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Abstract. In a recent paper of Arnold, Brezzi, and Marini [4], the ideas of discontinuous
Galerkin methods were used to obtain and analyze two new families of locking free finite
element methods for the approximation of the Reissner–Mindlin plate problem. By follow-
ing their basic approach, but making different choices of finite element spaces, we develop
and analyze other families of locking free finite elements that eliminate the need for the
introduction of a reduction operator, which has been a central feature of many locking-free
methods. For k ≥ 2, all the methods use piecewise polynomials of degree k to approximate
the transverse displacement and (possibly subsets) of piecewise polynomials of degree k− 1
to approximate both the rotation and shear stress vectors. The approximation spaces for
the rotation and the shear stress are always identical. The methods vary in the amount
of interelement continuity required. In terms of smallest number of degrees of freedom,
the simplest method approximates the transverse displacement with continuous, piecewise
quadratics and both the rotation and shear stress with rotated linear Brezzi-Douglas-Marini
elements.

1. Introduction

In the Reissner–Mindlin model of a clamped plate, one seeks to determine the rotation
vector θ and the transverse displacement w which minimize over H1

0(Ω)×H1
0 (Ω) the plate

energy

J(θ, w) =
1

2

∫
Ω

C ε(θ) : ε(θ) dx+
1

2
λt−2

∫
Ω

|∇w − θ|2 dx−
∫

Ω

gw dx,

where the coefficients C and λ depend on the material properties of the plate, g is the scaled
load, and t is the plate thickness. If one minimizes the energy over subspaces consisting of low
order finite elements, then the resulting approximation suffers from the problem of locking.
This problem is most easily described by noting that as t tends to 0, the solution (θ, w)
of the minimization problem approaches (θ0, w0), where θ0 = ∇w0. If we discretize the
problem directly by seeking θh ∈ Θh and wh ∈ Wh minimizing J(θ, w) over Θh ×Wh, then
as t vanishes, (θh, wh) will converge to some (θ0,h, w0,h) where, again, θ0,h = ∇w0,h. The
locking problem occurs because, for low order finite element spaces, this last condition is too
restrictive to allow for good approximations of smooth functions. In particular, if continuous
piecewise linear functions are chosen to approximate both variables, then θ0,h ≡ ∇w0,h

would be continuous and piecewise constant, with zero boundary conditions. Only the choice
θ0,h = 0 can satisfy all these conditions. For t very small, the quantity θh −∇wh, although
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not necessarily zero, must be very small, and hence θh will be very close to zero, instead of
being close to θ. We can also see the problem from the point of view of approximation: for
small t, one cannot find θI and wI that are close to θ and w, respectively, if one requires
θI −∇wI to be of the order of t2.

A number of approaches have been developed to avoid the locking problem. One successful
idea has been to introduce an additional finite element space Γh and a reduction operator
P h : Θh → Γh, and then seek approximations θh ∈ Θh and wh ∈ Wh minimizing

Jh(θ, w) =
1

2

∫
Ω

C ε(θ) : ε(θ) dx+
1

2
λt−2

∫
Ω

|∇w − P hθ|2 dx−
∫

Ω

gw dx.

A key assumption is that ∇Wh is a subset of Γh, and in particular of the image of P h. As
t tends to 0, the limiting condition will now be

(1.1) P hθ0,h = ∇w0,h.

The introduction of the operator P h adds flexibility: if this operator and the finite element
subspaces are chosen properly, then one can obtain good approximations which still satisfy
the limiting condition (1.1). A number of locking-free individual finite elements and finite
element families (e.g., [5], [10], [15], [18], [19], [16], [20], [17]) have been obtained in this way.

In a recent paper of Arnold, Brezzi, and Marini [4], the techniques of Discontinuous
Galerkin (DG) methods were used to develop two families of locking-free elements. DG solu-
tions are not required to satisfy the standard interelement continuity conditions of conform-
ing finite element methods (that is, continuous elements in the case of the Reissner–Mindlin
plate problem). Hence DG methods allow a greater flexibility, that we shall exploit.

As noted in [4], there are many variations of the DG approach. The starting point for
all the methods considered in [4] is a fully discontinuous approach in which for k odd, the
spaces Θh and Wh are chosen to be piecewise polynomials of degree ≤ k, and Γh is chosen
to be piecewise polynomials of degree ≤ k − 1. Various degrees of interelement continuity
can then be added, provided suitable bubble functions are added to Θh. Error estimates
are obtained for two cases: first, when all finite element spaces are fully discontinuous, and,
second, when Θh is a continuous finite element space augmented by bubble functions, Wh

is a nonconforming space (i.e., moments of order k − 1 are continuous across interelement
boundaries), and Γh is discontinuous. The second case coincides when k = 1 with the
Arnold-Falk element [6], in which Θh consists of the continuous piecewise linear functions
augmented by cubic bubble functions, Wh consist of the nonconforming piecewise linear
functions, and Γh consists of the piecewise constants. A possible advantage of the first,
fully discontinuous case, is that it allows the same degrees of freedom for the rotations and
transverse displacement. This condition is considered by some engineers to simplify the
implementation in the context of the commonly used conforming or nonconforming methods
(and, especially, for the extension to shell problems). It might prove less important when
discontinuous elements are used. Since there is still very limited experience in the practical
use of discontinuous elements for plates (and for their extension to shell problems), we
consider this question as yet unresolved. It might well turn out, for example, that the
greater flexibility of DG methods enables the treatment of some particularly difficult shell
problems, compensating for other difficulties in implementation. Much more research and
experimentation are needed to fully understand the practical interest of all these possible
developments, and we shall not consider this issue further here.
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In this paper, the starting point for all the methods considered is to choose Wh to be
piecewise polynomials of degree ≤ k (with k ≥ 2), and Θh = Γh to be piecewise polynomials
of degree ≤ k− 1. The motivation comes from the desire to eliminate the reduction operator
P h, and also is suggested by issues arising from approximation theory, in which it is natural
to have the polynomials in Wh of one higher degree than those in Θh. Within this framework,
various amounts of interelement continuity are possible, and we derive error estimates for
several natural choices. These include fully discontinuous cases, and also the cases when
Wh is continuous. In the former situation, Wh consists of all the piecewise polynomials of
degree at most k for some k ≥ 2, and Θh = Γh is made of all the piecewise polynomials
of degree ≤ k − 1. The element diagram in the lowest order case, k = 2 is shown on the
left of Figure 1. In the case of when Wh is continuous, it coincides with the usual space of
continuous piecewise polynomials of degree at most k, and the smallest of several possible
choices for Θh = Γh is the rotated Brezzi-Douglas-Marini elements of order k−1, BDMR

k−1,
[13]. With k = 2 this gives the element choice indicated on the right of Figure 1. However,
other choices of Θh = Γh are possible with the same choice of Wh. In fact any space which
contains BDMR

k−1, e.g., the rotated Raviart-Thomas elements of order k − 1 [21] (RTR
k−1),

or the space of the discontinuous piecewise polynomials of degree ≤ k − 1 could be used.

w θ γ w θ γ

Figure 1. Simplest elements with w discontinuous (left) and continuous (right).

