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ABSTRACT. Chimera is a variant of Schwarz’ algorithm which is used FDC
to avoid meshing complicated objects. In a previous putiting3] we proposed
an implementation for which convergence could be shownpxtet elliptic-
ity was not proved for the discretized bilinear form with duature rules. Here
we prove that the bilinear form of the discrete problem isrggty elliptic with-
out compatibility condition for the mesh of the subdomaingthieir region of
intersection.
Résune

Chimera est une variante de I'algorithme de Schwarz at#is”’mécanique
des fluides numérique afin d’éviter le maillage d’objeptommpliqué. Dans [3]
nous avions proposé une implémentation dont on peut déerda convergence
sauf pour I'ellipticité que nous avions laissé en conjeet On la démontre ici,
sans hypothése de compatibilité entre les maillagesitfésehtes regions.

1. VERSION FRANCAISE ABREGEE

La méthode Chimere [10] vise a résoudre des équatiorglarivées partielles
dansQ par decomposition en sous-domaifi€s } ¥ avec recouvrement afin d’eviter
d’avoir a utiliser un maillage global. Lalgorithme prog® par Steger est en fait
un algorithme de Schwarz. Dans [3] hous avons proposé dentg@ser la so-
lution v de 'EDP en N parties, chacune dafg (2;). Nous avons montré que
la méthode avec régularisation converge. Sa discritizéd) pose un probleme
numérique d’'implémentation car on doit calculer uneegmélle d’'un produit de
fonctions définies sur deux triangulations différentes.

Nous montrons ici que si les sommets des triangles des dangtitations sont les
points de quadrature alors la méthode converge (avec optireal) car le lemme
de Strang s’appligue [3] et la forme bilineaire discretefetement elliptique. Ce
point technique et difficile fait I'objet de cette note (ldgitk sont accessibles dans
[1]) . La formule d’intégration est définie en (7) et le uéat demontré est en (9).
On montre aussi (cf. Lemme 1) que la décomposition d’'unetfon w en une
somme de fonctions affines par morceaux sur chacun des gesilisst en quelque
sorte unique.

2. INTRODUCTION

The Chimera method [10] was proposed to bypass the diffiafltyenerating
general unstructured meshes for complex objects likeaxgd. It is also quite
1
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convenient to improve accuracy of the fictitious domain rodths it provides a
corrector solved locally on a body-fitted fine mesh arouncheammplex object
independently. The method is presented in dimension twa®haplace equation,
but it applies to any elliptic system and also in 3d.

More precisely let., be the (exact) solution of

@ —Au,=finQ, wu,=00nT (' =09Q),

where(? is a connected open set. Assume that we are given a decoiopasit
Q = Q1 U Qg such that bohf2; and, are open.

Let 7, be a triangulation of); and Ky a triangulation of2,. We assume that
both decompositions are regular and quasi-uniform, inéhesthat, if.;; andh,,
are the maximum and minimum edgesT7ifn and Hj; and H,,, are the maximum
and minimum edges ifC 7, then there exists two constarits- andC'x such that

Without loss of generality we can also assume, to fix the idbas
) ha < Hy.

Let V,, andVy; be the corresponding spaces of piecewise linear continfumes
tions. We shall denote byp;, and Vo the corresponding subspacesif(£2;)
and H} (Q2), respectively.

A realistic way of writing the discrete analogue of (1) in firégte element sub-
spaces is to procedu) translation we first introduce suitable numerical integra-
tion formulae(, ), and(, )z in £, andQs respectively, and then, at each step, we
solve the problem: Findu™*!, v"*1} € Vg, x Vo solution of

(V(un+l + ,Un)av'&)h = (faﬂ)h Vi € %ha
(V(Un_H + u"),V@)H = (f,f))H Vo € V.

