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Abstract

New mimetic finite difference discretizations of diffusion problems on unstructured
polyhedral meshes with strongly curved (non-planar) faces are developed. The material
properties are described by a full tensor. The optimal convergence estimates, the second
order for a scalar variable (pressure) and the first order for a vector variable (velocity), are
proved.

1 Introduction

The mimetic finite difference (MFD) method preserves the essential properties of continuum
differential operators such as conservation laws, solution symmetries, and the fundamental iden-
tities and theorems of vector and tensor calculus. The MFD method has been successfully em-
ployed to solve electromagnetic [13], gas dynamic [10], anddiffusion [14, 16, 19, 12, 15, 17]
problems. For the linear diffusion problem, the MFD method mimics the Gauss divergence the-
orem to enforce the local conservation law, the symmetry between the continuous gradient and
divergence operators to have symmetry and positivity of theresulting discrete problem, and the
null spaces of the involved operators to guarantee stability of the discretization.

The convergence of the MFD method has been proved for simplicial and quadrilateral meshes
[3, 4], and for unstructured polyhedral meshes [8, 9] consisting of elements withplanar faces.
However, the meshes appearing in many applications (meshing of complex geometries, moving
mesh methods, mesh reconnection methods, etc) have usuallyelements withcurved(non-planar)
faces. It was shown in [17] that the MFD method does not converge on meshes consisting of
such elements. One possible remedy is to approximate a strongly curved face by triangles to get
a polyhedral mesh where all elements have planar faces so that we may apply the MFD method
from [8, 9]. The number of additional degrees of freedom willbe proportional to the number of
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the triangles. In this paper, we propose a new MFD method which does not require additional
topological operations with strongly curved faces and usesonly three degrees of freedom for
every such face.

There are other discretization schemes (see, e.g. [1, 18]) on polyhedral meshes; however,
to the best of our knowledge, the convergent schemes result in non-symmetric discrete prob-
lems which significantly reduces the number of available efficient solution methods. The MFD
method, by its nature, gives always the symmetric problem. We wonder whether the use of
additional degrees of freedom is the only way to preserve symmetry in the discrete problem.

The outline of the paper is as follows. In section 2, we formulate a few theoretical assump-
tions on the problem and the mesh. In Section 3, we describe briefly the mimetic finite difference
method. The stability of the method and the convergence estimates are proved in Sections 4 and
5, respectively.

2 Assumptions on the problem and the mesh

Let us consider a model elliptic boundary value problem:

div ~F = b, ~F = −K grad p (2.1)

wherep denotes a scalar function that we refer to as the pressure,~F denotes a vector function
that we refer to as the velocity,K denotes afull symmetrictensor, andb denotes a source func-
tion. The problem is posed in a bounded domainΩ ⊂ IR3 and is subject to appropriate boundary
conditions on∂Ω. For simplicity, we assume that the homogeneous Dirichlet boundary condi-
tions are imposed on∂Ω. The other types of boundary conditions are easily incorporated into
the general scheme of the MFD method [12]. We assume also thatK satisfies the following
regularity and ellipticity property.

(P1) (Regularity and ellipticity ofK). Every component ofK is in W 1
∞(Ω) andK is strongly

elliptic, meaning that there exist two positive constantsκ∗ andκ∗ such that

κ∗‖v‖2 ≤ vTK(x)v ≤ κ∗‖v‖2 ∀v ∈ IR3 ∀x ∈ Ω. (2.2)

Before we make precise the assumptions onΩ and on the subdomains, we introduce the
definition ofpseudo-pyramid.

Definition 2.1 Let k ≥ 3 be an integer, andγ andτ be positive real numbers, withγ < 1. A
pseudo-pyramid withk lateral faces and shape constantsγ andτ is a subsetP of IR3 that can
be constructed with the following three steps:

1. Take a pyramidP0 whose baseb0 is a convex polygon withk edges. LetV0 be the vertex
of this pyramid,d0 be its diameter, andh0 be its height. Up to a rigid displacement, we
can assume thatV0 is in the origin andb0 is a subset of the planez = h0. We also assume
thatP0 contains a sphere of radiusr ≥ γd0 (see Fig. 1).

2. Define aradial one-to-oneC1 mappingΦ of the pyramidP0 into itself. We recall that in
a radial map a pointP and its imageP′ = Φ(P) lie on the same ray starting at the origin.
We assume that, at every pointP of P0 and at every pointP′ of Φ(P0), we have

‖D(Φ)‖ ≤ τ and ‖D(Φ−1)‖ ≤ τ, (2.3)
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respectively. The norms in (2.3) are the usual Euclidean norms of3 × 3 matrices.

3. Define the pseudo-pyramidP as:P ≡ Φ(P0). The image of the baseb0 is aC1 surfacee,
e ≡ Φ(b0), that we refer to asthe baseof the pseudo-pyramid. Accordingly, the images
of thek lateral faces ofP0 will be referred to as the lateral faces ofP.

V0

h0

y
x

z

r

Figure 1: PyramidP0 containing a sphere of radiusr.

Note that the convexity assumption could be replaced with the star-shaped assumption (see
[8] for more details). However, for simplicity of the presentation, we shall not do it here.

According to the above definition, at each point of the basee, we can define a normal unit
vectorn pointing outward ofP and varying continuously with the point. Thus, we can define
theaverage normal vector̃n as

ñ =
1

|e|

∫

e

n dS (2.4)

where|e| denotes the area ofe. It is not difficult to see that|ñ| ≤ 1. A lower bound for|ñ|
(depending onγ andτ ) is contained in the following technical lemma, whose proofis reported
in Appendix A.

Lemma 2.1 LetP be a pseudo-pyramid with shape constantsγ andτ . Lete be its base and let
ñ be the average normal toe, as defined in (2.4). Then

|ñ| ≥ 2γ

τ 4
. (2.5)

We are now ready to list our assumptions on the domainΩ and its partitionΩh. We al-
low unstructured partitions which are quite general, in order to satisfy the needs of complex
engineering applications.