There are some differences between the fully discontinuous methods and the methods with
continuous Wh, that become apparent in the derivation of error estimates. One difference is
the regularity required on the solution to achieve a certain rate of convergence. This may
have some added importance in the approximation of the Reissner–Mindlin plate problem,
since the rotation vector has a boundary layer and thus higher norms are not bounded
independently of the plate thickness t. For example, for the clamped plate, ‖θ‖2 is bounded,
while ‖θ‖3 behaves like t−1/2 as t tends to 0.

An outline of the paper is as follows: in the next section we introduce the notation for
the spaces to be used, and recall some basic notation and useful formulae to deal with
discontinuous approximations. In Section 3 we introduce the discretized problem and recall
some known results concerning DG approximations. Specific methods are discussed in the
last two sections. In particular, Section 4 deals with the cases in which functions in Wh are
continuous, and Section 5 with the totally discontinuous case.

2. Notations and preliminaries

2.1. Functional spaces. We begin by adopting the notation employed in [4]. Let Ω ⊂ R2

denote the domain occupied by the middle surface of the plate. For simplicity, we assume
that Ω is a convex polygon.

We shall use the usual Sobolev spaces such as Hs(T ), with the corresponding seminorm
and norm denoted by | · |s,T and ‖ · ‖s,T , respectively. When T = Ω, we just write | · |s
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and ‖ · ‖s. By convention, we use boldface type for the vector-valued analogues: Hs(Ω) =
[Hs(Ω)]2. Occasionally we shall use calligraphic type for symmetric-tensor-valued analogues:
Hs(Ω) = [Hs(Ω)]2sym. We use parentheses ( · , · ) to denote the inner product in any of the

spaces L2(Ω), L2(Ω), or L2(Ω).
We denote by Th a decomposition of Ω into triangles T and by Eh the set of all the edges

in Th. For piecewise polynomial spaces, we use the notation

(2.1) Ls
k(Th) = { v ∈ Hs(Ω) : v|T ∈ Pk(T ), T ∈ Th },

with Pk(T ) the set of polynomials of degree at most k on T . (Note that in (2.1), calligraphic
font does not refer to tensor-valued quantities.)

Some of our finite elements will be discontinuous and so not contained in the space H1(Ω),
but rather in a piecewise Sobolev space

H1(Th) := { v ∈ L2(Ω) : v|T ∈ H1(T ), T ∈ Th }.

Differential operators can be applied to this space only piecewise. We indicate this by a
subscript h on the operator. Thus, for example, the piecewise gradient operator ∇h maps
H1(Th) into L2(Ω) and the piecewise symmetric gradient (or infinitesimal strain) operator εh

maps H1(Th) into L2(Ω). The space H1(Th) is equipped with the seminorm |v|1,h = ‖∇h v‖0

and the corresponding norm ‖v‖2
1,h = |v|21,h +‖v‖2

0. More generally, a subscript such as ‖·‖s,h

will be used to indicate the broken (element by element) Hs-norm (for s a nonnegative
integer).

A particular role will be played, for discontinuous approximations, by the set Eh of all
the edges of the given decomposition Th. In particular, we shall use the symbol 〈 · , · 〉 to
denote L2-inner product (of functions or vectors) on Eh. Hence, for instance, if ψ and χ are
functions defined on Eh we have

〈ψ, χ 〉 :=
∑
e∈Eh

∫
e

ψ χ ds.

2.2. Averages and jumps. As is usual in the DG approach, we define the jump and average
of a function in H1(Th) as a function on the union of the edges of the triangulation. Let e be
an internal edge of Th, shared by two elements T+ and T−, and let n+ and n− denote the
unit normals to e, pointing outward from T+ and T−, respectively. If ϕ belongs to H1(Th)
(or possibly the vector- or tensor-valued analogue), we define the average {ϕ} on e as usual:

{ϕ} =
ϕ+ + ϕ−

2
.

For a scalar function ϕ ∈ H1(Th) we define its jump on e as

[|ϕ|] = ϕ+n+ + ϕ−n−,

which is a vector normal to e. The jump of a vector ϕ ∈ H1(Th) is the symmetric matrix-
valued function given on e by:

[|ϕ|] = ϕ+ � n+ + ϕ− � n−,

where ϕ�n = (ϕ⊗n + n⊗ϕ)/2 is the symmetric part of the tensor product of ϕ and n.
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On a boundary edge, the average {ϕ} is defined simply as the trace of ϕ, while for a
scalar-valued function we define [|ϕ|] to be ϕn (with n the outward unit normal), and for a
vector-valued function we define [|ϕ|] = ϕ� n.

It is easy to check that

(2.2)
∑
T∈Th

∫
∂T

ϕ · nTv ds = 〈{ϕ}, [|v|]〉, ϕ ∈ H1(Ω), v ∈ H1(Th).

Similarly, ∑
T∈Th

∫
∂T

SnT · η ds = 〈{S}, [|η|]〉 S ∈ H1(Ω), η ∈ H1(Th).

It is not difficult to see that both the above relations hold in more general situations.
For instance, (2.2) also holds for ϕ ∈ H(div; Ω), where H(div; Ω) is the space of vectors
ϕ ∈ L2(Ω) with div ϕ ∈ L2(Ω).

2.3. The Reissner–Mindlin equations. Introducing the shear stress γ = λt−2(∇w−θ),
the Reissner–Mindlin plate problem may also be described by the Euler equations for the
minimization of the plate energy. These are:

− div C ε(θ)− γ = 0 in Ω,(2.3)

− div γ = g in Ω,(2.4)

∇w − θ − t2γ = 0 in Ω,(2.5)

θ = 0, w = 0 on ∂Ω.(2.6)

Note that (2.5) should actually be ∇w − θ − λ−1t2γ = 0, where λ is the shear correction
factor. Here however, to simplify the presentation, we set λ = 1. We are now going to
introduce the variational formulation of equations (2.3)–(2.6) (or, actually, of a more general
case, that we shall need later on while applying a duality argument). We set, for θ and η in
H1(Ω),

a(θ,η) = (C ε(θ), ε(η))

and we consider the following problem:
Given g ∈ L2(Ω) and G ∈ L2(Ω), find θ ∈ H1

0(Ω), w ∈ H1
0 (Ω) and γ ∈ L2(Ω) such that

a(θ,η) + (γ,∇ v − η) = (g, v) + (G,η) ∀(η, v) ∈ H1
0(Ω)×H1

0 (Ω),(2.7)

(∇w − θ, τ )− t2(γ, τ ) = 0 ∀τ ∈ L2(Ω).(2.8)

It is clear that the Reissner–Mindlin equations (2.3)–(2.6) are obtained for G = 0. For
the generalized problem (2.7)–(2.8), we recall the following result (see [5], [6]).

