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Abstract

New mimetic finite difference discretizations of diffusion problems on unstradtu
polyhedral meshes with strongly curved (non-planar) faces ardapme The material
properties are described by a full tensor. The optimal convergerticeadss, the second
order for a scalar variable (pressure) and the first order for toveariable (velocity), are
proved.

1 Introduction

The mimetic finite difference (MFD) method preserves thesesal properties of continuum
differential operators such as conservation laws, sotigjonmetries, and the fundamental iden-
tities and theorems of vector and tensor calculus. The MFbhatehas been successfully em-
ployed to solve electromagnetic [13], gas dynamic [10], diffdision [14, 16, 19, 12, 15, 17]
problems. For the linear diffusion problem, the MFD methadhios the Gauss divergence the-
orem to enforce the local conservation law, the symmetrywéen the continuous gradient and
divergence operators to have symmetry and positivity oféiselting discrete problem, and the
null spaces of the involved operators to guarantee stabilithe discretization.

The convergence of the MFD method has been proved for siraldicd quadrilateral meshes
[3, 4], and for unstructured polyhedral meshes [8, 9] cdimgjsof elements wittplanar faces.
However, the meshes appearing in many applications (mgsiiicomplex geometries, moving
mesh methods, mesh reconnection methods, etc) have uslgaignts witlcurved(non-planar)
faces. It was shown in [17] that the MFD method does not caye&zen meshes consisting of
such elements. One possible remedy is to approximate agstromrved face by triangles to get
a polyhedral mesh where all elements have planar faces savé¢hraay apply the MFD method
from [8, 9]. The number of additional degrees of freedom bdlproportional to the number of
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the triangles. In this paper, we propose a new MFD methodwtiaes not require additional
topological operations with strongly curved faces and us®g three degrees of freedom for
every such face.

There are other discretization schemes (see, e.g. [1, b8pplyhedral meshes; however,
to the best of our knowledge, the convergent schemes resaln-symmetric discrete prob-
lems which significantly reduces the number of availableieffit solution methods. The MFD
method, by its nature, gives always the symmetric problene vwWdnder whether the use of
additional degrees of freedom is the only way to preservensgiry in the discrete problem.

The outline of the paper is as follows. In section 2, we forila few theoretical assump-
tions on the problem and the mesh. In Section 3, we descrigiiytithe mimetic finite difference
method. The stability of the method and the convergencmasds are proved in Sections 4 and
5, respectively.

2 Assumptions on the problem and the mesh

Let us consider a model elliptic boundary value problem:
divF=b  F=-Kgradp (2.1)

wherep denotes a scalar function that we refer to as the presfum,notes a vector function
that we refer to as the velociti{ denotes dull symmetrictensor, and denotes a source func-
tion. The problem is posed in a bounded donfaia IR? and is subject to appropriate boundary
conditions oroX). For simplicity, we assume that the homogeneous Dirichdetndary condi-
tions are imposed o&f2. The other types of boundary conditions are easily incaigat into
the general scheme of the MFD method [12]. We assume alsdkttstisfies the following
regularity and ellipticity property.

(P1) (Regularity and ellipticity of). Every component oK is in W1 (Q) andK is strongly
elliptic, meaning that there exist two positive constantandx* such that

k[ V])? < VIK(x) v < KV VveR® VxeQ. (2.2)

Before we make precise the assumptionstband on the subdomains, we introduce the
definition of pseudo-pyramid

Definition 2.1 Let k£ > 3 be an integer, and andr be positive real numbers, with < 1. A
pseudo-pyramid with lateral faces and shape constantsind 7 is a subseP of IR? that can
be constructed with the following three steps:

1. Take a pyramid®, whose basé, is a convex polygon witlt edges. Lel; be the vertex
of this pyramid,d, be its diameter, andl, be its height. Up to a rigid displacement, we
can assume thaf is in the origin and, is a subset of the plane= h,. We also assume
thatP, contains a sphere of radius> ~d, (see Fig. 1).

2. Define aradial one-to-oneC'! mapping® of the pyramidP, into itself. We recall that in
a radial map a poinlP and its image®’ = ®(P) lie on the same ray starting at the origin.
We assume that, at every pointof P, and at every poinP’ of ®(P,), we have

ID@)[| <7 and [[D(@ )] <, (2.3)
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respectively. The norms in (2.3) are the usual Euclideamsaf3 x 3 matrices.

3. Define the pseudo-pyramidas: P = ®(P,). The image of the badg is aC' surfacer,
e = ®(by), that we refer to athe baseof the pseudo-pyramid. Accordingly, the images
of the k lateral faces ofP, will be referred to as the lateral faces®f

Figure 1: PyramidP, containing a sphere of radius

Note that the convexity assumption could be replaced wihstar-shaped assumption (see
[8] for more details). However, for simplicity of the presation, we shall not do it here.

According to the above definition, at each point of the hgsee can define a normal unit
vectorn pointing outward ofP and varying continuously with the point. Thus, we can define
theaverage normal vectai as

fi = ﬁ/ndS (2.4)
e e

where|e| denotes the area ef It is not difficult to see thafn| < 1. A lower bound for|n|
(depending ony andr) is contained in the following technical lemma, whose prgakported
in Appendix A.