(M1) (Domain). We assume thatΩ is a bounded connected subset ofIR3 with a Lipschitz
continuous boundary.
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(M2) (Mesh elements). Let Ωh be a non-overlapping conformal partition ofΩ into elementsE.
We assume that there exist two positive constantsγ∗ andτ∗, and two integer numbersNe

andNk, independent of the partition, such that every elementE is the union of at mostNe

pseudo-pyramids with at mostNk lateral faces and shape constantsγ ≥ γ∗ andτ ≤ τ∗.
We assume that the pseudo-pyramids have the same vertex, andthe boundary∂E is the
union of the bases of the pseudo-pyramids. These bases will be referred to asthe faces of
E. The elementE will be still referred to as the polyhedron.

(M3) (Moderately and strongly curved faces). We fix a constantσ∗ which will be independent
of the partition. Then, for each facee, we say thate is moderately curvedif at every point
of e we have

|n − ñ| ≤ σ∗ |e|1/2 (2.6)

wheren is the normal toe andñ is its average normal as defined in (3.2). Otherwise, we
say that the facee is strongly curved.

For every elementE, we denote by|E| its volume and byhE its diameter. We finally set as
usual

h = sup
E

hE.

The meshes generated by smooth mappings or by uniform refinement of a coarse mesh con-
tain typically elements with moderately curved faces. On the other hand, the meshes generated
by moving mesh methods contain frequently elements with strongly curved faces. Assumption
(M3) draws a theoretical boundary between two types of faces; therefore, is rather adefinition
than an assumption.

Assumption(M2) implies that every elementE is star-shapedwith respect to the common
vertexV of the pseudo-pyramids that form it. From shape regularity of the pseudo-pyramids,
we have thatE is star-shaped with respect to every point of a little spherewith center inV and
radiusρ∗ hE whereρ∗ depends solely on the constantsγ∗, τ∗, andNe. Moreover, we may prove
that there exist two positive constants,v∗ anda∗, which depend only on the constantsγ∗, τ∗, and
Ne and such that

v∗ h3
E ≤ |E|, a∗ h2

E ≤ |e| (2.7)

for all facese of every elementE.
Depending on context, we shall use∂E either for the boundary of the elementE or for the

set of its faces.

3 Mimetic finite difference method

In this section, we recall briefly the main steps in the MFD method (see [8] for more details).
Let us introduce an operatorG , G p = −Kgrad p, which we refer to as the velocity operator.
Then, the Green formula reads

∫

Ω

F · (K−1G p) dV =

∫

Ω

p divF dV. (3.1)

This states clearly that the velocity and divergence operators are adjoint to each other, i.e.

G = div∗.
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The mimetic finite difference (MFD) method produces discretizations of these operators which
are adjoint to each other with respect to inner products in the discrete velocity and pressure
spaces.

Thefirst step of the MFD method is to specify the degrees of freedom forphysical variables
p and ~F and their location.

We consider the spaceQd of discrete pressures that are constant on each polyhedronE. For
q ∈ Qd, we denote byqE (or by (q)E) its value onE. The dimension,NQ, of Qd is obviously
equal to the number of polyhedrons inΩh. In what follows, we shall denote byQd either the
vector spaceIRNQ or the space of piecewise constant functions, depending on context. The
identification will be obvious and no confusion should arise.

The definition of the space of discrete velocities requires some additional considerations. To
every elementE in Ωh and to every facee of E, we associate avectorFe

E with three components
(since we are considering a three-dimensional problem). Moreover, for every elementE in Ωh

and every facee of E, we define the vectorne
E as the unit normal (at each point ofe) pointing

outside ofE and the average normal vectorñe
E as

ñe
E =

1

|e|

∫

e

ne
E dS. (3.2)

Assumption(M2) and Lemma 2.1 give the following lower bound:

|ñe
E| ≥

2 γ∗

τ 4
∗

. (3.3)

In addition to the above notation we assign, to each facee of Ωh, a pair of arbitrary unit vectors
ae,1 andae,2 orthogonal tõne

E and orthogonal to each other (see Fig. 2).

ñe
E

ae,1

ae,2

Figure 2: The local coordinate system for a strongly curved (top) facee of E.

For a discrete velocity fieldG we will denote byGE its restriction to the boundary ofE,
and byGe

E (or by (GE)e) the restriction ofGE to a facee of ∂E. We impose the following
continuityof the face-based velocity unknowns.
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(C1) (Continuity of velocities). We assume that for each facee, shared by two polyhedronsE1

andE2, we have
Fe

E1
· ñe

E1
= −Fe

E2
· ñe

E2
. (3.4)

Moreover, we assume that onstrongly curved faceswe have the full continuity of the
discrete velocity vector. This means that together with (3.4) we also have

Fe
E1

· ae,i = Fe
E2

· ae,i, i = 1, 2. (3.5)

We denote the vector space of face-based velocity unknowns by Xd. The number,NX , of
our discrete velocity unknowns is equal to three times the number of boundary faces plussix
timesthe number of internal faces. In our theoretical discussion, we shall considerXd as the
subspace ofIRNX which verifies (3.4) on all faces and (3.5) on strongly curvedfaces.

In practice, for each facee of every elementE, we use the local coordinate system given
by vectorsae,1, ae,2, and ñe

E (see Fig. 2). Then, on moderately curved faces, only the third
component ofFe

E will be subject to the continuity requirements, and the other two components
will be treated asinternal degrees of freedom.

If km
E is the number of moderately curved faces ofE, we will have2 km

E internal degrees of
freedom, that could be eliminated during the assembly process bystatic condensation. Hence,
in the final matrix, after static condensation, the total number of velocity unknowns will be equal
to the total number of moderately curved faces, plus three times the number of strongly curved
faces.

Necessity to use three velocity components on strongly curved faces is possibly the intrinsic
difficulty (see, e.g. Lemma 5.1) and the reason why nobody succeeded in doing a reasonable job
on strongly curved faces.

It is clear that the parameterσ∗ defined in (2.6) is at our choice. If we choose a huge number
for σ∗, then most faces will be classified asmoderately curvedand the asymptotically optimal
convergence rate will be observed only on very fine meshes. Indeed, as we shall see later on,
the value ofσ∗ enters oura priori estimates. Hence, in practice, we are likely to face the usual
trade-off between cost of the method and quality of the results. Still, more knowledge has to be
gained from experience in order to decide how to chooseσ∗.