Theorem 1. Let Ω be a convex polygonal domain, and assume that the coefficient C is
smooth. Then problem (2.7)–(2.8) has a unique solution that verifies

(2.9) ‖θ‖2 + ‖w‖2 + ‖γ‖0 + t‖γ‖1 ≤ C(‖g‖−1 + t‖g‖0 + ‖G‖0),

where C is a constant depending only on Ω and on the coefficients in C.
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3. Discontinuous Galerkin discretization

3.1. Discontinuous variational formulation of the continuous problem. To derive a
finite element method for the Reissner–Mindlin system based on discontinuous elements, we
test (2.3) against a test function η ∈ H2(Th) and (2.4) against a test function v ∈ H1(Th),
integrate by parts, and add. Since η and v may be discontinuous across element boundaries,
we obtain terms at the interelement boundaries that we manipulate using (2.2). The net
result is:

(3.1) (C εh(θ), εh(η))− 〈{C εh(θ)}, [|η|]〉+ (γ,∇h v − η)− 〈{γ}, [|v|]〉 = (g, v),

(η, v) ∈ H2(Th)×H1(Th),

(∇h w − θ, τ )− t2(γ, τ ) = 0, τ ∈ H1(Th).

Note that we could as well have written ε(θ) and ∇w instead of εh(θ) and ∇h w, respectively,
due to the continuity properties of the exact solution. The second and fourth terms in (3.1)
involve integrals over the edges and would not be present in conforming methods. They arise
from the integration by parts and are necessary to maintain consistency.

We now proceed as is common for DG methods. (For a different point of view on this
type of derivation see [11]). First, we add terms to symmetrize this formulation so that it
is adjoint-consistent as well. Second, to stabilize the method, we add interior penalty terms
pΘ(θ,η) and pW (w, v) in which the functions pΘ and pW will depend only on the jumps of
their arguments. Since [|θ|] = 0 and [|w|] = 0, we find that θ, w, and γ satisfy

(3.2)

(C εh(θ), εh(η))− 〈{C εh(θ)}, [|η|]〉 − 〈[|θ|], {C εh(η)})〉+ (γ,∇h v − η)− 〈{γ}, [|v|]〉
+pΘ(θ,η) + pW (w, v) = (g, v), (η, v) ∈ H2(Th)×H1(Th),

(∇h w − θ, τ )− 〈[|w|], {τ}〉 − t2(γ, τ ) = 0, τ ∈ H1(Th).

3.2. Abstract discretization. To obtain a DG discretization, we have to choose finite
dimensional subspaces Θh ⊂ H2(Th), Wh ⊂ H1(Th), and Γh ⊂ H1(Th). The method then
takes the form:

Find (θh, wh) ∈ Θh ×Wh and γh ∈ Γh such that

(C εh(θh), εh(η))− 〈{C εh(θh)}, [|η|]〉 − 〈[|θh|], {C εh(η)})〉
+ (γh,∇h v − η)− 〈{γh}, [|v|]〉

+ pΘ(θh,η) + pW (wh, v) = (g, v), (η, v) ∈ Θh ×Wh,

(3.3)

(∇h wh − θh, τ )− 〈[|wh|], {τ}〉 − t2(γh, τ ) = 0, τ ∈ Γh.(3.4)

For any choice of the finite element spaces Θh, Wh, and Γh, and any interior penalty functions
pΘ and pW depending only on the jumps of their arguments, this gives a consistent finite
element method. Note that in contrast to the methods proposed in [4], we do not introduce
a reduction operator P h.

To complete the specification of the method, we need only choose the finite element spaces
Θh, Wh, and Γh and the interior penalty forms pΘ and pW . For the finite element spaces, the
starting point for all our methods is to choose Wh to be either L0

k or L1
k (with k ≥ 2), and

Θh = Γh to be subspaces of L0
k−1. As stated earlier, the motivation comes from the desire
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to eliminate the reduction operator P h and also issues arising from approximation theory,
in which it is natural to have the polynomials in Wh of one degree higher than those in Θh.

We make a standard choice for the interior penalty terms pΘ and pW :

(3.5) pΘ(θ,η) =
∑
e∈Eh

κΘ

|e|

∫
e

[|θ|] : [|η|] ds, pW (w, v) =
∑
e∈Eh

κW

|e|

∫
e

[|w|] · [|v|] ds,

so that pΘ(η,η), (pW (v, v), resp.) can be viewed as a measure of the deviation of η (v, resp.)
from being continuous. The parameters κΘ and κW are positive constants to be chosen; they
must be sufficiently large to ensure stability. In the case when Wh consists of continuous
elements, the penalty term pW will not be needed.

Throughout the paper, C will denote a generic constant that depends only on the minimum
angle of the decomposition, on the degree k of the polynomials, and on the values of κΘ and
κW (for discontinuous Wh).

3.3. DG norms and basic inequalities. For the error analysis which follows in the sub-
sequent sections, it will be convenient to have additional notation. We first define norms

|||η|||2Θ := ‖η‖2
1,h +

∑
e∈Eh

(
1

|e|
‖[|η|]‖2

0,e + |e| ‖{C εh(η)}‖2
0,e

)
, η ∈ H2(Th),

|||v|||2W := |v|21,h +
∑
e∈Eh

1

|e|
‖[|v|]‖2

0,e, v ∈ H1(Th),

|||τ |||2Γ := ‖τ‖2
0 +

∑
e∈Eh

|e|‖{τ}‖2
0,e, τ ∈ H1(Th).

A useful result, that we will need in our analysis (see [1], [2]) is the following: let T be a
triangle, and let e be an edge of T . Then there exists a positive constant C only depending
on the minimum angle of T such that

(3.6) ‖ϕ‖2
0,e ≤ C(|e|−1‖ϕ‖2

0,T + |e||ϕ|21,T ), ϕ ∈ H1(T ).

Clearly, (3.6) also holds for vector-valued functions ϕ ∈ H1(Th). Using (3.6) it is not difficult
to check that

(3.7)

|||η|||2Θ≤ C

(∑
T∈Th

h−2
T ‖η‖2

0,T + |η|21,T + h2
T |η|22,T

)
,

|||v|||2W≤ C

(∑
T∈Th

h−2
T ‖v‖2

0,T + |v|21,T

)
,

|||τ |||2Γ≤ C

(∑
T∈Th

‖τ‖2
0,T + h2

T |τ |21,T

)
.