In [3], [7] it is shown that the method converges if both equas are regularized
by adding terms likes(u"*! — u™,4) and B(v" ! — v™, %) respectively to the
first and second equation in (4); we have also proposed to ases3juadratures
on the gradients, but a proof of convergence in the geness was not given.
Here we take up the idea but put the quadrature points at titieese instead of
inside the triangles and show that the method works in a ragbeeral setting;
we point out however that the previous integration formullewsed an alternative
implementation (by penalty, i.e. putting a large numberlmdiagonal terms of
the lines corresponding to a boundary node in the discretadisystem (see [7]))
that is not allowed here.

In the following Section, we describe in more details theuagstions on the
decompositions/;, and Ky, and the numerical integration formula. Then, in the
final Section, we prove a basic ellipticity result for theresponding bilinear form,
and we indicate how this implies the convergence of thetiteranethods.

(4)



ANALYSIS OF A CHIMERA METHOD 3

FIGURE 1. To compute the stream function around a two-pieces
airfoil, namely the solution oA+ = 0 with Dirichlet data by the
Chimera method (i.e. Schwarz’ algorithm), we build a finesme
around the smaller airfoil (on the left) and a coarse meshtfar
rest of the domain, with an elliptic hole in place of the snaafoil

(the scale for both domains is not the same on this picturee T
whole domain is the union of the fine and coarse domains.

3. ASSUMPTIONS ON THE DECOMPOSITIONS

In what followsT" will denote a generic triangle of the triangulatiGn of €,
and K a generic triangle of the triangulatidd; of €2,.

Let g, ..., ¢t be the vertices df},, andgl., ..., ¢7- be the vertices of 5. It will
be convenient also to denote the same}§¥’) (respq;(K)), i = 1,2, 3, when we
refer to the 3 vertices of a triangle.

A crucial assumption that we make is that,{in N €25, each nodey of 7y, is
internal to a triangld<, and each nodex of Ky is internal to a triangld”. This, at
first sight, sounds rather restrictive. However, it is clieat one can always reach
such a situation by a very small change in the position of #rdoes. As we shall
see in the next section, a vertex thav@y closeto an edge of the other decom-
position will not affect the overall quality of the method; in fact this asstiomp
is necessary only for notational convenience as it makesjaadrature definition
unique.

The following lemma will be useful in the sequel.

Lemma 1. If two functionsu € V}, andv € Vi coincide on a subse&f of 2; N,
then bothu, and v are linear (not just piecewise linear) ifi.

Proof. We notice first that\u, = Aw is a distribution with support on the edges
of 7, and a distribution with support on the edgeskif. But the two sets have
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in common only isolated points, where an edgé&/pttrosses an edge &f;;. We
finally observe thatAu is in H (Q) (actually, in H*(Q) for s < —1/2), and
hence, as a distribution, its support cannot contain isdlpbints. Consequentty
is harmonic inS, and being piecewise linear is globally linear.

Thanks to the previous result, we can introduce the space
(5) Vhr == Vo ® Von.

As we decided to identify functions @f,;, and ofV{z; with their extension by zero
to the wholef2, every functionw, g in V;,z can be written, in a unique way, as
wpg = up, + v With uy, € Vo, andvg € Vog.

4. QUADRATURE

We are going to introduce now the numerical integration igdartio be used in
(4). Recall that the quadrature formula with integrationngoat the vertices is
exact for polynomials of degree less than or equal to onealtiqular, for a given
triangle7” one has

6) /ngxdy = |3£| > gla) Vge Pi(T).

i=1,2,3

Hence we introduce the following quadrature rule.

17| Viugr) - Vv
(V. Vol = D 55 D, - HQ ey
TeTy, 1=1,2,3

v
* Z Z QJI:— Iq, |q]

Keky 7=1,2,3
wherelq(z) = 1if z € 2 and zero otherwise.

Remark 1. The notationV (ur) is used to indicate that we first restrict the func-
tion v to T', and then we compute its gradient (which is actually cortstafi’). A
similar interpretation holds foV (v|x ).

