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ABSTRACT. Chimera is a variant of Schwarz’ algorithm which is used in CFD
to avoid meshing complicated objects. In a previous publication [3] we proposed
an implementation for which convergence could be shown except that elliptic-
ity was not proved for the discretized bilinear form with quadrature rules. Here
we prove that the bilinear form of the discrete problem is strongly elliptic with-
out compatibility condition for the mesh of the subdomains in their region of
intersection.

Résuḿe
Chimera est une variante de l’algorithme de Schwarz utilis´e en mécanique

des fluides numérique afin d’éviter le maillage d’objet trop compliqué. Dans [3]
nous avions proposé une implémentation dont on peut démontrer la convergence
sauf pour l’ellipticité que nous avions laissé en conjecture. On la démontre ici,
sans hypothèse de compatibilité entre les maillages des différentes regions.

1. VERSION FRANÇAISE ABRÉGÉE

La méthode Chimère [10] vise à résoudre des équations aux dérivées partielles
dans
 par décomposition en sous-domainesf


i

g

N

1

avec recouvrement afin d’eviter
d’avoir à utiliser un maillage global. L’algorithme proposé par Steger est en fait
un algorithme de Schwarz. Dans [3] nous avons proposé de décomposer la so-
lution u de l’EDP en N parties, chacune dansH1

0

(


i

). Nous avons montré que
la méthode avec régularisation converge. Sa discretization (4) pose un problème
numérique d’implémentation car on doit calculer une int´egrale d’un produit de
fonctions définies sur deux triangulations différentes.
Nous montrons ici que si les sommets des triangles des deux triangulations sont les
points de quadrature alors la méthode converge (avec ordreoptimal) car le lemme
de Strang s’applique [3] et la forme bilineaire discrète est fortement elliptique. Ce
point technique et difficile fait l’objet de cette note (les dtails sont accessibles dans
[1]) . La formule d’intégration est définie en (7) et le résultat démontré est en (9).
On montre aussi (cf. Lemme 1) que la décomposition d’une fonction w en une
somme de fonctions affines par morceaux sur chacun des maillages est en quelque
sorte unique.
.

2. INTRODUCTION

The Chimera method [10] was proposed to bypass the difficultyof generating
general unstructured meshes for complex objects like airplanes. It is also quite
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convenient to improve accuracy of the fictitious domain method as it provides a
corrector solved locally on a body-fitted fine mesh around each complex object
independently. The method is presented in dimension two on the Laplace equation,
but it applies to any elliptic system and also in 3d.

More precisely letu
e

be the (exact) solution of

(1) ��u

e

= f in 
; u

e

= 0 on� (� � �
);

where
 is a connected open set. Assume that we are given a decomposition of

 = 


1

[ 


2

such that boht

1

and

2

are open.

Let T
h

be a triangulation of

1

andK
H

a triangulation of

2

. We assume that
both decompositions are regular and quasi-uniform, in the sense that, ifh

M

andh
m

are the maximum and minimum edges inT
h

, andH
M

andH
m

are the maximum
and minimum edges inK

H

, then there exists two constantsC
T

andC
K

such that

(2) h

M

� C

T

h

m

H

M

� C

K

H

m

:

Without loss of generality we can also assume, to fix the ideas, that

(3) h

M

� H

M

:

Let V
h

andV
H

be the corresponding spaces of piecewise linear continuousfunc-
tions. We shall denote byV

0h

andV
0H

the corresponding subspaces ofH

1

0

(


1

)

andH1

0

(


2

), respectively.

A realistic way of writing the discrete analogue of (1) in thefinite element sub-
spaces is to proceedby translation: we first introduce suitable numerical integra-
tion formulae( ; )

h

and( ; )
H

in 


1

and

2

respectively, and then, at each step, we
solve the problem: Findfun+1; vn+1g 2 V

0h

� V

0H

solution of

(4)

�

�

�

�

�

(r(u

n+1

+ v

n

);rû)

h

= (f; û)

h

8û 2 V

0h

;

(r(v

n+1

+ u

n

);rv̂)

H

= (f; v̂)

H

8v̂ 2 V

0H

:

In [3], [7] it is shown that the method converges if both equations are regularized
by adding terms like�(un+1 � u

n

; û) and�(vn+1 � v

n

; v̂) respectively to the
first and second equation in (4); we have also proposed to use Gauss quadratures
on the gradients, but a proof of convergence in the general case was not given.
Here we take up the idea but put the quadrature points at the vertices instead of
inside the triangles and show that the method works in a rather general setting;
we point out however that the previous integration formula allowed an alternative
implementation (by penalty, i.e. putting a large number on the diagonal terms of
the lines corresponding to a boundary node in the discrete linear system (see [7]))
that is not allowed here.