Let

ah(θ,η) = (C εh(θ), εh(η))− 〈{C εh(θ)}, [|η|]〉 − 〈[|θ|], {C εh(η)}〉+ pΘ(θ,η),(3.8)

j(τ , v) = 〈{τ}, [|v|]〉.(3.9)
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Clearly we have (see [2]) for θ,η ∈ H2(Th), v ∈ H1(Th), and τ ∈ H1(Th):

ah(θ,η) ≤ C|||θ|||Θ|||η|||Θ,(3.10)

j(τ , v) ≤ C|||τ |||Γ(
∑
e∈Eh

1

|e|
‖[|v|]‖2

0,e)
1/2 ≤ C|||τ |||ΓpW (v, v)1/2 ≤ C|||τ |||Γ|||v|||W .(3.11)

Proofs of the two following lemmata, giving discrete Korn’s inequality and a coercivity
estimate, can be found in [9] and [4].

Lemma 1.

‖η‖2
1,h ≤ C(

∑
T∈Th

‖ ε(η)‖2
0,T +

∑
e∈Eh

1

|e|
‖[|η|]‖2

0,e), η ∈ H1(Th).

Lemma 2. There exist positive constants κ0 and α depending only on the polynomial degree
k and the shape regularity of the partition Th, such that: if the constant κΘ ≥ κ0 (where κΘ

is the penalty parameter appearing in (3.5)), then

(3.12) ah(η,η) ≥ α|||η|||2Θ, η ∈ Θh.

3.4. Compact formulation of the continuous and discretized problems. With the
above notation, we may rewrite (3.2) as

(3.13) ah(θ,η) + (γ,∇h v − η)− j(γ, v) + pW (w, v) = (g, v), (η, v) ∈ H2(Th)×H1(Th),

(3.14) (∇h w − θ, τ )− j(τ , w)− t2(γ, τ ) = 0, τ ∈ H1(Th),

and (3.3)–(3.4) as

(3.15) ah(θh,η) + (γh,∇h v − η)− j(γh, v) + pW (wh, v) = (g, v), (η, v) ∈ Θh ×Wh,

(3.16) (∇h wh − θh, τ )− j(τ , wh)− t2(γh, τ ) = 0, τ ∈ Γh.

4. Continuous w and discontinuous θ

4.1. General setting of the methods with continuous w. In this section we shall
consider methods in which the space Wh ⊂ H1

0 (Ω) and the spaces Θh = Γh ⊂ H1(Th)
satisfy

(4.1) ∇Wh ⊆ Θh = Γh.

Note that (4.1) forbids the use of a space Θh consisting of continuous functions. However,
it allows choices where the tangential component is continuous (as well as choices where Θh

consists of totally discontinuous elements).
Since the space Wh is continuous, the general method given by equations (3.15)–(3.16)

simplifies to:

(4.2) ah(θh,η) + (γh,∇ v − η) = (g, v), (η, v) ∈ Θh ×Wh,

(4.3) (∇wh − θh, τ )− t2(γh, τ ) = 0, τ ∈ Γh.

Note that, using (4.1), equation (4.3) can be written as

(4.4) γh = t−2(∇wh − θh).

We start by stating a basic abstract error estimate.
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Theorem 2. Assume that Wh ⊂ H1
0 (Ω) and that assumption (4.1) is satisfied. Let (θ, w,γ)

be the solution of (2.3)–(2.6), and let (θh, wh,γh) be the solution of (3.3)–(3.4). Let θI and
wI be any elements in Θh and Γh (respectively) and set

(4.5) γI = t−2(∇wI − θI).

Then we have:

(4.6) |||θ − θh|||Θ + t‖γ − γh‖0 ≤ C(|||θ − θI |||Θ + t‖γ − γI‖0).

Proof. For the choice of spaces in this section, and in particular by the continuity of Wh,
equation (3.13) becomes

ah(θ,η) + (γ,∇ v − η) = (g, v), ∀(η, v) ∈ Θh ×Wh.

Subtracting (4.2), we obtain the error equation

(4.7) ah(θ − θh,η) + (γ − γh,∇ v − η) = 0, ∀(η, v) ∈ Θh ×Wh.

Choosing η = θI − θh and v = wI − wh in (4.7), and using (4.4) and (4.5), this becomes

(4.8) ah(θ − θh,θ
I − θh) + t2(γ − γh,γ

I − γh) = 0.

Hence, adding and subtracting θ and γ, and then using (4.8) to cancel the first and third
terms, we have

ah(θh − θI ,θh − θI) + t2(γh − γI ,γh − γI) = ah(θh − θ,θh − θI)

+ ah(θ − θI ,θh − θI) + t2(γh − γ,γh − γI) + t2(γ − γI ,γh − γI)

= ah(θ − θI ,θh − θI) + t2(γ − γI ,γh − γI).

From this, (3.12), and (3.10), we easily obtain

|||θh − θI |||2Θ + t2‖γh − γI‖2
0 ≤ C(|||θ − θI |||2Θ + t2‖γ − γI‖2

0).

The result (4.6) then follows by the triangle inequality. �

We now proceed to the choice of the spaces Θh, Γh, and Wh and the interpolants θI and
wI (which determine γI). We shall then apply Theorem 2 to obtain error estimates.

4.2. Choice of Wh and wI. For any k integer ≥ 2, we take

(4.9) Wh = L1
k,

where L1
k is defined in (2.1). For the interpolant we shall use wI = πWw where πW is the

natural projection onto Wh, i.e., classical choice for the interpolant on Wh, i.e., πW z ∈ Wh =
L1

k is determined by

(4.10)
πW z(ai) = z(ai) ∀ vertices ai,

∫
e

(z − πW z)q ds = 0 ∀q ∈ Pk−2(e), ∀e ∈ Eh,∫
T

(z − πW z)q dx = 0 ∀q ∈ Pk−3(T ), ∀T ∈ Th.

It is well known that this standard interpolant satisfies the error estimate

(4.11) ‖w − wI‖s,h ≤ Chk+1−s‖w‖k+1, 0 ≤ s ≤ k + 1.
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4.3. Choice of Θh = Γh and of the interpolants. With Wh given by (4.9), our first
choice of Θh = Γh will be close to the minimum choice that makes (4.1) hold true. More
precisely we take

(4.12) Θh = Γh = BDMR
k−1,

where BDMR
k−1 denotes the rotated Brezzi-Douglas-Marini space of degree k − 1, i.e., the

space of all piecewise polynomial vector fields of degree at most k−1 subject to interelement
continuity of the tangential components. With this choice, the inclusion (4.1) is clearly
satisfied.

