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Abstrat. In reent times, several attempts have been made to reover some

information from the subgrid sales and transfer them to the omputational sales.

Many stabilising tehniques an also be onsidered as part of this e�ort. We disuss

here a framework in whih some of these attempts an be set and analysed.
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In the numerial simulation of a ertain number of problems, there are physial

e�ets that take plae on a sale whih is muh smaller than the smallest one representable

on the omputational grid, but have a strong impat on the larger sales, and, therefore,

annot be negleted without jeopardizing the overall quality of the �nal solution.

In other ases, the disretised sheme laks the neessary stability properties beause

it does not treat in a proper way the smallest sales allowed by the omputational grid. As

a onsequene, some "smallest sale mode" appears as abnormally ampli�ed in the �nal

numerial results. Most types of numerial instabilities are produed in this way, as the

hekerboard pressure mode for nearly inompressible materials, or the �ne-grid spurious

osillations in onvetion-dominated ows. See for instane [21℄ and the referenes therein

for a lassial overview of several types of these and other instabilities of this nature.

In the last deade it has beome lear that several attempts to reover stability, in

these ases, ould be interpreted as a way of improving the simulation of the e�ets of

the smallest sales on the larger ones. By doing that, the small sales an be seen by the

numerial sheme and therefore be kept under ontrol.

These two situations are quite di�erent, in nature and sale. Nevertheless it is not

unreasonable to hope that some tehniques that have been developed for dealing with the

latter lass of phenomena might be adapted to deal with the former one. In this sense, one

of the most promising tehnique seems to be the use of Residual-Free Bubbles (see e.g.

[10℄, [19℄.) In the following setions, we are going to summarise the general idea behind it,

trying to underly its potential and its limitations. In partiular, we shall �rst present in

Setion 1 the basi priniples of the strategy: divide and onquer, stati ondensation and

approximate solution. In Setion 2 we present some examples of toy-problems, related to

advetion dominated ows, omposite materials and visous inompressible ows, in order
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to show how the general theory an be applied. We shall see in partiular that several

other methods, like SUPG, Petrov-Galerkin, upsaling methods, multisale methods, and

others an atually be seen as being variants of the RFB proedure. Finally, in Setion 3,

we disuss some questions related to the implementation of these methods.

1 The augmented problem and the bubble equation

At a very general level, the Residual-Free Bubbles approah an be summarised as follows.

We start with a given problem, that for simpliity we assume to be linear, and in variational

form:

(1)

8

<

:

�nd u 2 V suh that :

L(u; v) = (f; v); 8v 2 V:

We assume that we are given a disretised problem:

(2)

8

<

:

�nd u

h

2 V

h

suh that :

L(u

h

; v

h

) = (f; v

h

); 8v

h

2 V

h

;

where V

h

� V is a �nite element spae, orresponding to a given deomposition T

h

of the

omputational domain. To �x the ideas, we shall use a two-dimensional lexion, and in our

examples we shall always assume that the omputational domain is two-dimensional. The

basi idea, however, is quite general, and ould be applied in any dimension. We suppose,

roughly speaking, that T

h

is the �nest grid we are ready to a�ord in the omputation, in

the sense that we are not ready to solve a �nal system having muh more unknowns than

the dimension of V

h

.

To the spae V and to the deomposition T

h

we assoiate the spae of bubbles

B(V ;T

h

) de�ned as

(3) B(V ;T

h

) := �

K

B

V

(K)

where, for eah K in T

h

,

(4) B

V

(K) := fvj v 2 V; supp(v) � Kg:

Let us see some examples that will help understanding how the spaes B

V

(K) hange for

di�erent hoies of V . As a �rst, and most typial example, onsider the ase V = H

1

0

(
).

Then learly B

V

(K) = H

1

0

(K) (the usual bubbles). If however V = H

1

(
), then we still

have B

V

(K) = H

1

0

(K) for the elements internal to 
, but if K has one or more edges

on �
, there the elements of B

V

(K) are allowed to be di�erent from zero. On the other

hand, if we are dealing, for instane, with a problem written in mixed formulation, and

(5) V = H(div; 
)� L

2

(
);
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then the spae B

V

(K) will have the form B

V

(K) = �

B

(K)� U

B

(K) with

(6) �

B

(K) := f� 2 H(div;K); suh that � � n = 0 on �K \ 
g;

where, as usual, n represents the outward unit normal to �K, and

(7) U

B

(K) := L

2

(K):

In other ases, as for instane in plate bending problems, the spae V is H

2

0

(
), and

aordingly eah B

V

(K) = H

2

0

(K). And so on.

Problem (2) is now, temporarily and arti�ially, augmented by onsidering a new

subspae of V :

(8) V

A

:= V

h

+B

h

;

where B

h

has the form

(9) B

h

:= �

K

B

h

(K);

and, for every K in T

h

, B

h

(K) is a subset (possibly in�nite dimensional) of B

V

(K). The

augmented problem reads now:

(10)

8

<

:

�nd u

A

2 V

A

suh that :

L(u

A

; v

A

) = (f; v

A

); 8v

A

2 V

A

:

At this level of generality, we annot do better than assuming that (10) has a unique

solution for every right-hand side f 2 V

0

, although, in general, its solution will not be

omputable in pratie. In priniple, problem (10) should be able to take into aount all

the small sales that do not ross the boundaries of the elements K, (in a sense that, as

we have seen, depends on the nature of V .) This is a severe limitation, but orresponds

to a sort of divide and onquer priniple that might, in the end, ensure some feasibility

to the whole proedure. If neessary, the spae V

A

ould be further augmented, in a sort

of iterative, self-adaptive strategy. For instane, out of a previous resolution, we might

have hints that, on ertain edges of T

h

, there are one or two �ne grid-modes that should

be taken into aount. We might then add, for every suh edge e, the funtions having

support in the union of the elements having e as an edge, and having the ruial �ne-grid

mode as trae on e. For the sake of simpliity, we shall not disuss this option here, apart

from a short hint at the hand of the paper.