In the following Section, we describe in more details the assumptions on the
decompositionsT

h

andK
H

, and the numerical integration formula. Then, in the
final Section, we prove a basic ellipticity result for the corresponding bilinear form,
and we indicate how this implies the convergence of the iterative methods.
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FIGURE 1. To compute the stream function around a two-pieces
airfoil, namely the solution of� = 0 with Dirichlet data by the
Chimera method (i.e. Schwarz’ algorithm), we build a finer mesh
around the smaller airfoil (on the left) and a coarse mesh forthe
rest of the domain, with an elliptic hole in place of the smallairfoil
(the scale for both domains is not the same on this picture). The
whole domain is the union of the fine and coarse domains.

3. ASSUMPTIONS ON THE DECOMPOSITIONS

In what followsT will denote a generic triangle of the triangulationT
h

of 

1

andK a generic triangle of the triangulationK
H

of 

2

.
Let q1

T

; :::; q

R

T

be the vertices ofT
h

, andq1
K

; :::; q

S

K

be the vertices ofK
H

. It will
be convenient also to denote the same byq

i

(T ) (respq
i

(K)), i = 1; 2; 3, when we
refer to the 3 vertices of a triangle.

A crucial assumption that we make is that, in

1

\ 


2

, each nodeq
T

of T
h

is
internal to a triangleK, and each nodeq

K

ofK
H

is internal to a triangleT . This, at
first sight, sounds rather restrictive. However, it is clearthat one can always reach
such a situation by a very small change in the position of the vertices. As we shall
see in the next section, a vertex that isvery closeto an edge of the other decom-
position will not affect the overall quality of the method; in fact this assumption
is necessary only for notational convenience as it makes ourquadrature definition
unique.

The following lemma will be useful in the sequel.

Lemma 1. If two functionsu 2 V
h

andv 2 V
H

coincide on a subsetS of

1

\


2

,
then bothu andv are linear (not just piecewise linear) inS.

Proof. We notice first that�u = �v is a distribution with support on the edges
of T

h

and a distribution with support on the edges ofK

H

. But the two sets have



4 FRANCO BREZZI , JACQUES-LOUIS LIONS AND OLIVIER PIRONNEAU

in common only isolated points, where an edge ofT

h

crosses an edge ofK
H

. We
finally observe that�u is in H�1

(
) (actually, inHs

(
) for s < �1=2), and
hence, as a distribution, its support cannot contain isolated points. Consequentlyu
is harmonic inS, and being piecewise linear is globally linear. �

Thanks to the previous result, we can introduce the space

(5) V

hH

:= V

0h

� V

0H

:

As we decided to identify functions ofV
0h

and ofV
0H

with their extension by zero
to the whole
, every functionw

hH

in V

hH

can be written, in a unique way, as
w

hH

= u

h

+ v

H

with u
h

2 V

0h

andv
H

2 V

0H

.

4. QUADRATURE

We are going to introduce now the numerical integration formula to be used in
(4). Recall that the quadrature formula with integration points at the vertices is
exact for polynomials of degree less than or equal to one. In particular, for a given
triangle ^

T one has

(6)
Z

^

T

g dxdy =

j

^

T j

3

X

i=1;2;3

g(q

i

) 8g 2 P

1

(

^

T ):

Hence we introduce the following quadrature rule.

(ru;rv)

hH

:=

X

T2T

h

jT j

3

X

i=1;2;3

r(u

jT

) � rv

I




1

+ I




2

j

q

i

(T )

+

X

K2K

H

jKj

3

X

j=1;2;3

r(v

jK

) � ru

I




1

+ I




2

j

q

j

(K)

:

(7)

whereI



(x) = 1 if x 2 
 and zero otherwise.

Remark 1. The notationr(u

jT

) is used to indicate that we first restrict the func-
tion u to T , and then we compute its gradient (which is actually constant in T ). A
similar interpretation holds forr(v

jK

).