We define θI = πΘθ, where πΘ : H1(Ω) → Θh is determined locally by the following
degrees of freedom:

(4.13)

∫
e

(τ − πΘτ ) · t q ds = 0 ∀q ∈ Pk−1(e),

(4.14)

∫
T

(τ − πΘτ ) · q dx = 0 ∀q ∈ RTk−3,

where RTk−3 is the usual (unrotated) Raviart-Thomas space of index k−3. In the framework
of [7] and [8], πΘ is seen to be the natural projection into BDMR

k−1 (and, in particular, well-
defined), although the degrees of freedom in (4.14) are not the ones which were used in the
original reference (cf. [13]). Moreover, it is related to the natural projection operator πW

into Wh by the commutativity condition

(4.15) πΘ ∇ z = ∇ πW z.

This can be checked by using the definition of the projection operators and integration by
parts, and is a special case of the commutativity properties of projections presented, e.g., in
[7] and [8].

As a consequence of the choices wI = πWw and θI = πΘθ and (4.15), we have

γI := t−2(∇wI − θI) = t−2(∇ πWw − πΘθ) = t−2πΘ(∇w − θ) = πΘγ.

This puts us into the framework of [18] where the key condition is that γI := t−2(∇wI −θI)
is an interpolant of γ.

Using standard techniques, we then have the following interpolation estimates:

(4.16) ‖θ − θI‖s,h ≤ Chl−s‖θ‖l, ‖γ − γI‖s,h ≤ Chl−s‖γ‖l, 0 ≤ s ≤ l, 1 ≤ l ≤ k.

4.4. Basic error estimates for θ and γ. We can now apply Theorem 2 to obtain the
corresponding order of convergence estimates.

Theorem 3. With the choices (4.9) and (4.12) for Wh and Θh = Γh, let (θ, w,γ) be the
solution of (2.3)–(2.6), and let (θh, wh,γh) be the solution of (3.3)–(3.4). Then we have

|||θ − θh|||Θ + t‖γ − γh‖0 ≤ Chk−1(‖θ‖k + t‖γ‖k−1).

Proof. This follows immediately from Theorem 2, (3.7), and (4.16). �
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4.5. L2 error estimates for θ and w. In this subsection, we establish the following im-
proved estimate for ‖θ − θh‖0 and also a basic estimate for ‖w − wh‖0.

Theorem 4. Under the assumptions of Theorem 3,

‖w − wh‖0 + ‖θ − θh‖0 ≤ Chk(‖θ‖k + t‖γ‖k−1).

Proof. We establish this result by a standard duality argument. Let (ϕ, z, ζ) ∈ H1
0(Ω) ×

H1
0 (Ω)×L2(Ω) be the solution of:

a(ϕ,η) + (ζ,∇ v − η) = (θ − θh,η) + (w − wh, v) ∀(η, v) ∈ H1
0(Ω)×H1

0 (Ω),(4.17)

(∇ z −ϕ, τ )− t2(ζ, τ ) = 0 ∀τ ∈ L2(Ω).(4.18)

From the regularity result in Theorem 1, we have on convex polygons,

(4.19) ‖ϕ‖2 + ‖ζ‖H(div) + t‖ζ‖1 ≤ C(‖θ − θh‖0 + ‖w − wh‖0).

Using a derivation analogous to that used earlier, we get that (ϕ, z, ζ) also satisfies:

ah(ϕ,η) + (ζ,∇ v − η) = (θ − θh,η) + (w − wh, v) ∀(η, v) ∈ H1(Th)×H1(Th).

Choosing η = θ− θh, v = w−wh, and using the definitions of γ and γh, given by (2.5) and
(4.4), we get

‖θ − θh‖2
0 + ‖w − wh‖2

0 = ah(ϕ,θ − θh) + (ζ,∇(w − wh)− (θ − θh))(4.20)

= ah(ϕ,θ − θh) + t2(ζ,γ − γh).

Let zI = πW z and ϕI = πΘϕ. Then

(4.21) |||ϕ−ϕI |||Θ ≤ Ch‖ϕ‖2 ≤ Ch(‖θ − θh‖0 + ‖w − wh‖0).

Defining ζI = t−2(∇ zI − ϕI), we have ζI = πΘζ, and applying (4.16) and the regularity
result (4.19), we obtain

(4.22) t‖ζ − ζI‖0 ≤ Ch(‖θ − θh‖0 + ‖w − wh‖0).

Now from (4.7) with η = ϕI , v = zI , we then have (using the symmetry of the bilinear form
ah)

ah(ϕ
I ,θ − θh) = −t2(γ − γh, ζ

I).

Adding and subtracting ϕI in (4.20), we thus obtain

‖θ − θh‖2
0 + ‖w − wh‖2

0 = ah(ϕ−ϕI ,θ − θh) + t2(ζ − ζI ,γ − γh)

≤ C|||ϕ−ϕI |||Θ |||θ − θh|||Θ + t2‖ζ − ζI‖0‖γ − γh‖0.

Applying (4.21) and (4.22), we get

‖w − wh‖0 + ‖θ − θh‖0 ≤ Ch(|||θ − θh|||Θ + t‖γ − γh‖0).

The result now follows directly from Theorem 3. �
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4.6. Error estimates for ∇w. We next obtain two error estimates for ‖∇(w − wh)‖0.

Theorem 5. Under the assumptions of Theorem 3,

‖∇(w − wh)‖0 ≤ ‖θ − θh‖0 + t2‖γ − γh‖0 ≤ C(hk + thk−1)(‖θ‖k + t‖γ‖k−1).(4.23)

‖∇(w − wh)‖0 ≤ Chk(‖θ‖k + t‖γ‖k−1 + ‖w‖k+1).(4.24)

Proof. The first estimate is easily obtained through the relation ∇(w − wh) = t2(γ − γh) +
(θ − θh) and the estimates for θ and γ in Theorems 3 and 4.

In view of Theorem 4 and the interpolation estimate (4.11), to establish the second esti-
mate it suffices to show that

(4.25) ‖∇(w − wh)‖0 ≤ C(‖∇(w − wI)‖0 + ‖θ − θh‖0).

From the error equation (4.7) with η = 0 we have

(γ − γh,∇ v) = 0 ∀v ∈ Wh.

Consequently, from the definitions (2.5) and (4.4) of γ and γh (respectively), we get

(4.26) (∇(w − wh)− (θ − θh),∇ v) = 0 ∀v ∈ Wh.