We now proeed to eliminate, at least formally, the bubble unknowns from problem

(10). The tehnique that we are going to use is well known in the Engineering pratie,

under the name of stati ondensation. However, here we apply it in a more general,

in�nite dimensional, ase.

The �rst problem that arises is that (8) might not orrespond to a diret sum. To

�x the ideas, if the original V

h

is made of all pieewise ubi ontinuous funtions, then
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4 Reent results in the treatment of subgrid sales

it already ontains one ubi bubble per element, that however might appear in B

h

as

well. Our hoie (roughly speaking) is to keep, as muh as possible, all the elements of

the intersetion B

h

\V

h

in B

h

, and redue, if neessary, V

h

, introduing a proper subspae

V

#

h

� V

h

. This rule, however, will not be the best one in every ase. Let us see some

examples in order to larify the situation.

Example 1.1 Assume as before that V = H

1

0

(
) and V

h

is made of pieewise ubi funtions.

Assume moreover that the spae B

h

is the biggest one allowed, that is B

h

= B(V ;T

h

),

given by (3) and (4). Then we have several hoies. For instane, we might take as V

#

h

the set of funtions ~v

h

that are polynomials of degree � 3 on the interelement boundaries,

and verify

(11) L~v

h

= 0

separately in eah element K, where L is the operator assoiated with the bilinear form

L. On the other hand, we an take as V

#

h

any spae of pieewise ubi ontinuous fun-

tions whose value an be determined in a unique way by their traes at the interelement

boundaries. For instane, any serendipity ubi element would do; see, as an example,

the element desribed in [12℄, page 50. Notie that these two hoies produe the same

augmented spae V

A

, and hene the same solution u

A

to (10).

Example 1.2 As another example assume now that V = H(div; 
)�L

2

(
) and its approx-

imation V

h

= �

h

�U

h

is made by lowest order Raviart-Thomas elements (see for instane

[3℄). Assume again that B

h

= B(V ;T

h

). Then we might take V

#

h

to be the spae �

h

�f0g

(all the pieewise onstant displaements are bubbles!). However, in most ases, for rea-

sons that will beome lear in a while, it will be more onvenient to keep the pieewise

onstants (that are in U

h

) in V

#

h

. This implies that we take now B

h

(K) = �

B

(K)�U

0

B

(K),

where �

B

(K) is given by (6) and

(12) U

0

B

(K) := L

2

0

(K) � fv 2 L

2

(K); suh that

Z

K

v dx = 0g:

In most ases, the use of bubbles in �

B

(K) whose normal omponent does not vanish on

the boundary �
 will be unneessary (and in partiular it would ompliate the notation.)

In these ases, we might use instead

(13) �

B

(K) := H

0

(div;K) � f� 2 H(div;K); suh that � � n = 0 on �Kg:

With these hoies we will have V

#

h

= V

h

, and B

h

(as given through (13) and (7)) will be

the spae of all pairs (�; v) 2 V suh that � has zero normal omponent at the boundary

of eah element, and v has zero mean value in eah element. The same hoie for B

h

would be suitable also in the ase of higher order Raviart-Thomas spaes (or, say, for

BDM spaes; see always [3℄), but then V

h

should lose all internal degrees of freedom, apart

from the pieewise onstant salars. At a more general level we notie, however, that for

problems in mixed form the hoie of B

h

might be deliate, and might have to satisfy some

partiular requirements. Indeed, for some naive hoie of B

h

the augmented problem (10)

might lose existene and/or uniqueness in V

A

.
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Example 1.3 A similar approah an be taken for a Stokes problem, where V = (H

1

0

(
))

2

�

L

2

0

(
), and L

2

0

(
) is, as in (12), the spae of L

2

funtions with zero mean value in 
.

Assume, this time, that V

h

is made of pieewise quadrati veloities in (H

1

0

(
))

2

, and

pieewise linear disontinuous pressures. In this ase one an see that the spae B(V ;T

h

)

as de�ned in (3)-(4) has the form B(V ;T

h

) = (�

K

(H

1

0

(K))

2

) � L

2

0

(
). It will then be

onvenient to take B

h

= �

K

f(H

1

0

(K))

2

�L

2

0

(K)g, and redue the spae V

h

, taking as V

#

h

the spae of quadrati veloities and onstant pressures. It is easy to hek that with this

last hoie we have a diret sum in (8).

