
means of continuous functions). We refer to Brezzi (1974),
Brezzi and Fortin (1991), and Braess (1997) for more
details, as well as for the analysis of more complicated
situations involving non-conforming approximations (such
as the P NC

1 − P0 element (cf. Figure 15)).
Before proceeding, we recall that for the Stokes prob-

lem with our choices of norms, we have Ma = 1, Mb =√
(d/µ), and α = 1, no matter what the approximations

of velocity and pressure are. However, in the subsequent
discussion, we will not substitute these values into the esti-
mates, in order to facilitate the extension of the analysis
to other problems. We also notice that, on the contrary,
the relevant constant β does depend on the choice of the
interpolating functions. We have the following result.

Theorem 5. Let (u, p) be the solution of problem (263)
and suppose there exist discrete velocity and pressure

uI = Nu
i û

I
i , pI = Np

r p̂I
r (317)

such that

‖u − uI‖X ≤ Chku , ku > 0 (318)

‖p − pI‖Y ≤ Chkp , kp > 0 (319)

If (û, p̂) is the solution of the discrete problem (264), then,
setting uh = Nu

i ûi and ph = N
p
r p̂r , it holds

‖u − uh‖X + ‖p − ph‖Y ≤ Chk (320)

with k = min{ku, kp}.

Proof. For uI and pI as in (317), we set ûI = (ûI
i )

n
i=1 ∈ X

and p̂I = (p̂I
r )

m
r=1 ∈ Y. Taking into account that{

û
p̂

}
is the solution of the discretized problem (264), we obtain
that {

û − ûI

p̂ − p̂I

}
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solves[
A BT

B 0

]{
û − ûI

p̂ − p̂I

}
=
{

f − AûI − BTp̂I

−BûI

}
(321)

Choosing as (admissible) velocity and pressure variations
the interpolating shape functions, from (263), we have

f|i = µ

∫
�

∇Nu
i : ∇u d� −

∫
�

div (Nu
i )p d�

i = 1, . . . , n (322)

and ∫
�

Np
s div u d� = 0 s = 1, . . . , m (323)

Hence, system (321) may be written as[
A BT

B 0

]{
û − ûI

p̂ − p̂I

}
=
{

f̃
g̃

}
(324)

where

f̃|i := µ

∫
�

∇Nu
i : ∇ (u − uI

)
d�

−
∫

�

div (Nu
i )
(
p − pI

)
d� i = 1, . . . , n

(325)

and

g̃|r := −
∫

�

Np
r div (u − uI ) d� r = 1, . . . , m (326)

Applying Theorem 1, we thus obtain

‖û − ûI‖X ≤ 1

α
‖̃f‖F + M

1/2
a

α1/2β
‖̃g‖G (327)

‖p̂ − p̂I‖Y ≤
(

1

β
+ M

1/2
a

α1/2β

)
‖̃f‖F + Ma

β2
‖̃g‖G (328)

We proceed by estimating the dual norms ‖̃f‖F and ‖̃g‖G.
Since for every v̂ = (v̂i)

n
i=1,

v̂T̃f = µ

∫
�

∇ (Nu
i v̂i

)
: ∇ (u − uI

)
d�

−
∫

�

div (Nu
i v̂i)

(
p − pI

)
d� ≤ Ma‖v̂‖X‖u − uI‖X

+ Mb‖v̂‖X‖p − pI‖Y (329)

we obtain

v̂T̃f
‖v̂‖X

≤ Ma‖u − uI‖X + Mb‖p − pI‖Y (330)

which gives (cf. the dual norm definition (104))

‖̃f‖F ≤ Ma‖u − uI‖X + Mb‖p − pI‖Y (331)

Analogously, for every q̂ = (q̂r )
m
r=1, we get

q̂Tg̃ = −
∫

�

(
Np

r q̂r

)
div (u − uI ) d� ≤ Mb‖q̂‖Y‖u − uI‖X

(332)

and therefore we have

‖̃g‖G ≤ Mb‖u − uI‖X (333)

From (327), (328), (331), and (333) we have

‖û − ûI‖X ≤
(

Ma

α
+ M

1/2
a Mb

α1/2β

)
‖u − uI‖X

+ Mb

α
‖p − pI‖Y (334)