To summarize, one pressure unknown is defined on each polyhedron and one velocity vector-
unknown is defined on each face; its component in the direction of ñe is continuous on all faces,
while the other two components are continuous only if the face is strongly curved.

Once we got the degrees of freedom inQd and inXd, we can define interpolation operators
from the spaces of smooth enough scalar and vector-valued functions to the discrete spacesQd

andXd, respectively. To every function q inL1(Ω), we associate the elementqI in Qd by

(qI)E =
1

|E|

∫

E

q dV ∀E ∈ Ωh. (3.6)

It is immediate to check that
∫

E

(qI)2
E dV ≤

∫

E

q2 dV ∀E ∈ Ωh, ∀q ∈ L2(E). (3.7)

For every vector-valued function~G ∈ (H1(Ω))3, we defineGI ∈ Xd as follows. For every
elementE and for every facee of E, we consider once more the average normal vectorñe

E and
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set, for convenience of notation,

a
e,3
E =

ñe
E

|ñe
E|

.

To define the components of(GI
E)e in the three orthogonal directions, we set

(GI
E)e ·ae,3

E :=
1

|e| |ñe
E|

∫

e

~G·ne
E dS and (GI

E)e ·ae,i :=
1

|e|

∫

e

~G·ae,i dS (i = 1, 2). (3.8)

In the next section, we shall prove that this interpolation operator is well defined and uni-
formly bounded.

If ~G is continuous across the interior mesh faces, it is easy to see that the resulting vectorGI

will satisfy the continuity property(C1). HenceGI ∈ Xd. Our interpolation operator have the
following three important properties.

1. Whenever~G is constant one, we obtain easily from (3.8) that(GI
E)e · ae,3

E = ~G · ae,3
E and

(GE)e · ae,i = ~G · ae,i for i = 1, 2. Thus

(GI
E)e = ~G when ~G is constant one. (3.9)

2. Definition (3.8) implies the following crucial equality
∫

e

(GI
E)e · ne

E dS =

∫

e

(GI
E)e · ñe

E dS = |ñe
E| |e| (GI

E)e · ae,3
E =

∫

e

~G · ne
E dS. (3.10)

3. Using (3.3), we have easily

|Ge
E| ≤

ν∗
|e |1/2

(

∫

e

|~G|2 dS
)1/2

(3.11)

where

ν∗ =
τ 4
∗

2γ∗

.

COMMENT: WHY DID YOU PUT A
√

2? If you have two vectorsv andw with, say
|v1| ≤ |w1|, |v2| ≤ |w2| and|v3| ≤ 17 |w1|, then|v| ≤ 17 |w|...

Thesecondstep of the MFD method is to equip the spaces of discrete pressures and velocities
with inner products. The inner product on the vector spaceQd is given by

[p, q]Qd =
∑

E∈Ωh

pE qE|E| ∀p, q ∈ Qd. (3.12)

The inner product onXd is a sum of elemental inner products[F, G]E defined for ev-
ery elementE in Ωh. Let kE be the total number of faces inE, so that the total number
of scalar components ofFE andGE is 3kE. Let us denote them by{FE}1, ..., {FE}3kE

and
{GE}1, ..., {GE}3kE

, respectively. We assume that we are given (for eachE) a symmetric pos-
itive definite3 kE × 3 kE matrixME ≡ {ME}i,j. Then, we set

[F, G]E =

3 kE
∑

i,j=1

{ME}i,j {FE}i {GE}j. (3.13)
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From (3.13) we can easily construct the inner product inXd by setting

[F, G]Xd =
∑

E∈Ωh

[F, G]E ∀F, G ∈ Xd. (3.14)

Some minimal approximation properties for the inner product (3.13) are required. The con-
struction of the matrixME is a non-trivial task for a polyhedral element (see [9] whereelements
with planar faces were analyzed). We shall return to this problem in Section 5. For the time
being, we assume that the inner product (3.13) has the following property.

(S1) (Stability). We assume that there are two positive constantss∗ andS∗ independent of the
partitionΩh such that, for everyG ∈ Xd and everyE in Ωh, one has

s∗|E|
∑

e∈∂E

|Ge
E|2 ≤ [G, G]E ≤ S∗|E|

∑

e∈∂E

|Ge
E|2. (3.15)

The third step of the MFD method is to derive an approximation to the divergence operator.
The discrete divergence operator,DIVd : Xd → Qd, arises naturally from the Gauss divergence
theorem as

(DIVd F)E
def
=

1

|E|
∑

e∈∂E

Fe
E · ñe

E |e| ≡ 1

|E|
∑

e∈∂E

∫

e

Fe
E · ne

E dS. (3.16)

We point out that our interpolation operators, in some sense, commutewith the divergence
operator. Indeed, for every sufficiently smooth vector field~G, we can use (3.16), (3.2), (3.10),
the Gauss divergence theorem, and (3.6) to obtain

(DIVd GI)E =
1

|E|
∑

e∈∂E

(GI
E)e · ñe

E |e| =
1

|E|
∑

e∈∂E

∫

e

(GI
E)e · ne

E

=
1

|E|

∫

∂E

~G · nE dS =
1

|E|

∫

E

div ~G dV = (div ~G)I
E (3.17)

for every elementE in Ωh.
The fourth step of the MFD method is to define the discrete velocity operator, Gd : Qd →

Xd, as the adjoint to the discrete divergence operator,DIVd , with respect to inner products
(3.12) and (3.14), i.e.

[F, Gd p]Xd = [p, DIVd F]Qd ∀p ∈ Qd ∀F ∈ Xd. (3.18)

Using the discrete velocity and divergence operators, the continuous problem (2.1) is discretized
as follows:

DIVd Fd = b, Fd = Gd pd, (3.19)

where
b ≡ bI (3.20)

is the vector of mean values of the source functionb.
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4 Stability analysis

In this section we analyze the stability of the mimetic finitedifference discretization (3.19)
following the well-established theory of saddle-point problems [7]. More precisely, we prove
the coercivity condition (4.3) and the inf-sup condition (4.4).