We shall ome bak later to the merits and drawbaks of the di�erent hoies. One

way or another, we shall have in the end

(14) V

A

= V

#

h

�B

h

;

with a diret sum. One this point has been, at least partly, lari�ed, we an now take an

easier notation, dropping the # in (14) and assuming that in (8) we have a diret sum of

subspaes of V . We an then write u

A

and v

A

, in a unique way, as:

(15) u

A

= u

h

+ u

B

;

and

(16) v

A

= v

h

+ v

B

;

respetively. Inserting (15) into (10), and taking v

A

= v

B

we obtain the so-alled bubble

equation:

(17)

8

<

:

�nd u

B

2 B

h

suh that :

L(u

B

; v

B

) = �L(u

h

; v

B

) + (f; v

B

); 8v

B

2 B

h

:

The bubble equation (17) will play an important role in the following disussion. We take

advantage of the split nature of the spae B

h

. For every element K in T

h

we de�ne u

B;K

as the restrition of u

B

to the element K. Then we have

(18) L(u

B;K

; ') = (f � Lu

h

; '); 8' 2 B

h

(K);

where, as in (11), L indiates the operator assoiated with the bilinear form L. In ertain

problems, the existene and uniqueness of the solution of eah equation (18) will be im-

mediate. However, for other types of problems (for instane for problems in mixed form)

the hoie of the spaes B

h

(K) has to be made taking into aount the unique solvability

of (18), that is an important feature in the whole proedure. Here, at the abstrat level,

we shall make the assumption that the problem

(19)

8

<

:

�nd w

B

2 B

h

suh that :

L(w

B

; v

B

) = (g; v

B

); 8v

B

2 B

h

:
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6 Reent results in the treatment of subgrid sales

has a unique solution for every right-hand side g, say, in V

0

. We have then an operator

L

�1

B

from V

0

into B

h

whih is de�ned as the solution operator of (19), in the sense that

w

B

= L

�1

B

g i� w

B

is the solution of (19). It is lear that (19) ould also be split in

independent problems, similar to (18), one in eah element K. Aordingly, L

�1

B

an be

spilt as a sum of independent operators L

�1

B;K

where L

�1

B;K

g is the restrition w

B;K

to K

of w

B

= L

�1

B

g .

In many ases problem (18) an easily be written in strong form as

(20) Lu

B;K

= f � Lu

h

in K;

with the assoiated boundary onditions. Let us stress the fat that, in order to write the

problem in the strong form (20), it is usually essential that the spae B

h

(K) is hosen to

be equal to the full bubble spae B

V

(K) of (4). As far as the boundary onditions are

onerned, they are usually inluded in the requirement u

B;K

2 B

V

(K), that is

(21) u

B;K

2 V and supp(u

B;K

) � K:

For instane, if B

V

(K) is equal to H

1

0

(K), then the boundary onditions will simply be

(22) u

B;K

= 0 on �K:

We an now write the solution of (17) as u

B

= L

�1

B

(f � Lu

h

), or, in its split form,

as

(23) u

B;K

= L

�1

B;K

(f � Lu

h

); 8K 2 T

h

:

We then go bak to (10) and take v

A

= v

h

; inserting (15) and (23) we obtain:

(24)

8

<

:

�nd u

h

2 V

h

suh that :

L(u

h

; v

h

) +

P

K

L(L

�1

B;K

(f � Lu

h

); v

h

) = (f; v

h

); 8v

h

2 V

h

:

Note that (24) has the same form (and the same number of unknowns) of (2). However,

the additional term

(25) L(u

B

; v

h

) = L(L

�1

B

(f � Lu

h

); v

h

) =

X

K

L(L

�1

B;K

(f � Lu

h

); v

h

)

takes now into aount the e�et of some small sales (the ones that do not ross the

interelement boundaries) onto the sales that are visible on the omputational grid. As

we mentioned, one an try to improve the situation by adding some �ne-grid mode at the

interelement boundaries, but we are not going to disuss it now. It is lear that the e�et

of small sales onto the oarse ones will be reprodued in a better way by taking the spae

B

h

as big as possible, as we have done in our examples so far. It is also lear that if, as in

all our examples, the spae B

h

is in�nite dimensional, the bubble equations (18) will be

pratially unsolvable. Then it will be neessary to ompute an approximate solution of

ESAIM: Pro., Vol. 8, Septembre 2000, 1-3
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the bubble equation, that however an be done in parallel. Moreover, as we shall see, in a

ertain number of appliations, the struture of the additional term (25) is suh that only

some averaged quantities will be needed. In these ases, the approximate solution of (18)

will not need to be extremely aurate. We shall ome bak to this point in a moment. For

the time being, we point out that, when applied to a ertain number of problems, the RFB

proedure gives bak lassial stabilising tehniques, as the so-alled SUPG methods [11℄,

[16℄, or variants of them (like in [30℄). See for instane[10℄, [27℄, [4℄, [28℄, [9℄ for advetion

dominated ows, and [27℄, [4℄, [19℄, [15℄, [17℄ for more general problems (inluding Stokes,

Reissner-Mindlin, Helmholtz, and others.) Error bounds for these methods an be proved

by analysing the stabilised form (24) (see for instane [29℄, [24℄, or [31℄ and the referenes

therein), or, with a more reent approah, by looking diretly at the form (10), as done in

[7℄, [9℄, and [33℄.

The proedure skethed above follows the lassial derivation of [10℄ and [19℄. In

partiular we point out that the name Residual-Free Bubbles omes from the fat that u

A

will satisfy the equation

(26) L(u

A

; ') = (f; '); 8' 2 B

h

(K);

whih, in many ases, will imply exatly Lu

A

= f separately in eah K 2 T

h

(that is, the

residual will be zero in eah K.)