Lemma 2.1 LetP be a pseudo-pyramid with shape constanedr. Lete be its base and let
n be the average normal tg as defined in (2.4). Then
. 2
Al > = (2.5)
T
We are now ready to list our assumptions on the dontaiand its partition(2,. We al-

low unstructured partitions which are quite general, ineortb satisfy the needs of complex
engineering applications.

(M1) (Domain) We assume tha® is a bounded connected subsetlidf with a Lipschitz
continuous boundary.



(M2) (Mesh elements) et (2, be a non-overlapping conformal partition(@finto elementsv.
We assume that there exist two positive constap@ndr,, and two integer numbers,
and Ny, independent of the partition, such that every elentergt the union of at mosw,
pseudo-pyramids with at mos{;, lateral faces and shape constants ~, andr < 7,.
We assume that the pseudo-pyramids have the same vertetheabdundany E is the
union of the bases of the pseudo-pyramids. These basesawdiferred to athe faces of
E. The element will be still referred to as the polyhedron.

(M3) (Moderately and strongly curved faced)/e fix a constant,. which will be independent
of the partition. Then, for each faeewe say that is moderately curved at every point
of e we have

In— 0| <o, lef'/? (2.6)

wheren is the normal ta: andn is its average normal as defined in (3.2). Otherwise, we
say that the face is strongly curved

For every elemenk/, we denote byF)| its volume and by:z its diameter. We finally set as
usual
h = sup hg.
E

The meshes generated by smooth mappings or by uniform redimevha coarse mesh con-
tain typically elements with moderately curved faces. Gndther hand, the meshes generated
by moving mesh methods contain frequently elements witimglly curved faces. Assumption
(M3) draws a theoretical boundary between two types of facesefibre, is rather aefinition
than an assumption.

Assumption(M2) implies that every elemert is star-shapedvith respect to the common
vertexV of the pseudo-pyramids that form it. From shape regulafitthe pseudo-pyramids,
we have thatv is star-shaped with respect to every point of a little sphétie center inl” and
radiusp. hp wherep, depends solely on the constants 7., and N.. Moreover, we may prove
that there exist two positive constantsanda., which depend only on the constants 7., and
N, and such that

v b < Bl ahd < el 2.7)

for all facese of every elements.
Depending on context, we shall ugé& either for the boundary of the elemefitor for the
set of its faces.

3 Mimetic finite difference method

In this section, we recall briefly the main steps in the MFD o€t (see [8] for more details).
Let us introduce an operat6r, G p = —Kgrad p, which we refer to as the velocity operator.
Then, the Green formula reads

/ F-(K'Gp)dV = /pdivF dv. (3.1)
Q Q
This states clearly that the velocity and divergence opesatre adjoint to each other, i.e.
g =div".
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The mimetic finite difference (MFD) method produces diseegions of these operators which
are adjoint to each other with respect to inner products éndiscrete velocity and pressure
spaces.

Thefirst step of the MFD method is to specify the degrees of freedomtigsical variables
pandF and their location.

We consider the spacg’ of discrete pressures that are constant on each polyhétirBor
q € Q% we denote by;z (or by (q)g) its value onE. The dimension]N, of Q% is obviously
equal to the number of polyhedrons(i}. In what follows, we shall denote b@¢ either the
vector spacdR’Ve or the space of piecewise constant functions, dependingootext. The
identification will be obvious and no confusion should arise

The definition of the space of discrete velocities requicesesadditional considerations. To
every element’ in €, and to every face of £/, we associate aectorF¢, with three components
(since we are considering a three-dimensional problemyebieer, for every elemerit in €2,
and every face of E, we define the vectai{, as the unit normal (at each point &f pointing
outside ofE’ and the average normal vecto}, as

1
ng = el /neE ds. (3.2)
€ e
Assumption(M2) and Lemma 2.1 give the following lower bound:
. 27,
05| = — (3.3)

*

In addition to the above notation we assign, to each a2, a pair of arbitrary unit vectors
a®! anda®? orthogonal tan%, and orthogonal to each other (see Fig. 2).

=€
ng

Figure 2: The local coordinate system for a strongly curtep)(facee of E.

For a discrete velocity fieldx we will denote byG g its restriction to the boundary df,
and byG¢; (or by (Gg)°) the restriction ofG g to a facee of 0E. We impose the following
continuityof the face-based velocity unknowns.
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(C1) (Continuity of velocities)We assume that for each fageshared by two polyhedrons,
andE,, we have
Fy -np = —F%, -ng . (3.4)

Moreover, we assume that @trongly curved facesve have the full continuity of the
discrete velocity vector. This means that together with)(@.e also have

F5 -a® =Fg, -a’, i=1,2. (3.5)

We denote the vector space of face-based velocity unknowné? The numberNy, of
our discrete velocity unknowns is equal to three times thaber of boundary faces plusx
timesthe number of internal faces. In our theoretical discussiom shall consideX“ as the
subspace oR"x which verifies (3.4) on all faces and (3.5) on strongly curfambs.