Using the discrete Green formula (3.18), we rewrite equations (3.19) in a form more suitable
for analysis:

[Fd, G]Xd − [pd, DIVd G]Qd = 0 ∀G ∈ Xd (4.1)

[DIVd Fd, q]Qd = [b, q]Qd ∀q ∈ Qd. (4.2)

For future analysis, we need the followingL2-type norms:

|||p|||2Qd = [p, p]Qd and |||F|||2Xd = [F, F]Xd ,

together with the mesh dependentHdiv norms:

|||F|||2div,E = [F,F]E + h2
E ‖DIVd F‖2

L2(E), |||F|||2div =
∑

E∈Ωh

|||F|||2div,E,

and the mesh dependentH1 norms:

‖~F‖2
1,h,E = ‖~F‖2

(L2(E))3 + h2
E|~F |2(H1(E))3 and ‖~F‖2

1,h =
∑

E∈Ωh

‖~F‖2
1,h,E.

Let V d be the space of divergence-free discrete velocities:

V d = {F ∈ Xd : DIVd F = 0}.

We begin the stability analysis by noticing that the inner product (3.14) is continuous. It is
also obvious that the inner product satisfies theV d-ellipticity condition:

[F, F]Xd ≥ |||F|||2div ∀F ∈ V d. (4.3)

The analysis of the inf-sup condition is more involved. Following [7], for everyq ∈ Qd, we
have to find a non-zero vectorG ∈ Xd such that

[DIVd G, q]Qd ≥ β∗|||G|||div |||q|||Qd (4.4)

whereβ∗ is a positive constant independent ofq, G, andh.
The next result is well known for smooth domains and has been extended to Lipschitz do-

mains by Bramble (see [5] and the references therein).

Proposition 4.1 LetΩ be a connected bounded Lipschitz domain inIR3. There exists a positive
constantβ̃ = β̃(Ω) such that: for everyq ∈ L2(Ω) with zero mean value inΩ there exists a
vector-valued function~G ∈ (H1

0 (Ω))3 such that

div ~G = q and β̃ ‖~G‖(H1

0
(Ω))3 ≤ ‖q‖L2(Ω). (4.5)
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From this we immediately get the following result.

Proposition 4.2 LetΩ be a connected bounded Lipschitz domain inIR3. There exists a positive
constantβ = β(Ω) such that: for everyq ∈ L2(Ω) there exists a vector-valued function~G ∈
(H1(Ω))3 such that

div ~G = q and β ‖~G‖(H1(Ω))3 ≤ ‖q‖L2(Ω). (4.6)

Proof.First, for everyq ∈ L2(Ω), we defineq by

q =
1

|Ω|

∫

Ω

q dV.

Then, we consider the functionψ = (x2 + y2 + z2)q/6 and set~G1 = ∇ψ. Thus,

div ~G1 = q and c1(Ω) ‖~G1‖(H1(Ω))3 ≤ ‖q‖L2(Ω)

for some constantc1(Ω) depending only onΩ. Since the mean value ofq− q is zero, we can use
Proposition 4.1 to find a vector-valued function~G0 such that

div ~G0 = q − q and β̃ ‖~G0‖(H1

0
(Ω))3 ≤ ‖q − q‖L2(Ω).

Setting now~G := ~G0 + ~G1 and using theL2-orthogonality ofq andq − q, we have easily the
desired result with1/β =

√
2 max{1/β̃, 1/c1(Ω)}. ¤

Let nowE be an element inΩh, ande be one of its faces. According to Assumption(M2)
there exists a pseudo-pyramidPe

E havinge as base. LetP0 be the pyramid used in Definition 2.1
(together with the mapΦ) to construct the pseudo-pyramidPe

E, i.ePe
E = Φ(P0) ande = Φ(b0).

We recall a result due to Agmon, made popular in the numericalanalysis community by D.N.
Arnold [2]. Applied to our case, it says that there exists a constantCagm, depending only on the
shape constantγ appearing in Definition 2.1, such that for every functionχ ∈ H1(P0), we have

‖χ‖2
L2(b0) ≤ Cagm

(

h0
−1‖χ‖2

L2(P0) + h0 |χ|2H1(P0)

)

. (4.7)

From this we easily deduce (mappingχ back and forth fromP to P0 and using (2.3)) that there
exists a constantC∗

agm, depending only on the shape constantsγ∗ andτ∗ appearing in Assumption
(M2), such that for every functionχ ∈ H1(E), we have

‖χ‖2
L2(e) ≤ C∗

agm

(

h−1
E ‖χ‖2

L2(Pe
E

) + hE |χ|2H1(Pe
E

)

)

. (4.8)

At this point we need a technical lemma.

Lemma 4.1 Under assumptions(M1), (M2) and (S1), there exists a positive constantβ∗
s such

that, for every~G ∈ (H1(Ω))3, we have

β∗
s |||GI |||div ≤ ‖~G‖1,h (4.9)

whereGI is defined in (3.8).
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Proof.Using (3.11) and applying (4.8) to each component of~G, we get:

|(GI
E)e| ≤ ν∗

|e|1/2

(

∫

e

|~G|2 dS
)1/2

≤ ν∗
|e|1/2

(

C∗
agm(h−1

E ‖~G‖2
L2(Pe

E
) + hE|~G|2H1(Pe

E
))

)1/2

≤ ν∗

(

C∗

agm

a∗

(h−3
E ‖~G‖2

L2(Pe
E

) + h−1
E |~G|2H1(Pe

E
))

)1/2

.

Recalling Assumption(S1), we have

[GI ,GI ]E ≤ S∗
∑

e∈∂E

h3
E|(GI

E)e|2

≤ S∗
∑

e∈∂E

h3
Eν2

∗

(

C∗
agm

a∗

(h−3
E ‖~G‖2

L2(Pe
E

) + h−1
E |~G|2H1(Pe

E
))

)

≤
S∗ν2

∗C
∗
agm

a∗

‖~G‖2
1,h,E.

(4.10)

Further, from (3.17) and (3.7), we get

‖DIVd GI
E‖2

L2(E) = ‖(div ~G)I
E‖2

L2(E) ≤ ‖div ~G‖2
L2(E) ≤ 3|~G|2H1(E).

Using this and (4.10), we get (4.9) with1/β∗
s = max{3, S∗ν2

∗C
∗
agm/a∗}. This proves the asser-

tion of the lemma. ¤

Combining (4.9) with (4.6) and using once more (3.17), we get

DIVd GI = q and β∗
sβ |||GI |||div ≤ ‖q‖L2(Ω)

that gives immediately theinf-supcondition (4.4) withβ∗ = β∗
sβ.