However, in order to see in a better way the onnetions with other older and newer

proedures, we point out here a di�erent way of looking at problem (10). Indeed, using

the unique solvability of (19) and forgetting again the problem of the atual omputation

of its solution, we ould takle (10) in a di�erent way. We might think to assoiate, to

every funtion v

h

2 V

h

, a new funtion ~v

h

solution of

(27)

8

<

:

�nd ~v

h

2 V

A

suh that ~v

h

� v

h

2 B

h

and :

L(~v

h

; v

B

) = 0; 8v

B

2 B

h

;

that in many ases ould also be written as

(28) L~v

h

= 0 in K; 8K 2 T

h

:

Taking all possible v

h

's in V

h

, we onstrut a new spae

e

V

h

, whih is in one-to-one orre-

spondene with V

h

(we use here the fat that in (8) we have a diret sum.) As we remarked

before, when disussing the di�erent ways of splitting the elements of V

A

, we still have

V

A

=

e

V

h

+B

h

, and we still have a diret sum. We an now write the solution u

A

of (10)

as u

A

= ~u

h

+ w

B

. Taking v

A

2 B

h

in (10) we have a new bubble equation

(29) L(w

B

; v

B

) = �L(~u

h

; v

B

) + (f; v

B

); 8v

B

2 B

h

that however, this time, beomes

(30) L(w

B

; v

B

) = (f; v

B

); 8v

B

2 B

h

;

ESAIM: Pro., Vol. 8, Septembre 2000, 1-3



8 Reent results in the treatment of subgrid sales

and, with some surprise, is independent of ~u

h

. Substituting bak in (10) with v

A

= ~v

h

we

have now that ~u

h

is the unique solution of the problem

(31)

8

<

:

�nd ~u

h

2

e

V

h

suh that :

L(~u

h

; ~v

h

) = �L(w

B

; ~v

h

) + (f; ~v

h

); 8~v

h

2

e

V

h

:

It has to be pointed out that the two formulations (24) and (31) are perfetly equivalent,

and u

h

+ u

B

= ~u

h

+ w

B

= u

A

, solution of (10). Along these lines, we might also think

about another variant. Indeed, we might assume that the adjoint problem of (27) is also

uniquely solvable for every right-hand side g 2 V

0

. Then, always for every v

h

2 V

h

, we

might onstrut another funtion, ~v

�

h

, solution of

(32)

8

<

:

�nd ~v

�

h

2 V

A

suh that ~v

�

h

� v

h

2 B

h

and :

L(v

B

; ~v

�

h

) = 0; 8v

B

2 B

h

:

Applying this proedure to every v

h

we generate a new spae,

e

V

�

h

, that in general will be

di�erent from

e

V

h

, unless the bilinear form L is symmetri. We have again V

A

=

e

V

�

h

+B

h

,

always with a diret sum. Therefore in (10) we might think of using the splitting u

A

=

~u

h

+ w

B

for u

A

, and the splitting v

A

= ~v

�

h

+ v

B

for v

A

, always without hanging the �nal

solution u

A

. An easy omputation shows that ~u

h

an also be seen as the unique solution

of

(33)

8

<

:

�nd ~u

h

2

e

V

h

suh that :

L(~u

h

; ~v

�

h

) = (f; ~v

�

h

); 8~v

�

h

2

e

V

�

h

:

On the other hand, w

B

will (obviously) still be the solution of (30). We also notie that the

solutions u

h

and ~u

h

will have the same values at the interelement boundaries. Therefore

if, for some reason, we are just interested in the values of the approximate solution on the

oarse grid, then u

h

and ~u

h

will provide the same information.

We shall see in the next setion that these alternative formulations of (10) have, in

various appliations, strong onnetions with other proedures that were introdued before

and after the Residual-Free Bubbles, following di�erent and independent arguments.

2 Some examples

It is now onvenient to see the above (abstrat) proedures at work on some partiular

simple problem.

Example 2.1 Let us onsider the lassial toy-problem of advetion-dominated linear equa-

tions. From the physial point of view, we may think to the problem of the passive trans-

port of a salar di�usive quantity in a uid whose veloity is known. Let then 
 be, for

instane, a onvex polygon, " a positive number (= di�usion oeÆient),  a bounded
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mapping from 
 to IR

2

(= veloity �eld) and f , say, an element of L

2

(
) (= soure term).

We onsider then the problem of �nding u in H

1

0

(
) suh that:

(34) �"�u+  � ru = f in 
:

We an set Lu := �"�u+  � ru, and

(35) L(u; v) := "a(u; v) + (u; v) 8u; v 2 H

1

0

(
);

where, in a natural way,

(36) a(u; v) :=

Z




ru � rv dx; and (u; v) :=

Z




 � ru v dx; 8u; v 2 H

1

0

(
):

Assume now that we are given a deomposition T

h

of 
 into triangles, and assume

moreover that  and f are pieewise onstant on T

h

. We take then V

h

to be the spae of

pieewise linear ontinuous funtions vanishing on �
, and B

h

as in (9) with B

h

(K) =

B

V

(K) = H

1

0

(K) for eah K. The unique solvability of the augmented problem (10), in

this ase, in obvious. If we apply the theory of the previous setion, the bubble equation