In practice, for each face of every element, we use the local coordinate system given
by vectorsa®!, a>?, andn$, (see Fig. 2). Then, on moderately curved faces, only the thir
component oF%, will be subject to the continuity requirements, and the othv® components
will be treated asnternal degrees of freedam

If £ is the number of moderately curved facesthfwe will have2 £} internal degrees of
freedom, that could be eliminated during the assembly mobgstatic condensatianHence,
in the final matrix, after static condensation, the total benof velocity unknowns will be equal
to the total number of moderately curved faces, plus threegithe number of strongly curved
faces.

Necessity to use three velocity components on stronglysclifaces is possibly the intrinsic
difficulty (see, e.g. Lemma 5.1) and the reason why nobodgexaed in doing a reasonable job
on strongly curved faces.

It is clear that the parametet defined in (2.6) is at our choice. If we choose a huge number
for o, then most faces will be classified aderately curve@nd the asymptotically optimal
convergence rate will be observed only on very fine mesheateelth, as we shall see later on,
the value ofo, enters our priori estimates. Hence, in practice, we are likely to face thelusua
trade-off between cost of the method and quality of the tes@iill, more knowledge has to be
gained from experience in order to decide how to chegse

To summarize, one pressure unknown is defined on each patythadd one velocity vector-
unknown is defined on each face; its component in the dinectia® is continuous on all faces,
while the other two components are continuous only if the facstrongly curved.

Once we got the degrees of freedonfiand in.X¢, we can define interpolation operators
from the spaces of smooth enough scalar and vector-valuetidas to the discrete spacgé
and X, respectively. To every function q ib'(£2), we associate the elemeit in Q¢ by

1
(q')p = E/ qdV  VE € Q. (3.6)
E
It is immediate to check that

/(q1)2E dv < / AV VE€Q,, VqeL*E). (3.7)
E E

For every vector-valued functioi € (H'(2))3, we defineG’ € X as follows. For every
elementZ and for every face of E, we consider once more the average normal vagjoand
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set, for convenience of notation, .
e3 neE
0|

ap =
To define the components (L )¢ in the three orthogonal directions, we set

(G) -ay’ = /G n5,dS and (GL)®-a® /G a®'ds (i=1,2). (3.8)

Jef |2 IIHE!

In the next section, we shall prove that this mterpolathmerator is well defined and uni-
formly bounded.

If G is continuous across the interior mesh faces, it is easyetthse the resulting vectd’
will satisfy the continuity propertyC1). HenceG! € X?. Our interpolation operator have the
following three important properties.

1. Whenever’ is constant or, we obtain easily from (3.8) thaG%)c - a%* = G - a%® and
(Gg)e-a“' =G -a* fori=1,2. Thus

(GL)* =G whenG is constant on. (3.9)

2. Definition (3.8) implies the following crucial equality
/(Gg)e.ngds—/(cg)e-ﬁEds B[] (GL)° - a%? — /G ntds.  (3.10)

3. Using (3.3), we have easily

al< = ([iGras)” 3.11
’ E| — |6’1/2 | | ( . )
where
o
vV, = )
2,

COMMENT: WHY DID YOU PUT A /2?2 If you have two vectors andw with, say
lv1] < Jwn], Jva] < |wo| @and|vg| < 17 |wy ], then|v| < 17 |w]...

Thesecondstep of the MFD method is to equip the spaces of discreteymesand velocities
with inner products. The inner product on the vector sgaéées given by

— Z e qe|F| Vp, qc Q. (3.12)

EeQy

The inner product onX? is a sum of elemental inner produdi, G|z defined for ev-
ery elementE in Q,. Let kr be the total number of faces ifi, so that the total number
of scalar components &z and Gy, is 3kg. Let us denote them byFg}, ..., {Fg}s:, and
{Gg}i,....,{GE}sk,, respectively. We assume that we are given (for garh symmetric pos-
itive definite3 kx x 3 kg matrix My = {Mg}; ;. Then, we set

3kg

[F, Glz = > {Mp}i;{Fr}i{Gp};. (3.13)

i,j=1
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From (3.13) we can easily construct the inner product inby setting

[F, Glxa= Y [F,G]z VF GeX" (3.14)

EeQy

Some minimal approximation properties for the inner praq8cl3) are required. The con-
struction of the matrix{/z is a non-trivial task for a polyhedral element (see [9] whaeanents
with planar faces were analyzed). We shall return to this problem ini@e&. For the time
being, we assume that the inner product (3.13) has the foipproperty.