5 Convergence analysis

In this section, we prove optimal convergence estimates forboth primary variables. Some of the
proofs follow the pattern established in [8] where we provedthe optimal convergence estimates
for meshes with planar polygonal faces. Therefore, we shallomit some technical details which
can be found there and focus more on the careful treatment of curved faces.

For the sake of simplicity, we assume that our solutionp is in H2(Ω). Note that with a little
additional effort we could use a weaker regularity, and get alower order of convergence.

We begin by introducing the second (and the final) assumptionon the inner product (3.14),
and more precisely on its relationship with the continuous inner product.

(S2) (Consistency). For every elementE, every linear functionq1 onE and everyG ∈ Xd, we
have

[(K̃∇q1)I , G]E =

∫

∂E

q1 GE · nE dS −
∫

E

q1 (DIVd G)E dV (5.1)

11



where(·)I is the interpolation operator (3.8) and̃K is a constant tensor onE such that

sup
x∈E

sup
1≤i,j≤3

|{K(x)}i,j − {K̃}i,j| ≤ C∗
K hE (5.2)

whereC∗
K is a constant independent ofE.

Note thatK̃ may be any reasonable piecewise constant approximation ofK. In practice, we
use either the mean value ofK or the value at the polyhedron’s center of mass.

Takingq1 = 1 in (5.1), we recover the definition of the discrete divergence operator. There-
fore, up to a rigid displacement, we can assume that the center of mass of polyhedronE is in the
origin. For such a polyhedron, instead of (5.1), it is sufficient to consider

[(K̃∇q1)I , G]E =

∫

∂E

q1 GE · nE dS

whereq1(0) = 0, which shows the remarkable property of characterising theinner product using
only boundary integrals. This property has been used in [9] to build a family of symmetric
positive definite matricesME for a polyhedron with planar faces.

5.1 Error estimate for the vector variable

Let (p, ~F ) be the exact solution of (2.1),(pd,Fd) be the discrete solution (see (3.19)), and
(pI , FI) be the interpolants of the exact solution. Finally, for every elementE, we denote by
p1

E a suitable polynomial of degree≤ 1 that approximatesp, and that will be decided later on.
We notice first that from (2.1), (3.17), (3.19), and (3.20) weeasily have:

DIVd (FI − Fd) = b − b = 0. (5.3)

Using the second equations of (2.1) and (3.19), then the discrete Green formula (3.18), and
finally (5.3), we get

|||FI − Fd|||2Xd = [(−K∇p)I , FI − Fd]Xd − [G dpd,F
I − Fd]Xd = [(−K∇p)I , FI − Fd]Xd .

Then, adding and subtracting terms, we have

|||FI − Fd|||2Xd = [(−K∇p)I + (K∇p1)I , FI − Fd]Xd + [(−K∇p1)I , FI − Fd]Xd

= I1 + [(−K∇p1 + K̃∇p1)I , FI − Fd]Xd + [(−K̃∇p1)I ,FI − Fd]Xd

= I1 + I2 + I3. (5.4)

On the other hand, using (5.1) and (5.3), the third term reads:

I3 =
∑

E∈Ωh

{
∫

∂E

p1
E (FI − Fd)E · nE dS −

∫

E

p1
E (DIVd (FI − Fd))E dV

}

=
∑

E∈Ωh

∫

∂E

p1
E (FI − Fd)E · nE dS. (5.5)

12



Before estimatingI1, I2, and I3 we have to make precise the choice ofp1. To do that,
we recall some known results of approximation theory. As we mentioned in Section 2, every
elementE is star-shaped with respect to a sphere of radiusρ∗hE. Hence, it is possible to find
a constantC∗

app, depending only onρ∗, such that, for everyp ∈ H2(E), there exist a constant
functionp0

E and a polynomialp1
E of degree≤ 1 such that

‖p − p0
E‖L2(E) ≤ C∗

app hE ‖p‖H1(E), (5.6)

‖p − p1
E‖L2(E) ≤ C∗

app h2
E ‖p‖H2(E), ‖p − p1

E‖H1(E) ≤ C∗
app hE ‖p‖H2(E) (5.7)

(see [6, Lemma 4.3.8]). This also implies that

‖∇(p − p1)‖1,h,E ≤ ((C∗
app)

2 + 1)1/2 hE ‖p‖H2(E). (5.8)

Concerning the error on faces, we can immediately derive from(4.8) that

‖∇χ‖2
L2(e) ≤ C∗

agm

(

h−1
E ‖χ‖2

H1(Pe
E

) + hE ‖χ‖2
H2(Pe

E
)

)

for everyχ ∈ H2(E). Applying this to the differencep − p1
E, and using (5.7), we get:

‖p − p1
E‖2

L2(e) + h2
E‖∇(p − p1

E)‖2
L2(e) ≤ C∗

face h3
E ‖p‖2

H2(E) (5.9)

whereC∗
face is a constant depending only onC∗

app andC∗
agm.

We can now go back and estimateI1, I2, andI3. The estimate ofI1 follows immediately
from Lemma 4.1, ellipticity property(P1), and the approximation result (5.8):

I1 ≤ |||(−K∇p)I + (K∇p1)I |||Xd |||FI − Fd|||Xd

≤ 1

β∗
s

‖K(∇p1 −∇p)‖1,h|||FI − Fd|||Xd ≤ C∗
I1

h ‖p‖H2(Ω)|||FI − Fd|||Xd

(5.10)

where the constantC∗
I1

is equal toκ∗((C∗
app)

2 + 1)1/2/β∗
s .

The estimate forI2 is also quick. From (5.2), we have immediately that

I2 ≡ [(−K∇p1 + K̃∇p1)I , FI − Fd]Xd ≤ C∗
Kh |||(∇p1)I |||Xd |||FI − Fd|||Xd . (5.11)

Using (4.9), the triangle inequality, and (5.7) we have:

β∗
s |||(∇p1

E)I |||Xd ≤ ‖∇p1
E‖1,h,E ≤ ‖∇p‖1,h,E + ‖∇(p − p1

E)‖1,h,E ≤ (1 + hE C∗
app)‖p‖H2(E).