‖p̂ − p̂I‖Y ≤
(

Ma

β
+ M

3/2
a

α1/2β
+ MaMb

β2

)
‖u − uI‖X

+ Mb

(
1

β
+ M

1/2
a

α1/2β

)
‖p − pI‖Y (335)

Observing that by triangle inequality and Remark 13, it
holds

‖u − uh‖X ≤ ‖u − uI‖X + ‖uI − Nu
i ûi‖X

= ‖u − uI‖X + ‖û − ûI‖X (336)

and

‖p − ph‖Y ≤ ‖p − pI‖Y + ‖pI − Np
r p̂r‖Y

= ‖p − pI‖Y + ‖p̂ − p̂I‖Y (337)

from (334) and (335), we get the error estimates

‖u − uh‖X ≤
(

1 + Ma

α
+ M

1/2
a Mb

α1/2β

)
‖u − uI‖X

+ Mb

α
‖p − pI‖Y (338)

‖p − ph‖Y ≤
(

Ma

β
+ M

3/2
a

α1/2β
+ MaMb

β2

)
‖u − uI‖X

+
(

1 + Mb

β
+ M

1/2
a Mb

α1/2β

)
‖p − pI‖Y (339)

We notice that the constant Mb, which did not appear
in the stability estimates, has now come into play. Fur-
thermore, using (318) and (319), from (338) and (339),
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we infer

‖u − uh‖X + ‖p − ph‖Y ≤ Chk (340)

with k = min{ku, kp} and C = C(α, β,Ma, Mb) indepen-
dent of h.

Remark 18. A crucial step in obtaining error estimate
(340) is to prove the bounds (cf. (331) and (333))

‖̃f‖F ≤ Ma‖u − uI‖X + Mb‖p − pI‖Y (341)

‖̃g‖G ≤ Mb‖u − uI‖X (342)

where f̃ and g̃ are defined by (325) and (326) respectively.
The estimates above result from a suitable choice of the
norms for X ≡ R

n, Y ≡ R
m, F ≡ R

n, and G ≡ R
m. In

fact, by choosing for X the norm (269) and for F the
corresponding dual norm, we can get (341), as highlighted
by (329). Similarly, by choosing for Y the norm (270) and
for G the corresponding dual norm, we can obtain (341)
(cf. (332)).

Remark 19. The discrete functions uI and pI in (317)
are typically chosen as follows:
• uI is the nodal interpolated of u.
Therefore,

uI = Nu
i û

I
i (343)

where ûI = (ûI
i )

n
i=1 is the vector containing the nodal

values of u.
• pI is the projection of p over the pressure approximation
space. Therefore,

pI = Np
r p̂I

r (344)

where the vector p̂I = (p̂I
r )

m
r=1 is uniquely determined by

the following set of m equations∫
�

Np
s (Np

r p̂I
r ) d� =

∫
�

Np
s p d� s = 1, . . . ,m (345)

For regular solution (u, p), standard approximation re-
sults (see e.g. Ciarlet, 1978) allow to determine the expo-
nents ku and kp entering in estimates (318) and (319) in
terms of the selected approximation spaces for the veloc-
ity and the pressure fields. For instance, when considering
the Crouzeix–Raviart element (cf. Figure 12), we have
ku = kp = 2. Hence, Theorem 5 shows that the discretiza-
tion error is O(h2).

6 RELATED CHAPTERS

(See also Chapter 4, Chapter 15 of this Volume; Chap-
ter 2, Volume 3).
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Abstract: Within the well-known and highly effective finite element method for the computation of approximate solutions
of complex boundary value problems, we focus on the often-called mixed finite element methods, where in our terminology
the word ‘mixed’ indicates the fact that the problem discretization typically results in a linear algebraic system characterized
by a null matrix on the main diagonal.

Accordingly, the goals of the present chapter are: (1) to sketch out that several physical problems share such an algebraic
structure once a discretization is introduced; (2) to present a simple, algebraic version of the abstract theory that rules most
applications of mixed finite element methods; (3) to give several examples of efficient mixed finite element methods; (4)
finally, to give some hints on how to perform a stability and error analysis, focusing on a representative problem.