(S1) (Stability) We assume that there are two positive constanend.S* independent of the
partition2;, such that, for evergz € X9 and everyE in €2, one has

s B |GL? < (G, Glp < ST|E| Y |G (3.15)

ecOFE ecOF

Thethird step of the MFD method is to derive an approximation to therdjgnce operator.
The discrete divergence operatb V¢ : X4 — (¢, arises naturally from the Gauss divergence
theorem as

e 1
(DTV' F d—f ZF 0 Je| = Z / F, - S ds. (3.16)

e€OFE ecOF

We point out that our interpolation operators, in some secm@mutewith the divergence
operator. Indeed, for every sufficiently smooth vector figldve can use (3.16), (3.2), (3.10),
the Gauss divergence theorem, and (3.6) to obtain

(PIV'GN) = oo (@) -aglel = 3 [(Gh)omg

ecOE ecOb
1

=— [ G-ngdS :—/divédv = (divG)L, (3.17)
B S = (v G

for every element in €.

The fourth step of the MFD method is to define the discrete velocity dperg? : Q¢ —
X4, as the adjoint to the discrete divergence operd®dr)?, with respect to inner products
(3.12) and (3.14), i.e.

[F, G plxe = [p, DIV Flpe  VpeQ? VFe X% (3.18)

Using the discrete velocity and divergence operators,dhérmuous problem (2.1) is discretized
as follows:
DIV F;=b, F, = G%pa, (3.19)

where
b=Db’ (3.20)

is the vector of mean values of the source function



4 Stability analysis

In this section we analyze the stability of the mimetic findiéference discretization (3.19)
following the well-established theory of saddle-pointigemms [7]. More precisely, we prove
the coercivity condition (4.3) and the inf-sup condition4(4

Using the discrete Green formula (3.18), we rewrite equat(@.19) in a form more suitable
for analysis:

[Fa4, Glx¢ — [pa, DIV Gl =0 VG e X (4.1)

[DIVFy, dlgs = [b, qlge Vqe Q" (4.2)
For future analysis, we need the followihg-type norms:

[pll[3« = [P, Ploe  and  [[[F]|%0 = [F, Flxs,

together with the mesh dependét;, norms:

1F 3,5 = [F. Flg + b DIV Fllz s, IFIG = > IFlG e

EeQy,

and the mesh dependefit norms:

HFH%hE = ||F||?L2(E))3 + h2E|F|%H1(E))3 and ”FH%h = Z ||FH%hE

EecQy
Let V¢ be the space of divergence-free discrete velocities:
g
Ld—_ {FEXdI DIVdF—O}

We begin the stability analysis by noticing that the innerdurct (3.14) is continuous. It is
also obvious that the inner product satisfiestifeellipticity condition:

[F, Flxa > [[|F|ll3, ~ VFeV? (4.3)

The analysis of the inf-sup condition is more involved. Baifing [7], for everyq € Q?, we
have to find a non-zero vectt € X< such that

DIV G, dlgr > BlllG][[aiv [llalllos (4.4)

whereg, is a positive constant independentpiG, andh.
The next result is well known for smooth domains and has b&tmded to Lipschitz do-
mains by Bramble (see [5] and the references therein).

Proposition 4.1 Let( be a connected bounded Lipschitz domaiiih There exists a positive
constant3 = () such that: for every; € L*(Q2) with zero mean value i there exists a
vector-valued function’ € (H}(2))? such that

divG=q and  BGllm@y < lal@- (4.5)
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From this we immediately get the following result.

Proposition 4.2 Let 2 be a connected bounded Lipschitz domaiiih There exists a positive
constants = () such that: for every; € L?(Q) there exists a vector-valued functich e
(H'(©))? such that

divG = ¢ and [ ||é||(H1(Q))3 < llallr2(0)- (4.6)

Proof.First, for everyq € L*(Q2), we defineg by

v
=7 | qdV.
€2 Jo

Then, we consider the functian = (2% + 42 + 22)7/6 and setG* = V4. Thus,
divG' =g and Q)G mye < @)@

for some constant; (€2) depending only of2. Since the mean value @f- g is zero, we can use
Proposition 4.1 to find a vector-valued functiéfi such that

divG® =q—7 and /3 |’éo|’(H(}(Q))3 < llg = qllz2)-
Setting nowG := G° + G and using theL,-orthogonality ofg andg — g, we have easily the
desired result with /8 = v/2max{1/3, 1/¢1(Q2)}. O

Let now E be an element if2,,, ande be one of its faces. According to Assumptivi2)
there exists a pseudo-pyranitj. havinge as base. LeP, be the pyramid used in Definition 2.1
(together with the mag) to construct the pseudo-pyranity,, i.e P5, = ®(Py) ande = & (by).
We recall a result due to Agmon, made popular in the numeaicalysis community by D.N.
Arnold [2]. Applied to our case, it says that there exists astantC,,,,, depending only on the
shape constant appearing in Definition 2.1, such that for every functipe H'(P,), we have

X1 Z2(50) < Cagm (h071”XH%2(P0) + ho \Xﬁfl(ﬁo)) : (4.7)

From this we easily deduce (mappigrdrack and forth fron to P, and using (2.3)) that there
exists a constardt, ,,, depending only on the shape constaptandr, appearing in Assumption

agm?

(M2), such that for every functiop € H'(F), we have

X132y < Cigmn (R5IXIZ2(mg) + P X Bagrg)) - (4.8)
At this point we need a technical lemma.