Using this in (5.11), we get

I2 ≤ C∗
I2

h ‖p‖H2(Ω) |||FI − Fd|||Xd (5.12)

where the constantC∗
I2

is equal toC∗
K(1 + hE C∗

app)/β
∗
s .

The following Lemma gives the estimate forI3.

Lemma 5.1 Let p ∈ H2(Ω) ∩ H1
0 (Ω), let p1 satisfy (5.7) in every elementE, and letG ∈ Xd.

Then, under Assumptions(M2), (M3) and(C1), we have

∑

E∈Ωh

∫

∂E

p1 GE · nE dS ≤ C∗
I3

h ‖p‖H2(Ω) |||G|||Xd (5.13)

where the constantC∗
I3

is independent ofp, G andh.
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Proof.In this proof we have to distinguish between boundary faces,strongly curved and moder-
ately curved faces.

First, we consider the case of boundary faces. Lete be a boundary face, andE be the only
element containinge. The homogeneous Dirichlet boundary condition implies that p = 0 on e.
Therefore, the contribution ofe to the sum in (5.13) can be estimated using (5.9), then (2.7),and
finally (3.15):

∫

e

p1
E GE · nE dS =

∫

e

(p1
E − p)GE · nE dS

≤ ‖p − p1
E‖L2(e) ‖Ge

E‖(L2(e))3 = ‖p − p1
E‖L2(e) |Ge

E| |e|1/2

≤ v
−1/2
∗ (C∗

face)
1/2hE‖p‖H2(E)|Ge

E| |E|1/2

≤ C∗
3,b h‖p‖H2(E) |||GE|||E

(5.14)

where the constantC∗
3,b is equal to(C∗

face)
1/2 (s∗v∗)

−1/2 and|||G|||E ≡ [GE, GE]
1/2
E .

Second, we consider the case of strongly curved faces. Lete be a strongly curved face, and
E1 andE2 be two elements havinge in common. Due to Assumption(C1), all three components
of G are continuous acrosse, so thatat every pointof e we have

Ge
E1

· ne
E1

+ Ge
E2

· ne
E2

= 0.

Using the continuity ofp, we can estimate the contribution of the facee to the sum in (5.13):

2
∑

i=1

∫

e

p1
Ei

GEi
· nEi

dS =
2

∑

i=1

∫

e

(p1
Ei

− p)GEi
· nEi

dS

≤
2

∑

i=1

‖p − p1
Ei
‖L2(e) ‖Ge

Ei
‖(L2(e))3

≤
2

∑

i=1

v−1/2
∗ (C∗

face)
1/2hEi

‖p‖H2(Ei)|Ge
Ei
| |Ei|1/2

≤
2

∑

i=1

C∗
3,b h‖p‖H2(Ei) |||GE|||Ei

.

(5.15)

Third, we consider the case of a moderately curved facee shared by two elementsE1 andE2.
Due to Assumption(C1), only the component ofGE in the direction of̃ne

E will be continuous
acrosse. However, we have obviously from (2.4) that

∫

e

q0(n
e
Ei

− ñe
Ei

) dS = 0 (5.16)

for i = 1, 2 and every constantq0. Adding and subtracting̃nEi
, and then using (5.16) in the first

term and the continuity ofp andGE · ñE in the second term, we get

2
∑

i=1

∫

e

p1
Ei

GEi
· nEi

dS =
2

∑

i=1

∫

e

(p1
Ei

− p0
Ei

)GEi
· (nEi

− ñEi
) dS

+
2

∑

i=1

∫

e

(p1
Ei

− p)GEi
· ñEi

dS.

(5.17)
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The second term in (5.17) can be estimated exactly as in (5.15):

2
∑

i=1

∫

e

(p1
Ei

− p)GEi
· nEi

dS ≤
2

∑

i=1

C∗
3,b h‖p‖H2(Ei) |||G|||Ei

. (5.18)

To estimate the first term, we finally use the fact thate is moderately curved, and in particular
inequality (2.6):

∫

e

(p1
Ei

− p0
Ei

)GEi
· (nEi

− ñEi
) dS ≤ σ∗|e|1/2‖p1

Ei
− p0

Ei
‖L2(e) ‖Ge

Ei
‖(L2(e))3

≤ σ∗v
−1/2
∗ C∗∗

facehEi
‖p‖H1(Ei)|Ge

Ei
| |Ei|1/2

≤ C∗
3,m h‖p‖H2(E) |||G|||E

(5.19)

whereC∗∗
face depends only onC∗

app andC∗
agm while C∗

3,m also depends on the constantv∗ appear-
ing in (2.7) and the constantσ∗ appearing in (2.6).

Collecting (5.14), (5.15), (5.17), (5.18), and (5.19) and noting that every element appears
only as many times as the number of its faces, we prove the assertion of the lemma. ¤

Combining (5.10), (5.12) and (5.13) with (5.4), we get the main convergence result.

Theorem 5.1 Let (p, ~F ) be the solution of (2.1) and(pd, Fd) be the solution of (3.19). More-
over, letFI be the interpolant of~F introduced in (3.8). Then, under assumptions(P1), (M1)–
(M3) and(S1)–(S2), we have

|||FI − Fd|||Xd ≤ C∗
F h ‖p‖H2(Ω) (5.20)

where the constantC∗
F is independent ofh andp.

We note that the constantC∗
F in (5.20) grows linearly with the parameterσ∗ defining moder-

ately curved faces.

5.2 Error estimates for the scalar variable

The estimates for the scalar variable mimic closely (but notexactly) the corresponding results
for flat faces obtained in [8]. We report them for the convenience of the reader.

As is [8], the main estimate is based on a sort of duality estimate, and to get a fullO(h)
order of convergence we assume thatΩ is convex. Lower order of convergence could clearly be
obtained under less restrictive assumptions.