Adding and subtracting ∇w, and then using (4.26) with v = wI − wh, we have

‖∇(wI − wh)‖2
0 = (∇(wI − w),∇(wI − wh)) + (∇(w − wh),∇(wI − wh))

= (∇(wI − w),∇(wI − wh)) + (θ − θh,∇(wI − wh)),

so
‖∇(wI − wh)‖0 ≤ ‖∇(w − wI)‖0 + ‖θ − θh‖0,

and (4.25) follows using the triangle inequality. �

Remark. Even for the lowest order case k = 2, estimate (4.24) involves ‖w‖3. Since from
(2.4) and (2.5), it easily follow that w satisfies ∆w = div θ − t2g, on a smooth domain,
standard a priori estimates for Poisson’s equation and (1) give

‖w‖3 ≤ C(‖φ‖2 + t2‖g‖1) ≤ C(‖g‖−1 + t‖g‖0 + t2‖g‖1).

Hence, in this case, one obtains a uniform bound for 0 ≤ t ≤ 1. On a convex polygon
however, one can only expect H2−regularity for w. In this case, an alternative estimate is
provided by (4.23).

Remark. We have shown that ‖∇(w−wh)‖0 achieves the same order, k, of approximation
as ‖θ − θh‖0 and one order higher than |||θ − θh|||Θ. Although wI converges to w with order
k + 1, we have not been able to establish that higher order for the convergence of wh.

4.7. Other possible choices. Still taking Wh = L1
k as in (4.9), we have other possible

choices for Θh = Γh. Indeed, we can take any finite element space which contains BDMR
k−1,

and continue to use for θI the natural projection onto BDMR
k−1 (not onto the larger space

Θh). This leaves unchanged the approximation results (4.11) and (4.16) and then the error
estimates for the method.

Some reasonable such choices for Θh = Γh are Θh = Γh = RTR
k−1 or Θh = Γh = L0

k−1

where RTR
k−1 denotes the rotated Raviart-Thomas spaces of degree k − 1, and L0

k−1 the
space of discontinuous piecewise polynomials of degree k − 1. In the first choice, the space
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BDMR
k−1 is extended by adding local shape functions on each element. In the second, the

space is extended by relaxing the interelement continuity.
The analysis can also extend to other choices of spaces Wh and Θh = Γh for which

∇Wh ⊂ Θh and which admit projections satisfying

∇ πW z = πΘ ∇ z.

One such possibility is to take Wh to be the space obtained by augmenting L1
k by the bubble

functions of degree k + 1, and choosing Θh to be the Brezzi-Douglas-Fortin-Marini space of
degree k − 1 [12], [14]. It is not clear that using these larger spaces offers any advantages
over the choice of Wh = L1

k and Θh = Γh = BDMR
k−1, since they involve more degrees of

freedom without producing higher convergence rates, and we will not pursue them here.

5. Discontinuous w and discontinuous θ

5.1. Choice of the spaces and of the interpolants. In this section we shall examine the
choice of totally discontinuous elements, that is,

(5.1) Wh = L0
k, Θh = Γh = L0

k−1, k ≥ 2.

Our analysis will start from the totally discontinuous weak formulation of the continuous
problem (3.13)–(3.14) and the corresponding formulation of the discrete problem (3.15)–
(3.16).

In order to obtain γh in an explicit form from equation (3.16), it is convenient to introduce
the lifting operator J : H1(Th) → Γh defined (as in [3]) by

(5.2)

∫
Ω

J([|v|]) · τ dx = −j(τ , v), τ ∈ Γh.

From (3.11) and the equivalence of the norms ‖ · ‖0 and ||| · |||Γ on Γh, it easily follows that

(5.3) |||J([|v|])|||2Γ ≤ CpW (v, v) v ∈ Wh.

Since the condition ∇h Wh ⊆ Γh is satisfied, we then have from (3.16):

(5.4) t2γh = ∇hwh − θh + J([|wh|]).

Although the space Wh imposes no interelement continuity, we shall use wI = πWw where
πW is still the natural interpolant into the continuous finite element space L1

k defined in
(4.10). Similarly, since BDMR

k−1 ⊆ L0
k−1, we can choose θI = πΘθ where πΘ is still the

natural interpolant into BDMR
k−1 as defined in (4.13)–(4.14). We then continue to have

(5.5) γI := t−2(∇wI − θI) = πΘγ.

In short, although we are using larger spaces Wh, Θh, and Γh, than in the previous section,
we use the same interpolants. As a result, the interpolation estimates (4.11), (4.16) continue
to hold.
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5.2. Error estimates.

Theorem 6. Let (θ, w,γ) be the solution of the continuous problem (3.13)–(3.14), and let
(θh, wh,γh) be the solution of the discrete problem (3.15)–(3.16) with the choice of spaces
(5.1). Then we have

(5.6) |||θ − θh|||Θ + t‖γ − γh‖0 + [pW (w − wh, w − wh)]
1/2 ≤ Chk−1(‖θ‖k + ‖γ‖k−1),

(5.7) |||w − wh|||W ≤ Chk−1(‖θ‖k + ‖γ‖k−1 + ‖w‖k).

Proof. From (3.13) and (3.15), we immediately have the first error equation

(5.8) ah(θ−θh,η)+(γ−γh,∇h v−η)−j(γ−γh, v)−pW (wh, v) = 0, ∀(η, v) ∈ Θh×Wh,

while subtracting (5.4) from (2.5), we have the second error equation

(5.9) t2(γ − γh) = ∇h(w − wh)− (θ − θh)− J([|wh|]).
Setting now

θδ = θh − θI , wδ = wh − wI , γδ = γh − γI ,

and using (5.4)–(5.5) we immediately obtain

(5.10) t2γδ = ∇h wδ − θδ + J([|wh|]).
Choosing η = θδ and v = wδ in (5.8) we have

ah(θ − θh,θδ) + (γ − γh,∇h wδ − θδ)− j(γ − γh, wδ)− pW (wh, wδ) = 0.

Using (5.10), and the continuity of wI (in the penalty term and in J), we then have

(5.11) ah(θ−θh,θδ)+ t2(γ−γh,γδ)− (γ−γh,J([|wδ|]))− j(γ−γh, wδ)− pW (wδ, wδ) = 0.

Owing to the definition (5.2) of J , and to the fact that γh ∈ Γh, we have (γh,J([|wδ|])) +
j(γh, wδ) = 0. Using this in (5.11) we deduce

(5.12) ah(θ−θh,θδ)+t
2(γ−γI ,γδ)−t2(γδ,γδ)−(γ,J([|wδ|]))−j(γ, wδ)−pW (wδ, wδ) = 0.

On the other hand, using (3.12) and adding and subtracting θ, we have

(5.13) α|||θδ|||2Θ ≤ ah(θδ,θδ) = ah(θh − θ,θδ) + ah(θ − θI ,θδ).

Combining (5.12) and (5.13), we obtain

α|||θδ|||2Θ + t2‖γδ‖2
0 + pW (wδ, wδ) ≤ ah(θ − θI ,θδ) + t2(γ − γI ,γδ)

−(γ,J([|wδ|]))− j(γ, wδ).