Lemma 4.1 Under assumption@M1), (M2) and (S1), there exists a positive constafit such
that, for everyG € (H'(Q2))3, we have

BNG laiv < Gl (4.9)
whereG/! is defined in (3.8).
10



Proof.Using (3.11) and applying (4.8) to each componentpfve get:
. v, - 1/2
(@pr] < P ([1Gras)
* (pt ~112 ~|2 1/2

< i (Com e NGlaemy) + hilGlin o)
cx 1/2
< v (B 1C ey + D5 |G g))

Recalling AssumptioriS1), we have

GGl < S ) hl(Gp)°

ecOFE

< 5 ( G gy + 17 Gl ) 10
ecOFE
S* QC*
v, agm G
TG .

Further, from (3.17) and (3.7), we get
IDIV! GE 720 = 1(div G) 172 < [1div Gl7am) < 31 i)

Using this and (4.10), we get (4.9) wilh 3; = max{3, S*v2C;,,, /a.}. This proves the asser-
tion of the lemma. O

Combining (4.9) with (4.6) and using once more (3.17), we get
DIV!G'=q and  BB|IG||law < llalliz)

that gives immediately thief-supcondition (4.4) withg, = 3% 5.

5 Convergence analysis

In this section, we prove optimal convergence estimateldtr primary variables. Some of the
proofs follow the pattern established in [8] where we protrezloptimal convergence estimates
for meshes with planar polygonal faces. Therefore, we simait some technical details which
can be found there and focus more on the careful treatmenire¢d faces.

For the sake of simplicity, we assume that our solugiésiin //2(£2). Note that with a little
additional effort we could use a weaker regularity, and deteer order of convergence.

We begin by introducing the second (and the final) assumptiotine inner product (3.14),
and more precisely on its relationship with the continuoueer product.

(S2) (Consistency)For every elemenk, every linear functio' on £ and evenyG € X9, we
have

[(K Vql)l, G]E = /3 ql GE ‘g ds — / ql (DIVd G)E dV (51)
E E
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where(-)’ is the interpolation operator (3.8) aibdis a constant tensor afi such that

sup sup [{K(x)}i; — {K}iyl < Cx h (5.2)

zeE 1<4,5<3

where(C'}; is a constant independent bt

Note thatK may be any reasonable piecewise constant approximatibh &f practice, we
use either the mean value Kf or the value at the polyhedron’s center of mass.

Takingq! = 1in (5.1), we recover the definition of the discrete divergeaperator. There-
fore, up to a rigid displacement, we can assume that thereinteass of polyhedrod’ is in the
origin. For such a polyhedron, instead of (5.1), it is sudfitito consider

(KVgh), G]E:/ ¢' Gg -ngdS
oF

whereq! (0) = 0, which shows the remarkable property of characterisingrther product using
only boundary integrals This property has been used in [9] to build a family of synmmet
positive definite matrices/y for a polyhedron with planar faces.

5.1 Error estimate for the vector variable

Let (p, F) be the exact solution of (2.1)p4, F4) be the discrete solution (see (3.19)), and
(p’, F7) be the interpolants of the exact solution. Finally, for gvelementF, we denote by
pk a suitable polynomial of degree 1 that approximateg, and that will be decided later on.
We notice first that from (2.1), (3.17), (3.19), and (3.20)eesily have:

DIV (F' —Fy)=b—-b=0. (5.3)

Using the second equations of (2.1) and (3.19), then thealescreen formula (3.18), and
finally (5.3), we get

I[F = Fal|[5a = (K Vp)', F' = Fylxs = [G'pa, F' — Fylxa = [(-K Vp)', F! = Fyxa.
Then, adding and subtracting terms, we have
1F" = Fyl|[5a = (K Vp)' + (KVp)', F! — Fylxa + [(-KVp')', F' — Fy]xa
=1, + [(-KVp' + KVp")!, F! — Fylxa + [(-KVp"), F' — Fy]xa
=1, 4+ I, + 1. (5.4)

On the other hand, using (5.1) and (5.3), the third term reads

=Y { | v = Papngas - [ o 010" (FI—Fd»EdV}
EeQy, or B

-3 /{)Epg (F' — Fo)p - npds. (5.5)

EeQy,
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Before estimatind;, I,, andI; we have to make precise the choiceydf To do that,
we recall some known results of approximation theory. As vemtioned in Section 2, every
elementF is star-shaped with respect to a sphere of ragdjus;. Hence, it is possible to find
a constanC;pp, depending only om,, such that, for every € H?(FE), there exist a constant
functionp, and a polynomiap}, of degree< 1 such that

lp = PEllr2m) < Copp b 1Pl () (5.6)
1P — pEllee) < Chyp b 102 (2), Ip = pEllm e < Cophe ol r2E) (5.7)

(see [6, Lemma 4.3.8]). This also implies that
IV =) line < (Cop)® + 1D)V2 hi pll 2z (5.8)