Theorem 5.2 Under assumptions of Theorem 5.1, plus the convexity ofΩ, we have

|||pd − pI |||Qd ≤ C∗
pr,1 h

(

‖p‖H2(Ω) + ‖b‖H1(Ω)

)

(5.21)

where the constantC∗
pr,1 is independent ofh, p andb.
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Proof.Let ψ be the solution of

−div(K∇ψ) = pI − pd in Ω

ψ = 0 on∂Ω
(5.22)

where, for simplicity, we identifiedpd−pI with the corresponding piecewise constant function.
The convexity ofΩ implies that there exists a constantC∗

Ω, depending only onΩ, such that

‖ψ‖H2(Ω) ≤ C∗
Ω |||pd − pI |||Qd . (5.23)

We set~G = K∇ψ and denote byGI its interpolant. Then, using (3.17) and (5.22) we have

DIVd GI = (div(K∇ψ))I = div(K∇ψ) = pd − pI . (5.24)

Finally, we denote byψ1 a piecewise linear approximation ofψ that satisfies (5.7) for eachE
in Ωh. Using (5.24), then (4.1), then (3.6) and (5.24), then integrating by parts, and finally
integrating once more by parts and using (2.1), we get

|||pd − pI |||2Qd = [DIVd GI , pd − pI ]Qd

= [Fd, GI ]Xd − [DIVd GI , pI ]Qd = [Fd, GI ]Xd −
∫

Ω

p div(K∇ψ) dV

= [Fd, GI ]Xd +

∫

Ω

K∇ p · ∇ψ dV = [Fd, GI ]Xd +

∫

Ω

b ψ dV.

Now, using the above equation the definition ofGI and adding and subtracting terms, we have

|||pd − pI |||2Qd = [Fd, (K∇ψ)I − (K∇ψ1)I ]Xd + [Fd, (K∇ψ1)I ]Xd +

∫

Ω

b ψ dV

= J1 + [Fd, ((K − K̃)∇ψ1)I ]Xd + [Fd, (K̃∇ψ1)I ]Xd +

∫

Ω

b ψ dV

= J1 + J2 + [Fd, (K̃∇ψ1)I ]Xd +

∫

Ω

b ψ dV. (5.25)

As in (5.10), the termJ1 can be easily bounded by

J1 ≡ [Fd, (K∇ψ)I − (K∇ψ1)I ]Xd ≤ C∗
I1

h |||Fd|||Xd ‖ψ‖H2(Ω). (5.26)

The termJ2 is bounded as in (5.11), (5.12) by

J2 ≡ [Fd, ((K − K̃)∇ψ1)I ]Xd ≤ C∗
I2

h |||Fd|||Xd ‖ψ‖H2(Ω). (5.27)

For the third term in the last line of (5.25) we can first use (5.1) to obtain

[Fd, (K̃∇ψ1)I ]Xd =
∑

E∈Ωh

∫

∂E

ψ1(Fd)E · nE dS −
∫

Ω

bψ1 dV.

With the help of (5.13), we get then
∣

∣

∣

∣

[Fd, (K̃∇ψ1)I ]Xd +

∫

Ω

b ψ dV

∣

∣

∣

∣

≤ C∗
I3

h |||Fd|||Xd ‖ψ‖H2(Ω) +

∣

∣

∣

∣

∫

Ω

(b ψ − bψ1) dV

∣

∣

∣

∣

(5.28)

16



where the last term is easily bounded by2 C∗
app h ‖b‖H1(Ω) ‖ψ‖H1(Ω). Collecting the above in-

equalities (5.25) - (5.28), we obtain

|||pd − pI |||2Qd ≤ C∗ h
{

|||Fd|||Xd + ‖b‖H1(Ω)

}

‖ψ‖H2(Ω)

that combined with estimates (5.23), Theorem 5.1 and Lemma 4.1 completes the proof of the
theorem. ¤

It is interesting to note that, if we had, in each elementE, a suitable lifting operatorRE from
∂E to the interior ofE, a better estimate for the scalar variable would be obtained. But first, we
recall the following result which is proved in [8].

Lemma 5.2 Assume that for every elementE in Ωh we have a lifting operatorRE acting onXd
E

(the restriction ofXd to E) and with values in(L2(E))3 such that

RE(GE)
∣

∣

e
≡ Ge

E on ∂E

div RE(GE) ≡ (DIVd G)E in E
(5.29)

for all G ∈ Xd, and
RE(GI

E) = ~G (5.30)

for all ~G constant onE. Then, the choices

{K̃}i,j :=
1

|E|

∫

E

{K}i,j dV

and

[F, G]E :=

∫

E

K̃−1RE(FE) · RE(GE) dV

will automatically satisfy (5.2) and (5.1). If moreover there exist two positive constantsc∗R and
C∗

R, independent ofE, such that

c∗RhE ‖RE(G)‖2
(L2(∂E))3 ≤ ‖RE(G)‖2

(L2(E))3 ≤ C∗
RhE ‖RE(G)‖2

(L2(∂E))3 (5.31)

for all G ∈ Xd, then (3.15) will also hold with constantss∗ andS∗ depending only onc∗R, C∗
R

and on the constantsκ∗, κ∗ appearing in (2.2).

The next result shows the superconvergence of the scalar variable in the mesh dependentL2

norm.

Theorem 5.3 In addition to the assumptions of Theorem 5.2, we assume that for each element
E there exists a lifting operatorRE with the properties (5.29), (5.30) and (5.31). Then, the
choice

[F, G]E :=

∫

E

K−1RE(FE) · RE(GE) dV (5.32)

will give
|||pd − pI |||Qd ≤ C∗

pr,2 h2
(

‖p‖H2(Ω) + ‖b‖H1(Ω)

)

(5.33)

where the constantC∗
pr,2 is independent ofh, p andb.
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Proof. Let ~G be a vector-valued function in(H1(E))3 andGI be its interpolant. Using proper-
ties (5.31) and (4.10), we get

‖RE(GI)‖(L2(E))3 ≤
C∗

R

β∗
s

‖~G‖1,h,E. (5.34)

We denote now by~G0 the integral average (component-wise) of~G over E. Using property
(5.30), estimate (5.34) and the approximation result (5.6)we have then

‖RE(GI) − ~G‖(L2(E))3 ≤ ‖RE(GI − GI
0)‖(L2(E))3 + ‖~G0 − ~G‖(L2(E))3

≤ C∗
R

β∗
s

‖~G − ~G0‖1,h,E + ‖~G0 − ~G‖(L2(E))3

≤ C∗
RahE‖~G‖(H1(E))3

(5.35)

where the constantCRa depends only onC∗
R, β∗

s , andC∗
app.