It will be convenient, also for future use, to isolate the most difficult term to bound in the
above equation. We set

(5.14) N = (γ,J([|wδ|])) + j(γ, wδ).

Using the continuity (3.10) of ah and the arithmetic-geometric mean inequality, one easily
obtains

(5.15) |||θδ|||2Θ + t2‖γδ‖2
0 + pW (wδ, wδ) ≤ C(|||θ − θI |||2Θ + t2‖γ − γI‖2

0 + |N |).
In order to bound the term N , we use again the definition (5.2) of J , and note that, for
every τ ∈ Γh we have

(5.16) N = (γ,J([|wδ|])) + j(γ, wδ) = (γ − τ ,J([|wδ|])) + j(γ − τ , wδ).
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Choosing τ = γI in (5.16), we easily have from (5.3) and (3.11)

|N | ≤ ‖γ − γI‖0‖J([|wδ|])‖0 + |||γ − γI |||Γ [pW (wδ, wδ)]
1/2 ≤ C |||γ − γI |||Γ [pW (wδ, wδ)]

1/2.

Inserting this estimate in (5.15), and again using the arithmetic geometric mean inequality,
we get

(5.17) |||θδ|||2Θ + t2‖γδ‖2
0 + pW (wδ, wδ) ≤ C(|||θ − θI |||2Θ + (1 + t2)|||γ − γI |||2Γ),

and the estimate (5.6) follows from the triangle inequality and the interpolation bounds
(4.16).

Finally, to get estimate (5.7), we use first (5.10) and (5.3) to obtain

(5.18) ‖∇h wδ‖0 = ‖t2γδ − J([|wδ|]) + θδ‖0 ≤ C{t2|||γδ|||Γ + |||θδ|||Θ + [pW (wδ, wδ)]
1/2}.

Then (5.7) follows by (5.17) and the triangle inequality. �

5.3. Estimates of N using the Helmholtz decomposition. The estimates (5.6)–(5.7)
obtained in the previous section have one undesirable feature, i.e., the norm ‖γ‖k−1 appearing
on the right hand side of the estimates does not contain a factor of t, as was the case for
the estimates obtained for continuous approximations of w. Since this norm behaves like
t−(k−3/2) as t → 0, the extra factor of t helps control the size of this term and for k = 2
insures that it remains bounded. In this subsection, we will show that error estimates with
better regularity properties can be obtained if we assume the Helmholtz decomposition for
γ is sufficiently smooth.

Looking at the derivation of error estimates in the previous section, we see that the problem
comes from the estimation of the term N appearing in (5.14). We now show how use of
the Helmholtz decomposition can lead to an improved estimate of this term. Since in the
subsequent section we will introduce an appropriate dual problem to obtain L2 estimates,
and need to estimate a similar term, we work now in a more general framework and define,
for any element χ ∈ H1(Ω), the quantity

N = N (χ) := (χ,J([|wδ|])) + j(χ, wδ).

We assume that χ has a smooth Helmholtz decomposition satisfying

(5.19) χ = ∇ s+ curl q, s ∈ Hk(Ω) ∩H1
0 (Ω), q ∈ Hk(Ω)/R.

We shall assume that

(5.20)
(
‖s‖2

k + ‖q‖2
k

)1/2 ≤ C‖χ‖Hk−1 ,
(
‖s‖2

k + ‖q‖2
k−1

)1/2 ≤ C‖χ‖Hk−2(div),

where Hk−2(div) is the space of vectors in Hk−2(Ω) having the divergence in Hk−2(Ω). Note
that since ∆s = div χ, (5.20) holds if we have Hk regularity for the Dirichlet problem for
Poisson’s equation, and so for Ω a convex polygon it holds at least for k = 2.

As in (5.16), the basic instrument for estimating N will be the property (based on the
definition (5.2) of the operator J):

(5.21) N = (χ,J([|wδ|])) + j(χ, wδ) = (χ− τ ,J([|wδ|])) + j(χ− τ , wδ), τ ∈ Γh.
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This time, however, we choose a different τ . Namely, we let sI ∈ L1
k ∩H1

0 (Ω) and qI ∈ L1
k/R

be interpolants of s and q, respectively, satisfying

‖s− sI‖0 + h|s− sI |1 ≤ C hj|s|j, j = 1, . . . , k,(5.22)

‖q − qI‖0 + h|q − qI |1 ≤ C hj|q|j, j = 1, . . . , k.(5.23)

We then define χI ∈ Γh as

(5.24) χI = ∇ sI + curl qI .

It follows immediately that

(5.25) ‖χ− χI‖0 ≤ Chk−1(|s|k + |q|k) ≤ C hk−1‖χ‖Hk−1 .

Inserting τ = χI in (5.21), and using (5.10) to eliminate J([|wδ|]), we have

(5.26) N = t2(χ− χI ,γδ) + (χ− χI ,θδ)− (χ− χI ,∇h wδ) + j(χ− χI , wδ).

The first term in (5.26) is easily bounded using (5.25):

(5.27) t2|(χ− χI ,γδ)| ≤ t2‖χ− χI‖0 ‖γδ‖0 ≤ C t2‖γδ‖0h
k−1‖χ‖Hk−1 .

The second term in (5.26), using the expression (5.24) for χI , becomes

(5.28) (χ− χI ,θδ) = (∇(s− sI) + curl(q − qI),θδ).

All the terms appearing in (5.28) can be treated in the same way. For example, if ψ is in
H2(Ω) and θ is one of the two components of θδ, we have

(5.29) (∂ψ/∂x, θ) = −
∑
T∈Th

(∫
T

ψ∂θ/∂x dx−
∫

∂T

ψθ nx ds
)
.

The first term in the right-hand side of (5.29) is easily bounded by ‖ψ‖0 ‖θ‖1,h. For the
second term, recalling that ψ is continuous and that θ is one of the two components of θδ,
we have ∣∣∣ ∑

T∈Th

∫
∂T

ψθ nx ds
∣∣∣ ≤∑

e∈Eh

(|e|1/2‖ψ‖0,e)(|e|−1/2‖[|θδ|]‖0,e).

Using (3.6) we can collect the total estimate for (5.29) in the form

|(∂ψ/∂x, θ)| ≤
( ∑

T∈Th

‖ψ‖2
0,T + h2

T |ψ|21,T

)1/2

|||θδ|||Θ.

Applying the same argument to all the terms and then using the approximation properties
(5.22) and (5.23), we obtain

(5.30) |(∇(s− sI) + curl(q − qI),θδ)| ≤ C hk−1(|s|k−1 + |q|k−1)|||θδ|||Θ.