Concerning the error on faces, we can immediately derive {¢aB) that

IVXI22) < o (BB X1 og) + s XU 3r2cr)
for everyy € H?(E). Applying this to the difference — pL, and using (5.7), we get:

lp — pEHL2 e T hi wlV(ip— PE)HL2 (e) = Oface h% HPHH2 (5.9)

where(?,.. is a constant depending only ¢if,, andC;

agm*

We can now go back and estimdtg I,, andIs. The estimate of; follows immediately
from Lemma 4.1, ellipticity propert{f1), and the approximation result (5.8):

L < [I(=KVp)" + EVp")[|xa[[[F = Fyl|| x4

1 1 I * I (5.10)
< GIROVP = Vp)llal[[F7 = Fafllxe < Cp R [plle o IIF7 = Falllx

where the constartt;, is equal tox*((C;; )2 + 1)Y/2/p:.

app
The estimate fol, is also quick. From (5.2), we have immediately that

L = [(-KVp' + KVp")', F' = Fylxa < Cxh|||(Vp)! || xa [IIFf = Fylllxa.  (5.11)
Using (4.9), the triangle inequality, and (5.7) we have:
B:(VpE) lxe < IVeglline < IVPlline + 1V @ = pp)lline < (14 he Co) Pl a2
Using this in (5.11), we get
I, < Cp, hpllao I[F! = Fall| xa (5.12)

where the constardt;, is equal toCs (1 + hp C;,,) /85
The following Lemma gives the estimate fiy.

Lemma5.1 Letp € H2(Q2) N H(Q), let p! satisfy (5.7) in every elemet, and letG € X1
Then, under Assumptioi§12), (M3) and(C1), we have

> [ 9 Geneds <G hlplia 1G] (5.13)
Ecq,, Y 9F

where the constart7, is independent gf, G andh.

13



Proof.In this proof we have to distinguish between boundary fastesngly curved and moder-
ately curved faces.

First, we consider the case of boundary faces.ella¢ a boundary face, and be the only
element containing. The homogeneous Dirichlet boundary condition implies tha 0 one.
Therefore, the contribution efto the sum in (5.13) can be estimated using (5.9), then (@nd),
finally (3.15):

I pEnm(e 1GS 2@y = P — Phllr2ee) |G| fe]/?
—12 * e
P (Ct )2 he|pl 2 | G| | B2

face

< Gy hlipllmm lGellle

IN

(5.14)

IN

where the constartt;, is equal to(C},,.)"/? (s.v.) "> and|||G]| |z = [Gr, Gg]}".

Second, we consider the case of strongly curved faces: heta strongly curved face, and
E; andE, be two elements havingin common. Due to Assumptigi€1), all three components
of G are continuous across so thatat every poinbf e we have

e e e e
GEl 'l’lEl +GE2 -IIE2 — O

Using the continuity op, we can estimate the contribution of the fad® the sum in (5.13):

2
Z/p}EiGEi'nEidS = Z/ p)Gg, -ng, dS
-1 Je

<

(e))?
=t (5.15)
< Z U;1/2(C;ace)1/2hEi i 1/2

i=1
2

< D Ciyhlpllazee 11Gellls-

(E;)

Third, we consider the case of a moderately curved éadeared by two elementfs; andFEs.
Due to AssumptiorfC1), only the component ot in the direction ofa, will be continuous
across. However, we have obviously from (2.4) that

/qo(n%i —ny)dS =0 (5.16)

fori = 1,2 and every constant. Adding and subtractingz,, and then using (5.16) in the first
term and the continuity gf andG - ng in the second term, we get

2 2
Z/P}s Gp, ng dS = Z/(p}s —P%) G, - (ng, —ng,)dS
i=1v¢

+Z / p) Gg, - fig, dS.

14
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The second term in (5.17) can be estimated exactly as in)(5.15

Z/ p)Gg, - nEdS<ZC§b

=1

(5.18)

To estimate the first term, we finally use the fact th&d moderately curved, and in particular
inequality (2.6):

1/2

A

© G,

HPE
1/20**

face

o.le]

/ (pp, — ) Gg, - (ng, —ng,)dsS (e))?

(5.19)

IN

O 4 Ux

h,

<

whereC7; . depends only od’;,, andCy ,,, while C3 ,, also depends on the constanappear-

agm

ing in (2.7) and the constant, appearlng in (2.6).
Collecting (5.14), (5.15), (5.17), (5.18), and (5.19) andingthat every element appears
only as many times as the number of its faces, we prove thetiassef the lemma. O

Combining (5.10), (5.12) and (5.13) with (5.4), we get them@invergence result.

Theorem 5.1 Let (p, ﬁ) be the solution of (2.1) antb,, F,) be the solution of (3.19). More-

over, letF! be the interpolant of” introduced in (3.8). Then, under assumptigR4), (M1)—
(M3) and(S1)—(S2) we have

I[E" = Falllxa < CpIpll 2o (5.20)
where the constant’;. is independent of andp.

We note that the constaat;. in (5.20) grows linearly with the parameter defining moder-
ately curved faces.

5.2 Error estimates for the scalar variable

The estimates for the scalar variable mimic closely (butexaictly) the corresponding results
for flat faces obtained in [8]. We report them for the convaneof the reader.