Now, we set~G = K∇ψ whereψ is the solution of (5.22). LetψI be the piecewise constant
interpolant ofψ as in (3.6), and letR(GI) be such thatR(GI)|E = RE(GI

E) for all elementsE.
Following essentially [11] and using (5.24), then (4.1), then (3.6) and (5.24) (as in the previous
proof) with (5.29), then integrating by parts, and finally using (2.1) and (5.32), we get

|||pd − pI |||2Qd = [DIVd GI , pd − pI ]Qd = [Fd, GI ]Xd −
∫

Ω

p div R(GI) dV

= [Fd, GI ]Xd +

∫

Ω

∇ p · R(GI) dV = [Fd, GI ]Xd +

∫

Ω

K−1K∇ p · R(GI) dV

=

∫

Ω

K−1(R(Fd) − ~F ) R(GI) dV.

Adding and subtracting~G, we get

|||pd − pI |||2Qd =

∫

Ω

K−1(R(Fd) − ~F ) (R(G) − ~G) dV +

∫

Ω

K−1(R(Fd) − ~F ) ~G dV

= J3 +

∫

Ω

(R(Fd) − ~F )∇ψ dV = J3 −
∫

Ω

ψ div(R(Fd) − ~F ) dV

= J3 −
∫

Ω

(bI − b)ψ dV

= J3 −
∫

Ω

(bI − b)(ψ − ψI) dV = J3 + J4. (5.36)

The termsJ3 andJ4 can be easily bounded using the previous estimates and usualarguments.
Indeed, the triangle inequality, then (5.31), and finally (5.20) and (5.35) imply that

‖R(Fd) − ~F‖(L2(Ω))3 ≤ ‖R(Fd − FI)‖(L2(Ω))3 + ‖R(FI) − ~F‖(L2(Ω))3

≤ C∗
R|||Fd − FI |||Xd + ‖R(FI) − ~F‖(L2(Ω))3

≤ C h ‖p‖H2(Ω). (5.37)
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Using (5.35) and (5.23), we get

‖R(GI) − ~G‖(L2(Ω))3 ≤ C∗
Rah‖~G‖(H1(Ω))3 ≤ C∗

RaC
∗
Ωh|||pd − pI |||Qd . (5.38)

The approximation property (5.6) gives the following estimates:

|‖bI − b‖L2(Ω) ≤ C∗
app h‖b‖H1(Ω) (5.39)

and
‖ψ − ψI‖L2(Ω) ≤ C∗

app h‖ψ‖H1(Ω) ≤ C∗
appC

∗
Ω h |||pd − pI |||Qd . (5.40)

Inserting estimates (5.37)-(5.40) into (5.36), we prove the assertion of the theorem. ¤

6 Conclusion

We have developed a new mimetic finite difference method for the diffusion problem on un-
structured polyhedral meshes with moderately and stronglycurved faces. We have proved the
optimal convergence rates for both the scalar and vector variables.
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Appendix A

Proof of Lemma 2.1.Definition 2.1 implies that there exists a bijective mappingϕ : b0 → IR
such that the restriction ofΦ to b0 can be written as

x′ = xϕ(x, y), y′ = yϕ(x, y), z′ = h0ϕ(x, y). (A.1)

Using assumption (2.3), it is not difficult to check that for every pair of pointsP1 andP2 on b0,
and their imagesP′

1 = Φ(P1) andP′
2 = Φ(P2) on e, we have

|P′
1 − P′

2| ≤ τ |P1 − P2| and |P1 − P2| ≤ τ |P′
1 − P′

2|. (A.2)

By basic vector calculus, we have
∫

e

n dS =

∫

b0

∂P′

∂x
∧ ∂P′

∂y
dx dy. (A.3)

Differentiating (A.1), we get

∂P′

∂x
= (ϕ + xϕx, yϕx, h0ϕx) and

∂P′

∂y
= (xϕy, ϕ + yϕy, h0ϕy).
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A lengthy but easy calculation gives

∂P′

∂x
∧ ∂P′

∂y
=

(

−h0ϕϕx, −h0ϕϕy, ϕ2 + ϕ(xϕx + yϕy)
)

. (A.4)

Now, let ξ ≡ (ξ1, ξ2, h0) be a point inb0 andg = ϕ2/2. Using (A.4) and (A.3) in (2.4), and
then integrating by parts, we get

ñ · ξ =
1

|e|

∫

b0

h0(2g + (x − ξ1)gx + (y − ξ2)gy) dx dy

=
h0

|e|

(
∫

b0

(2g − g − g) dx dy +

∫

∂b0

g {(x − ξ1)νx + (y − ξ2)νy} dℓ

)

where(νx, νy) is the outward unit normal to∂b0 lying in the planez = h0. Let gmin be the
minimum value ofg on∂b0. Sinceξ is internal tob0 andb0 is convex, we have

(x − ξ1)νx + (y − ξ2)νy ≥ 0.

Using the mean value theorem for integrals (sinceg is also nonnegative) and then using the
divergence theorem onb0 (in the planez = h0) we have then

ñ · ξ ≥ gmin
h0

|e|

∫

∂b0

{(x − ξ1)νx + (y − ξ2)νy} dℓ = (ϕ2)minh0
|b0|
|e| .

Thus, the Cauchy-Schwarz inequality implies that

|ñ| ≥ (ϕ2)min
h0

|ξ|
|b0|
|e| . (A.5)

To complete the proof, we have to estimate three factors in the right hand side of (A.5). From
(A.2), we have easily that

|e| ≤ τ 2 |b0|. (A.6)

Next, using (2.3) and taking any pointP on ∂b0, its image pointP′ = Φ(P) on ∂e, and the
vertexV = V′ (the origin), we have

|P|
|P′| ≡

|P − V|
|P′ − V′| ≤ τ.

Thus, (A.1) implies that

(ϕ2)min ≥ 1

τ 2
. (A.7)

Finally, we recall that the pyramidP0 contains a sphere of radiusr ≥ γd0, whered0 is the
diameter ofP0. Since|ξ| = |ξ − V| ≤ d0 and2r ≤ h0, we deduce that

|ξ| ≤ d0 ≤
r

γ
≤ h0

2γ
. (A.8)

The result follows from estimates (A.5), (A.6), (A.7), and (A.8). ¤
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