(20) beomes, in eah triangle K: �nd u

B;K

in H

1

0

(K) suh that:

(37) �"�u

B;K

+  � ru

B;K

= �(�"�u

h

+  � ru

h

) + f in K;

where, for a better understanding of more general ases, we kept the term "�u

h

that is

atually zero in eah K. We point out that, in this ase, the unique solvability of (37) is

also obvious. On the other hand, even for the present toy problem, the solution of (37)

annot be omputed in pratie. However, we want to point out here the use that has to

be done of it. In partiular, it is not diÆult to hek that, in the present ase, we have

a(u

B

; v

h

) = 0 for every u

B

2 B

h

and for every v

h

2 V

h

. Hene the additional term (25)

arising in (24) beomes

(38) L(u

B

; v

h

) = (u

B

; v

h

) =

Z




 � ru

B

v

h

dx = �

Z




u

B

 � rv

h

dx;

with an obvious integration by parts. We also remark that the term  � rv

h

is pieewise

onstant. Hene we see that only the mean value of u

B

in eah K will be used in the

�nal system (24) for omputing u

h

. Moreover, still in our assumptions, we observe that

the right-hand side of (37) is also onstant in K, so that u

B;K

, in eah K, an be written

as

(39) u

B;K

= b

K

R

K

;

where

(40) R

K

:= �(�"�u

h

+  � ru

h

) + f
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10 Reent results in the treatment of subgrid sales

is the residual in K (taking u

h

as approximate solution,) and the bubble b

K

is the solution

of the saled problem:

(41)

8

<

:

�nd b

K

2 H

1

0

(K) suh that :

�"�b

K

+  � rb

K

= 1 in K:

A simple omputation shows that, inserting (39) in (38), the additional term (25) beomes

(42) L(u

B

; v

h

) = (u

B

; v

h

) =

X

K

R

K

b

K

dx

jKj

Z

K

( � ru

h

� f)  � rv

h

dx;

where b

K

is still the solution of (41). This, as already pointed out in [10℄ (see also [27℄, [4℄,)

orresponds to the use of the well known SUPG method (see [11℄, [16℄) with the stabilising

parameter hosen as

(43) �

K

=

R

K

b

K

dx

jKj

:

Assume now that we proeed with the alternative formulations (31) or (33). In this

ase, the spae

e

V

h

will be made of funtions ~v

h

that are linear along eah interelement

boundary, and satisfy L~v

h

= 0 in eah K. On the other hand

e

V

�

h

will be made of funtions

~v

�

h

that are linear along eah interelement boundary, and satisfy

(44) L

�

~v

�

h

:= �"�~v

�

h

�  � r~v

�

h

= 0; 8K 2 T

h

:

The formulations (31) and, mostly, (33) are learly in the family of Petrov-Galerkin meth-

ods that have been proposed, with several variants, for onvetion di�usion problems. See

for instane [30℄ and the referenes therein. We underline one more that the three formu-

lations (24), (31), and (33) are perfetly equivalent, and u

h

+u

B

= ~u

h

+w

B

= u

A

, solution

of (10). However, the omputational strategy that they suggest is di�erent. Nevertheless,

as we shall see in the last setion, the omputational e�ort related to these di�erent strate-

gies would also ome out to be omparable. The di�erent formulations an also suggest

di�erent strategies for analysing the method, in order to prove stability and error esti-

mates. In our opinion, the (more reent) strategy of looking diretly at the formulation

(10), as in [9℄, [33℄, is more e�etive, but the situation might hange from one ase to

another. We point out that the bubble omponent u

B

ould also be used for deriving a

posteriori error estimates (see e.g. [32℄).

Example 2.2 We onsider now another toy-problem, related to omposite materials. Let


 be our omputational domain and let �(x) � �

0

> 0 be a funtion from 
 into IR (we

took for simpliity the salar ase, but in appliations � ould often be a matrix). Let

again f be a given foring term (like an external load, or a soure term) and onsider the

problem of �nding u in V = H

1

0

(
) suh that:

(45) Lu := �div(�ru) = f in 
:
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Problem (45) is meant to mimi for instane a linear elastiity problem, or a pressure

equation in oil reovery problems, where � (that we assume to be rapidly varying, although

not neessarily periodial) represents the properties of a omposite material. We an set

now

(46) L(u; v) :=

Z




�ru � rv dx; 8u; v 2 H

1

0

(
);

and write (45) in the usual variational form

(47) L(u; v) = (f; v) 8v 2 V:

Assume now that we are given, as in the previous example, a deomposition T

h

of


 into triangles. We take again V

h

as the spae of pieewise linear ontinuous funtions

vanishing on �
, and B

h

as in (9) with B

h

(K) = B(K) = H

1

0

(K) for eah K. If we want

to apply the theory of the previous setion, we see again that existene and uniqueness

of the solution of the augmented problem (10) are trivially proved. Moreover the bubble

equation (20) beomes, in eah triangle K: �nd u

B;K

in H

1

0

(K) suh that:

(48) �div(�ru

B;K

) = div(�ru

h

) + f in K:

In this ase as well, the unique solvability of (48) is obvious. It is also lear that, at the

pratial level, equation (48) is (as all the other ones so far) unsolvable. However, as in

the previous example, we an hek the struture of the additional term (25), whih is

now

(49) L(u

B

; v

h

) =

Z




�ru

B

� rv

h

dx;

with v

h

2 V

h

. Although the \bubble stress" ��ru

B

will surely have a ompliated

struture in eah triangle K (if we think that � is rapidly varying) it will again be true

that only its mean value (atually, the mean value of eah omponent) is needed in the

omputation of (49), sine rv

h

is onstant within eah element.