As is [8], the main estimate is based on a sort of duality estmand to get a fulD(h)
order of convergence we assume thidas convex. Lower order of convergence could clearly be
obtained under less restrictive assumptions.

Theorem 5.2 Under assumptions of Theorem 5.1, plus the convexi®y, afe have

pa — P'lllge < Chy b (P2 + 110l (@) (5.21)

where the constart;, , is independent of, p andb.
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Proof.Let ¢ be the solution of

—div(KVYy) = p!—pa in Q

v = 0 on o (5-22)

where, for simplicity, we identifiegh, — p’ with the corresponding piecewise constant function.
The convexity of2 implies that there exists a constalf, depending only ofi2, such that

[ ll72(0) < Ci ll[Pa — P |llga. (5.23)
We setG = KV and denote by its interpolant. Then, using (3.17) and (5.22) we have
DIV G! = (div(KV)) = div(KVy) = pg — p’. (5.24)

Finally, we denote by)!' a piecewise linear approximation ¢fthat satisfies (5.7) for each
in Q. Using (5.24), then (4.1), then (3.6) and (5.24), then iregg by parts, and finally
integrating once more by parts and using (2.1), we get

11pa = P'[[[ge = [PV G, pa — p'oa
= [Fy, G'|xa — [DIV'G', p'|ga = [Fu, G']xa — / pdiv(KVy)dV
Q
= [Fy, G']xa + / KVp-VydV = [Fyq, G']xa + / bapdV.
Q Q
Now, using the above equation the definition®f and adding and subtracting terms, we have

1IPa = P'[[[Ge = [Fa, (KVY)" — (KV¢!) [ xa + [Fa, (KVY') ] xa + /wadV

= Ji + [Fa, (K=K)V¢") | xa + [Fa, KV xa + /Q by dV

= J1+ Jo+ [Fg, KV e + / bapdV. (5.25)
Q
As in (5.10), the term/; can be easily bounded by
Ji = [Fa, (KVY)' = (KVY) ]xa < CF B|[Fdlllxa [¢]l ). (5.26)
The termJ, is bounded as in (5.11), (5.12) by
Ty = [Fa, (K =K)V¢!) ]xa < Cp h[[Fall|xa []] 2. (5.27)
For the third term in the last line of (5.25) we can first usd)%o obtain
[Fy, (KVyh)! Z ¢ (Fy)p-ngdS — / byt dV.
EeQy,

With the help of (5.13), we get then

Far (RV o+ [ wdv\ < O3 R [Fulllxa [y + \ Jou- bw1>dv' (5.28)
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where the last term is easily bounded b§; 1 |[b]| 51 (o) [|[¢ #1). Collecting the above in-
equalities (5.25) - (5.28), we obtain

IIPa = P'lllge < €k {llFalllxa + bl (e } 1]l 20

that combined with estimates (5.23), Theorem 5.1 and Lemiaempletes the proof of the
theorem. O

It is interesting to note that, if we had, in each elemeéna suitable lifting operatoR ; from
OF to the interior of £, a better estimate for the scalar variable would be obtaiBedfirst, we
recall the following result which is proved in [8].

Lemma 5.2 Assume that for every elemdnin ©;, we have a lifting operatof? ; acting onX ¢
(the restriction ofX“ to F) and with values i L?(£))? such that

Rp(G = G¢ on 0OF
2(Gr)l, b , (5.29)
divRg(Gp) = (DIV'G)y in E
forall G € X4, and B
Rp(GL) =G (5.30)

for all G constant on&. Then, the choices

~ 1
{K}ij = 7 /E{K}i,j dv

and
[F, Glp = / K 'Rg(Fg) - Rg(Gg)dV

will automatically satisfy (5.2) and (5.1). If moreover teaxxist two positive constantg and
C%, independent oF, such that

C*RhE ”RE(G>H?L2(8E))3 < HRE<G)”%L2(E))3 < C}k%hEHRE(G)”%H(aE))?) (5.31)

for all G € X, then (3.15) will also hold with constants and S* depending only or?, C%
and on the constants,, <* appearing in (2.2).

The next result shows the superconvergence of the scalablam the mesh dependebt
norm.

Theorem 5.3 In addition to the assumptions of Theorem 5.2, we assumedhaath element
E there exists a lifting operatoRRx with the properties (5.29), (5.30) and (5.31). Then, the
choice

will give
lIpa = P'lllor < Cppa h* (Pl 2 + bl 2110 (5.33)
where the constar;, , is independent of, p andb.
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Proof. Let (i be a vector-valued function it (E))? andG’ be its interpolant. Using proper-
ties (5.31) and (4.10), we get

o
|RE(GN) || (z2(my < ﬁfHG”l,h,E' (5.34)

We denote now by?o the integral average (component-wise)(%foverE. Using property
(5.30), estimate (5.34) and the approximation result (@&have then

IRE(GY) = Gllaamy < [1Re(G! = Go)lliam) + 1Go — Gllramy
cro L
< =BG — Gollune + 1Go — Gllzamy (5.35)
< Ciahsl| Gl s

where the constaritr, depends only od'y, 35, andC; .