The third and fourth terms in (5.26), always using the expression (5.24) for χI , become

(5.31) −(∇(s− sI) + curl(q − qI),∇h wδ) + j(∇(s− sI) + curl(q − qI), wδ).
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Let us consider first the terms appearing in (5.31) and containing s − sI . Using (5.18) and
(3.11) we have

(5.32) |(∇(s− sI),∇h wδ)|+ |j(∇(s− sI), wδ)|
≤ C (‖∇(s− sI)‖0‖∇h wδ‖0 + |||∇(s− sI)|||Γ [pW (wδ, wδ)]

1/2)

≤ C |||∇(s− sI)|||Γ{t2|||γδ|||Γ + |||θδ|||Θ + [pW (wδ, wδ)]
1/2}.

To estimate the terms involving curl(q − qI), we integrate by parts to obtain:

(curl(q − qI),∇h wδ) =
∑
T∈Th

∫
∂T

curl(q − qI) · nwδ ds = 〈{curl(q − qI)}, [|wδ|]〉.

It follows immediately from the definition (3.9) of j that

(5.33) −(curl(q − qI),∇h wδ) + j(curl(q − qI), wδ) = 0.

Collecting the estimates (5.27), (5.30), (5.32), and (5.33) of all the terms appearing in (5.26),
and using the interpolation estimates, we obtain:

(5.34) |N (χ)| ≤ C hk−1(t‖χ‖Hk−1 + ‖χ‖Hk−2(div)){t‖γδ‖0 + |||θδ|||Θ + [pW (wδ, wδ)]
1/2}.

Inserting the above estimate for χ = γ into (5.15), we have then established the following
theorem.

Theorem 7. Let (θ, w,γ) be the solution of the continuous problem (3.13)–(3.14), and let
(θh, wh,γh) be the solution of the discretized problem (3.15)–(3.16) with the choice of spaces
(5.1). Assume further that we have the Helmholtz decomposition (5.19) for γ. Then we have

(5.35) |||θ − θh|||Θ + t‖γ − γh‖0 + [pW (w − wh, w − wh)]
1/2

≤ C hk−1(‖θ‖k + t‖γ‖k−1 + ‖γ‖Hk−2(div)),

(5.36) |||w − wh|||W ≤ C hk−1(‖θ‖k + t‖γ‖k−1 + ‖γ‖Hk−2(div) + ‖w‖k).

Remark. We point out that in our assumptions (and in particular for a convex domain Ω)
the Helmholtz decomposition (5.19) for γ will always hold for k = 2. Hence, in particular,
estimates (5.34), (5.35), and (5.36) will hold for k = 2.

5.4. L2 error estimates. In this final section, we use a duality argument to derive an
optimal L2 estimate for θ−θh and an improved estimate for ‖w−wh‖0. We show that both
of these are of order hk provided the solution is sufficiently smooth.

To do so, we again use the dual problem of the previous section, i.e., in which (ϕ, z, ζ)
is the solution of (4.17) and (4.18) and hence satisfies the regularity estimate (4.19). As we
did for the direct problem, we define the interpolants zI , ϕI and ζI by

(5.37)

zI = πW z ∈ L1
2,

ϕI = πΘϕ,

ζI = t−2(∇ zI −ϕI) = πΘζ.

From the regularity result (4.19), and the previous approximation properties (4.16), we easily
obtain

(5.38) t‖ζ − ζI‖0 + |||ϕ−ϕI |||Θ ≤ C h(‖θ − θh‖0 + ‖w − wh‖0).
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With a derivation analogous to that used previously, we see that (ϕ, z, ζ) also satisfies,
for all (η, v) ∈ H1(Th)×H1(Th),

(5.39) ah(ϕ,η) + (ζ,∇h v − η)− j(ζ, v) = (θ − θh,η) + (w − wh, v).

Taking η = θ − θh, v = w − wh, in (5.39), and using (5.9) we have

(5.40)
‖θ − θh‖2

0 + ‖w − wh‖2
0 = ah(θ − θh,ϕ) +

(
∇h(w − wh)− (θ − θh), ζ

)
− j(ζ, wh)

= ah(θ − θh,ϕ) + t2(γ − γh, ζ)−Nd

where, in analogy with (5.14), we have set

Nd ≡ Nd(ζ) := (ζ, J([|wh|])) + j(ζ, wh).

With the choice (5.37), from the error equation (5.8) for the direct problem with η = ϕI , v =
zI , we deduce:

(5.41)
ah(θ − θh,ϕ

I) = −(γ − γh,∇ zI −ϕI) + j(γ − γh, z
I) + pW (wh, z

I)

= −t2(γ − γh, ζ
I).

Adding and subtracting ϕI in (5.40), and then using (5.41) and the interpolation estimates
(5.38), we obtain:
(5.42)
‖θ − θh‖2

0 + ‖w − wh‖2
0 = ah(θ − θh,ϕ−ϕI) + ah(θ − θh,ϕ

I) + t2(γ − γh, ζ)−Nd

= ah(θ − θh,ϕ−ϕI) + t2(γ − γh, ζ − ζI)−Nd

≤ C h (‖θ − θh‖0 + ‖w − wh‖0)(|||θ − θh|||Θ + t|||γ − γh|||0)−Nd.

At this point, we can use the estimates of the previous subsection. As already pointed out,
estimate (5.34) will surely hold for k = 2. Using this and the regularity results (4.21) we
have:

|Nd| ≤C h (t‖ζ‖1 + ‖ζ‖H(div)){t‖γδ‖0 + |||θδ|||Θ + [pW (wδ, wδ)]
1/2}

≤ C h (‖θ − θh‖0 + ‖w − wh‖0) {t‖γδ‖0 + |||θδ|||Θ + [pW (wδ, wδ)]
1/2}.

Hence, (5.42) becomes:

‖θ − θh‖0 + ‖w − wh‖0

≤ C h {|||θ − θh|||Θ + t|||γ − γh|||0 + t‖γδ‖0 + |||θδ|||Θ + [pW (wδ, wδ)]
1/2}.

Applying our previous estimates, we immediately obtain the following result.

Theorem 8. Let (θ, w,γ) be the solution of the continuous problem (3.13)–(3.14), and let
(θh, wh,γh) be the solution of the discretized problem (3.15)–(3.16) with the choice of spaces
(5.1). Then we have

‖θ − θh‖0 + ‖w − wh‖0 ≤ C hk(‖θ‖k + ‖γ‖k−1).

If moreover γ has a smooth Helmholtz decomposition of the type (5.19), then we have

‖θ − θh‖0 + ‖w − wh‖0 ≤ C hk(‖θ‖k + t‖γ‖k−1 + ‖γ‖Hk−2(div)).
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Remark. We remark that for the lowest order case (k = 2) all our error estimates, namely
Theorems 3, 4, 5, and subsequent Remark, and Theorems 7 and 8, use norms of the exact
solution (θ, w,γ) that are uniformly bounded with respect to t, according to the regularity
results (2.9).
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