We ould also follow, even in the present example, the alternative formulation (31),

that now would oinide with (33) as the problem is symmetri. In this ase,

e

V

h

�

e

V

�

h

will

be the spae of funtions ~v

h

that are linear on the interelement boundaries and satisfy the

homogeneous equation div(�r~v

h

) = 0 separately in eah element K. Again, with some

attention, the omputational aspets of the two approahes an be made very similar. It

is interesting to see that in this ase the approah (31) is quite lose to the strategy whih

has been developed for instane in the multilevel approah of [25℄, [26℄, although using a

quite independent derivation.

Example 2.3 We onsider now the same problem of the previous example, but, this time,

writing problem (45) in mixed form. We introdue therefore the \stress �eld"

(50) � = ��ru;
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12 Reent results in the treatment of subgrid sales

and the spaes � = H(div; 
) and U = L

2

(
). We also set

(51) a(�; �) =

Z




�

�1

� �� dx; 8�; � 2 �; and b(�; v) =

Z

v div� dx; 8� 2 �;8v 2 U:

The mixed formulation of (45) reads now

(52)

8

>

>

<

>

>

:

�nd(�; u) 2 V � �� U suh that :

a(�; �) � b(�; u) = 0; 8� 2 �;

b(�; v) = (f; v); 8v 2 U:

Assume that we have a triangulation T

h

as before. We an take, as in Example 1.2,

V

h

= �

h

� U

h

, where �

h

is the spae of lowest order Raviart-Thomas vetors and U

h

the

spae of pieewise onstant salars. Assume now that B

h

is hosen as in Example 1.2, in

partiular disarding the \boundary bubbles". We reall that this means that eah B

h

(K)

has the form B

h

(K) = �

B

(K)� U

0

B

(K) with �

B

(K) given by (13) and U

0

B

by (12). We

introdue some additional notation. We set �

B

:= �

K

�

B

(K) and U

0

B

:= �

K

U

0

B

(K).

Then �

A

:= �

h

+ �

B

and U

A

:= U

h

+ U

0

B

. Finally V

A

:= �

A

� U

A

. The augmented

problem (10) beomes now

(53)

8

>

>

<

>

>

:

�nd (�; u) 2 V

A

suh that :

a(�

h

+ �

B

; �

A

)� b(�

A

; u

h

+ u

B

) = 0; 8�

A

2 �

A

;

b(�

h

+ �

B

; v

A

) = (f; v

A

); 8v

A

2 U

A

:

To prove existene and uniqueness of the solution of (53) is an exerise, using the general

theory of mixed methods and the properties of Raviart-Thomas spaes (see e.g. [3℄.)

Essentially, you have to show that you an onstrut a ontinuous lifting of the divergene

operator from L

2

(
) bak into �

A

. For this, given a v 2 L

2

(
) you �rst take its projetion

�v into the spae of pieewise onstants, and you take a ��

h

2 �

h

suh that div��

h

= �v. This

is possible sine Raviart-Thomas spaes satisfy the inf-sup ondition. Then, in every K,

you an �nd a �

B;K

2 �

B

(K) suh that div�

B;K

= v � �v. This is possible sine v � �v has

zero mean value in eah K. Clearly div(��

h

+ �

B;K

) = v.

We onsider now, in eah K, the loal bubble equation (18), that is

(54)

8

>

>

<

>

>

:

�nd (�

B

; u

B

) 2 �

B

(K)� U

0

B

(K) suh that :

a(�

B

; �

B

)� b(�

B

; u

B

) = �a(�

h

; �

B

) + b(�

B

; u

h

) = �a(�

h

; �

B

); 8�

B

2 �

B

(K);

b(�

B

; v

B

) = �b(�

h

; v

B

) + (f; v

B

) = (f; v

B

); 8v

B

2 U

0

B

(K):

We notie that u

h

disappears from the �rst equation of (54) sine b(�

B

; u

h

) = 0 for all

�

B

having vanishing normal omponent on eah �K, and �

h

disappears from the seond

equation sine b(�

h

; v

B

) = 0 for all v

B

having zero mean value in eah K. To prove

existene and uniqueness of the solution of (54) is also very easy. In partiular, for doing

ESAIM: Pro., Vol. 8, Septembre 2000, 1-3



F. Brezzi 13

this, we make again use of the fat that the divergene operator is surjetive (and has

a bounded lifting) from �

B

(K) onto U

0

B

(K). This would not have been true, had we

hosen U

B

(K) = L

2

(K) as salars for the bubble spaes, instead of U

0

B

(K). Whene the

importane of having kept the pieewise onstant salars into V

h

, as suggested in Example

1.2.