Now, we setd = KV wherey is the solution of (5.22). Lep! be the piecewise constant
interpolant ofy as in (3.6), and leR(G') be such thak(G')|r = Rg(G%L) for all elements?.
Following essentially [11] and using (5.24), then (4.1gnl{3.6) and (5.24) (as in the previous
proof) with (5.29), then integrating by parts, and finallyngs(2.1) and (5.32), we get

llpa — p'[l[5a = [DIV? G, pu — p'lge = [Fa, G']xa — /deiv R(G")aV
= [Fy, G']xa + /Q Vp-RGHAV = [Fy, G xa + /Q K 'KVp- R(G')dV
= /Q K '(R(Fy) — F)R(G')dV.
Adding and subtracting?, we get
llpa = pllfe = | K(AED) = F)(RIG) = G)av + [ K7 (R(F,) ~ F)Gav
= J5+ /Q(R(Fd) — FYVydV = J; — /deiv(R(Fd) — F)dv
=Js— /(bf — by dV
Q
= Jy— /Q(bf — ) =P dV = J5 + J,. (5.36)

The terms/; and.J, can be easily bounded using the previous estimates andarguahents.
Indeed, the triangle inequality, then (5.31), and finally2(® and (5.35) imply that

IR(Fa) = Fll(r20p < |R(Fa — F) |2 + |REFT) = Fllr2())
< Cyl||Fq — F!|||xa + |R(F") — Fllr20yye
< Chpllu20)- (5.37)
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Using (5.35) and (5.23), we get
IR(G) = Gllz2(@yr < CrahllGllm @y < CraColllIPa — P[] e (5.38)

The approximation property (5.6) gives the following esties:

6" = bll2(0) < oy BlID] 110 (5.39)

and
Hw - ’(/)I”LQ(Q) < C:Lkpp th}”HI(Q) < C;ppcg h |de - pIHle (540)
Inserting estimates (5.37)-(5.40) into (5.36), we prowedhksertion of the theorem. O

6 Conclusion

We have developed a new mimetic finite difference methodHerdiffusion problem on un-
structured polyhedral meshes with moderately and stroogilyed faces. We have proved the
optimal convergence rates for both the scalar and vectablas.
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Appendix A

Proof of Lemma 2.1Definition 2.1 implies that there exists a bijective mappingb, — IR
such that the restriction d@f to b, can be written as

!/

Tr = 9590(55, y)> y/ = ygp(a:, y)7 7 = h0§0<$7y) (Al)

Using assumption (2.3), it is not difficult to check that feegy pair of pointsP; andP; on by,
and their image®; = ®(P;) andP, = ®(P,) one, we have

’Pll - Pl2| S T|P1 - PQ’ and ’Pl - PQ‘ S T‘P/l - P,2| (A2)

By basic vector calculus, we have

P’ P’
/ndS :/ 0 A 0 dx dy. (A.3)
. by OT oy

Differentiating (A.1), we get

oP’ oP’
81‘ = (SD + TPxs YPx, ho%c) and ay = (xSOZ,H 2 + ngy, hO@y)-
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A lengthy but easy calculation gives

opP’ A oP’
ox oy

= (—how Yz, —how Py, ©* + (TP +yipy)) - (A.4)

Now, let¢ = (&, &, hg) be a point inby andg = ©?/2. Using (A.4) and (A.3) in (2.4), and
then integrating by parts, we get

n-§= ho(29 + (x — &1)g. + (y — &2)gy) dady

lel Ju,

= % (/bo(2g—g—g)d$dy+/ g{(r —&)ve + (y—fz)vy}dﬁ)

dbo

where (v, v,) is the outward unit normal tdb, lying in the planez = hy. Let g,,;, be the
minimum value ofg on 0b,. Sincef is internal tob, andb, is convex, we have

(x = &)y + (y — &)y > 0.

Using the mean value theorem for integrals (sigpcs also nonnegative) and then using the
divergence theorem dn (in the plane: = hy) we have then

b
n-§> gmm| | ; {( gl)’/m + (y - 52)Vy} dé = ( )mmh0|| Ol‘
bo
Thus, the Cauchy-Schwarz inequality implies that
ho ]b0|
gl el

To complete the proof, we have to estimate three factorsanight hand side of (A.5). From
(A.2), we have easily that

| > (¢%) (A.5)

le| < 72 |bol. (A.6)

Next, using (2.3) and taking any poilt on 0b,, its image pointP’ = ®(P) on de, and the
vertexV = V' (the origin), we have

Pl _[P-V| __
Pl [P =V T
Thus, (A.1) implies that
1

Finally, we recall that the pyrami®, contains a sphere of radius> ~d,, whered, is the
diameter ofPy. Since|¢| = |& — V| < dy and2r < hg, we deduce that

h
€] <dp < - < 22 (A.8)
v 2y
The result follows from estimates (A.5), (A.6), (A.7), arlg). O
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