Our main hypothesis, that each vertex{in N Q5 is strictly inside a triangle
of the other triangulation, allows to write (7) with no ambity. If it was not the
case, for instance if a vertex(7') were on an edge df 7, thenVwv at¢;(T),for a
functionv € V4, would have two possible meanings. Hence, moving slighity t
vertex would amount to choosing arbitrarily one of the twaamags, and hence
one quadrature formula. Since there is no constant in thef phat follows which
depends on the distance of vertices from the edges of the wiaegulation, we
see that the hypothesis is purely formal.

(7)

The quadrature formula is obviously of order one for smoaihcfions and so
by Strang’s lemma the method will converge whierff tend to zero provided that
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the bilinear form in (7) is coercive.

In the next Section we are going to prove that the integrdtiomula (7) gives
rise to a norm in the spadé, 7, equivalent to the usual norm i} ().

5. ELLIPTICITY WITH NUMERICAL INTEGRATION

We start by introducing, fow = u 4+ v € V7, the expression

[wlis =lu+olf, =03 Y D IV(ur) + Vol (a(T))

TET, i=1,3
(8) , )
+HY Y Y IVu+ V(og) g (K)).
KeKp j=1,3

The notation has to be intended as in Remark 1. It is clearttigaguantity
(V(u+v), V(u+v)),g can be bounded (from above and from below)qbyvﬁ*,
with constants independent bf; and H;;. We are now going to show that on the
spaceV,, i they are both equivalent thV (u + U)Hiz(ﬂ)' Indeed we have the
following theorem.

Theorem 1. For everyw = u + v € Vg we have:
9) lu+ vl > Cl|V(u+ )20
whereC depends only oy and C'k .

Proof. See[1].

On the other hand, the converse inequality is trivial, anttbeour equivalence
is established.

Since ((Vu, Vu)hH)l/2 is a norm onV, 7 = Von @ Vom, all classical results
on the convergence of iterative schemes can be easily dppher instance, let
B > 0 be some positive scalar, laf,+° be arbitrary functions o¥;;, and Vz
respectively, and consider the loop:

find {u"*1,v" 1} € Vo, x Vop solution of
(10) B —u ), + (VU +0™), Va)ug = (f, ). Vi € Vo,
Bt — v ), + (V0" +u™), Vo). = (f,9)« Vo € Vo,

where(, ). denotes a suitable integration formula, possibly base@?)asn ver-
tices. Notice that this choice is less crucial, as it will lsed either for right-hand
sides, or for products of functions which belong both to thme space (i.e. both
in Vo, or both inVg ). Itis clear that, for3 = 0, (10) is a particular case of the
abstract overlapping Schwarz method analysed in [8]. lagydo see that the ab-
stract results of [8] imply the geometric convergence ofalgerithm for any fixed
pair of decompositions, although some additional work \@da¢ needed to check
whether the contraction constant stays uniformly away fiowhen the meshsizes
har and Hyr go to zero. On the other hand, f8r> 0 the analysis of [7] of the
algorithm (10) applies unchanged.
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FIGURE 2. Stream function around a two-pieces airfoil, namely
solution of Ay = 0 with Dirichlet data by the Chimera method
(i.,e. Schwarz algorithm). The convergence is obtainedr dfte
iterations.

6. NUMERICAL TEST

Potential flow around an airfoil involves solving Laplaceuation in a domain
outside the airfoil. The finite element method of order ondr@ngles has been
used. The domain is divided in two: a domain near the airfbilclv is triangulated
with small triangles and the rest of the domain which usegdidriangles. Here
the domain has two airfoils, a large one and a small one. Toemdpgosition must
be such that the physical domain is the union of both domaid,the domains
must overlap. Then Schwarz algorithm is used with trarmtaéind quadratures at
the vertices as explained above. Four iterations are rifi¢or convergence to
machine accuracy.
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