Our main hypothesis, that each vertex in

1

\ 


2

is strictly inside a triangle
of the other triangulation, allows to write (7) with no ambiguity. If it was not the
case, for instance if a vertexq

i

(T ) were on an edge ofK
H

, thenrv at q
i

(T ),for a
functionv 2 V

0H

, would have two possible meanings. Hence, moving slightly the
vertex would amount to choosing arbitrarily one of the two meanings, and hence
one quadrature formula. Since there is no constant in the proof that follows which
depends on the distance of vertices from the edges of the other triangulation, we
see that the hypothesis is purely formal.

The quadrature formula is obviously of order one for smooth functions and so
by Strang’s lemma the method will converge whenh;H tend to zero provided that
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the bilinear form in (7) is coercive.

In the next Section we are going to prove that the integrationformula (7) gives
rise to a norm in the spaceV

hH

, equivalent to the usual norm inH1

0

(
).

5. ELLIPTICITY WITH NUMERICAL INTEGRATION

We start by introducing, forw = u+ v 2 V

hH

, the expression

jwj

1;�

�ju+ vj

2

1;�

:= h

2

M

X

T2T

h

X

i=1;3

jr(u

jT

) +rvj

2

(q

i

(T ))

+H

2

M

X

K2K

H

X

j=1;3

jru+r(v

jK

)j

2

(q

j

(K)):

(8)

The notation has to be intended as in Remark 1. It is clear thatthe quantity
(r(u+v);r(u+v))

hH

can be bounded (from above and from below) byju+vj

2

1;�

,
with constants independent ofh

M

andH
M

. We are now going to show that on the
spaceV

hH

they are both equivalent tojjr(u + v)jj

2

L

2

(
)

. Indeed we have the
following theorem.

Theorem 1. For everyw = u+ v 2 V

hH

we have:

(9) ju+ vj

1;�

� Cjjr(u+ v)jj

L

2

(
)

whereC depends only onC
T

andC
K

.

Proof. See[1].
On the other hand, the converse inequality is trivial, and hence our equivalence

is established.
Since

�

(ru;ru)

hH

�

1=2

is a norm onV
hH

= V

0h

� V

0H

, all classical results
on the convergence of iterative schemes can be easily applied. For instance, let
� � 0 be some positive scalar, letu0; v0 be arbitrary functions ofV

0h

andV
0H

respectively, and consider the loop:

(10)

�

�

�

�

�

�

�

�nd fu

n+1

; v

n+1

g 2 V

0h

� V

0H

solution of

�(u

n+1

� u

n

; û)

�

+ (r(u

n+1

+ v

n

);rû)

hH

= (f; û)

�

8û 2 V

0h

;

�(v

n+1

� v

n

; v̂)

�

+ (r(v

n+1

+ u

n

);rv̂)

�

= (f; v̂)

�

8v̂ 2 V

0H

;

where( ; )
�

denotes a suitable integration formula, possibly based, as(7), on ver-
tices. Notice that this choice is less crucial, as it will be used either for right-hand
sides, or for products of functions which belong both to the same space (i.e. both
in V

0h

or both inV
0H

). It is clear that, for� = 0, (10) is a particular case of the
abstract overlapping Schwarz method analysed in [8]. It is easy to see that the ab-
stract results of [8] imply the geometric convergence of thealgorithm for any fixed
pair of decompositions, although some additional work would be needed to check
whether the contraction constant stays uniformly away from1 when the meshsizes
h

M

andH
M

go to zero. On the other hand, for� > 0 the analysis of [7] of the
algorithm (10) applies unchanged.
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FIGURE 2. Stream function around a two-pieces airfoil, namely
solution of� = 0 with Dirichlet data by the Chimera method
(i.e. Schwarz algorithm). The convergence is obtained after 4
iterations.

6. NUMERICAL TEST

Potential flow around an airfoil involves solving Laplace’sequation in a domain
outside the airfoil. The finite element method of order one ontriangles has been
used. The domain is divided in two: a domain near the airfoil which is triangulated
with small triangles and the rest of the domain which uses bigger triangles. Here
the domain has two airfoils, a large one and a small one. The decomposition must
be such that the physical domain is the union of both domain, and the domains
must overlap. Then Schwarz algorithm is used with translation and quadratures at
the vertices as explained above. Four iterations are sufficient for convergence to
machine accuracy.
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