With some manipulations, one an hek that the strong form of the bubble equation

(54) is

(55)

�

�div(�ru

B

) = f

0

+ div�

h

in K;

��ru

B

� n = �

h

� n on �K;

where f

0

is the di�erene between f and its mean value on K. We see in this ase that

(55) does not have exatly the general form (20), beause our hoie of B

h

(K) does not

oinide with the full bubble spae B

V

(K). Indeed, the pieewise onstant salars have

been kept in V

h

(with very good reasons.) Existene and uniqueness of (55) an learly

be dedued from those of (54), but they an also be heked diretly. Indeed, existene

is ensured by the ompatibility of the two right-hand sides, and uniqueness is ensured by

the requirement that u

B

has zero mean value in K. The bubble stress �

B

an then be

dedued from �

B

+ �

h

= ��ru

B

. Notie that if f is pieewise onstant then f

0

= 0.

If moreover, say, � = 1, then for our ase (lowest order Raviart-Thomas elements) the

solution of (55) would be the (unique) funtion u

B

having ru

B

= ��

h

and zero mean

value in K. In partiular �

B

would be zero. This ase would be partiularly uninteresting,

sine the additional term (25) would then vanish. All the proedure would just produe a

sort of a post-proessing giving �

A

= �

h

and u

A

= u

h

+ u

B

where the salars would have

slightly better onvergene properties. We disard this uriosity, and we go bak to the

more interesting ase of a general oeÆient �. In partiular we note that the additional

term (25) is now

(56) L((�

B

; u

B

); (�

h

; v

h

)) = a(�

B

; �

h

)� b(�

h

; u

B

) + b(�

B

; v

h

) = a(�

B

; �

h

)

where we made use one more of Gauss theorem in eah K. We note again that in (56)

only the \stress part" �

B

of the solution of the bubble equation will be needed, and, most

important, only its integral against a Raviart-Thomas vetor. As an alternative, one might

also ompute the additional term by using in eah K the formula

(57) a

K

(�

B

; �

h

) = �

Z

K

ru

B;K

� �

h

dx = �

Z

�K

u

B;K

�

h

� nds;

with obvious meaning for the bilinear form a

K

; then only the mean value of u

B

on eah

edge would be used.

We are now interested in seeing, in the present ase, what happens if one follows

the alternative path (27)-(31). The proedure of Setion 1 suggests that to every (�

h

; v

h

)

in �

h

� U

h

we assoiate a pair (~�

h

; ~v

h

) 2 �

A

� U

A

de�ned as the solution of the problem

(58)

8

>

>

<

>

>

:

�nd (~�

h

; ~v

h

) 2 �

A

� U

A

suh that (~�

h

� �

h

) 2 �

B

; (~v

h

� v

h

) 2 U

0

B

and :

a(~�

h

; �

B

)� b(�

B

; ~v

h

) = 0; 8�

B

2 �

B

;

b(~�

h

; v

B

) = 0; 8v

B

2 U

0

B

:
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14 Reent results in the treatment of subgrid sales

Notie that (58) orresponds to solving, in eah K, the following Neumann problem (sim-

ilar to (55)) for ~v

0

:= ~v

h

� v

h

(59)

�

�div(�r~v

0

) = div�

h

in K;

��r~v

0

� n = �

h

� n on �K;

and then taking ~�

h

= ��r~v

0

and ~v

h

= ~v

0

+ v

h

. Existene and uniqueness of the solution

of (59) an be heked as we did for (55). We remark in partiular that, starting from a

pair of the type (0; v

h

), we would obtain ~�

h

= 0 and ~v

h

= v

h

. On the other hand, starting

from a pair (�

h

; 0) both ~�

h

and ~v

h

will, in general, be di�erent from zero.

Our spae

e

V

h

should now be made of the pairs (~�

h

; ~v

h

) that an be onstruted by

(58). This however does not have an \elementary" struture of produt spae, as it an be

easily seen from the above disussion. This might ompliate, at least, the formalism. In

order to have a simple produt spae, it is then more onvenient to onsider just all ~�

h

's,

and generate with them the spae

e

�

h

, that learly has the same dimension of �

h

. We also

have �

A

=

e

�

h

+�

B

as a diret sum. Using this last splitting (and leaving U

A

= U

h

+U

0

B

unhanged) we have now the new bubble equation

(60)

8

>

>

<

>

>

:

�nd (�

B

; z

B

) 2 �

B

� U

0

B

suh that :

a(�

B

; �

B

)� b(�

B

; z

B

) = �a(~�

h

; �

B

); 8�

B

2 �

B

;

b(�

B

; v

B

) = (f; v

B

); 8v

B

2 U

0

B

;

where the terms b(u

h

; �

B

) and b(~�

h

; v

B

) have been negleted being equal to zero. Using the

�rst equation of (58) we see that there exists a ~w

B

2 U

0

B

suh that a(~�

h

; �

B

) = b(�

B

; ~w

B

)

for every �

B

2 �

B

. Hene the pair (�

B

; z

B

+ ~w

B

) solves the problem

(61)

8

>

>

<

>

>

:

�nd (�

B

; w

B

) 2 �

B

� U

0

B

suh that :

a(�

B

; �

B

)� b(�

B

; w

B

) = 0; 8�

B

2 �

B

;

b(�

B

; v

B

) = (f; v

B

); 8v

B

2 U

0

B

;

whih is now independent of (~�

h

; u

h

). Hene, problem (53) an be solved by omputing

�rst the solution (�

B

; w

B

) of (61), and then solving

(62)

8

>

>

<

>

>

:

�nd (~�

h

; u

h

) 2

e

�

h

� U

h

suh that :

a(~�

h

; ~�

h

)� b(~�

h

; u

h

) = �a(�

B

; ~�

h

); 8~�

h

2

e

�

h

;

b(~�

h

; v

h

) = (f; v

h

); 8v

h

2 U

h

:

We notie that the bubble term does not disappear from (62) beause we did not take the

true spae

e

V

h

(in order to deal with a simple produt spae.) As we shall see in the next

setion, the omputational aspets related to di�erent strategies are however more alike

than one might think at �rst sight. It is interesting to see that a quite similar approah,

with a di�erent derivation, is used in the upsaling tehnique of [1℄, [2℄.
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Example 2.4 To onlude, we onsider now an example related to the Stokes problem for

visous inompressible uids. We shall deal again with a toy-problem, namely

(63)

8

>

>

<

>

>

:

�nd (u; p) 2 (H

1

0

(
))

2

� L

2

0

(
) suh that :

��u+rp = f in 
;

divu = 0 in 
;

where f is a \foring term", for instane in (L

2

(
))

2

. Our disussion will be very short

sine, by now, the general idea should already be suÆiently lear. Introduing the spaes

V = (H

1

0

(
))

2

and Q = L

2

0

(
) and the usual bilinear forms

(64) a(u; v) =

Z




ru : rv dx; 8u; v 2 V; and b(v; q) =

Z

q divudx; 8v 2 V;8q 2 Q;

we get the usual variational formulation

(65)

8

>

>

<

>

>

:

�nd (u; p) 2 V � V �Q suh that :

a(u; v)� b(v; p) = (f; v); 8v 2 V;

b(u; q) = 0; 8q 2 Q:

Assume that the hoies for V

h

and B

h

are made as in Example 1.3. We reall that this

means that in V

h

(= V

h

� Q

h

) we have pieewise quadrati ontinuous veloities and

pieewise onstant pressures, and B

h

(= V

B

�Q

B

) is given by �

K

(H

1

0

(K))

2

��

K

L

2

0

(K).

The existene and uniqueness of the solution to (10), in the present ase, is also

very easy. The lifting of the divergene operator an be onstruted with a proedure that

mimis the one of the previous example, just using pieewise quadrati veloities (to take

are of the pieewise onstant part of the pressure) instead of Raviart-Thomas vetors (see

always, e.g., [3℄). The bubble equation will then be, in eah K,

(66)

8

>

>

<

>

>

:

�nd (u

B

; p

B

) 2 (H

1

0

(K))

2

� L

2

0

(K) suh that :

a(u

B

; v

B

)� b(v

B

; p

B

) = �a(u

h

; v

B

) + b(v

B

; p

B

) + (f; v

B

); 8v

B

2 (H

1

0

(K))

2

;

b(u

B

; q

B

) = �b(u

h

; q

B

); 8q

B

2 L

2

0

(K):

As in the previous example, existene and uniqueness of (66) are easily proven, making

pro�t of the hoie of L

2

0

(K) as loal pressure spae for bubbles, instead of the whole

L

2

(K). The strong form of (66) would be, in eah K:

(67)

8

>

>

<

>

>

:

�nd (u

B;K

; p

B;K

) 2 (H

1

0

(K))

2

� L

2

0

(K) suh that :

��u

B;K

+rp

B;K

= f +�u

h

in 


divu

B;K

= �(divu

h

)

0

in 
;
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16 Reent results in the treatment of subgrid sales

where (divu

h

)

0

is the di�erene between divu

h

and its mean value in K. Again we see

that we do not get the form (20), having kept the pieewise onstant pressures in Q

h

. The

present version of (24) will then be

(68)

8

>

>

<

>

>

:

�nd (u

h

; p

h

) 2 V

h

� V

h

�Q

h

suh that :

a(u

h

; v

h

)� b(v

h

; p

h

) + a(u

B

; v

h

)� b(p

B

; v

h

) = (f; v

h

); 8v

h

2 V

h

;

b(u

h

; q

h

) = 0; 8q

h

2 Q

h

:

Writing the seond equation of (68) we took advantage of the fat that (divu

B

; q

h

) vanishes

for all pieewise onstant q

h

. Integrating by parts we an see that the omputation of the

additional term (25) requires now the mean value of u

B

in eah K and the two �rst order

moments of p

B

, always in eah K.

It might be interesting to notie that some bad initial hoies of V

h

are unredeemable

with the standard RFB approah. For instane, starting with pieewise linear ontinuous

veloities and onstant pressures, the augmented problem (10) would be ill-posed, no

matter whih subspae B

h

� B(V ;T

h

) we hoose. Indeed, taking in B

h

the biggest possible

hoie for veloities (that is �

K

(H

1

0

(K))

2

) and the smallest possible hoie for pressures

(that is f0g) the inf-sup ondition will still fail in the augmented spaes. Atually, the

divergenes of veloities in �

K

(H

1

0

(K))

2

will always have zero mean value in eah K, and

they annot help in ontrolling pieewise onstants. The situation ould be improved only

by using maro-bubbles, having support in more than one element (see e.g. [20℄), but we

shall not disuss it here.

Many aspets of the above disussion extend from the toy-problems of this setion

to more general situations. As we have seen, the main diÆulty is that, in general, (17)

annot be solved expliitly, so that the additional term (25) annot be omputed exatly.

We saw however in our examples that, in order to have a reasonable approximation of

(25), we will not need a very aurate solution of (17), as only some averaged quantities

of the bubble omponent are needed. This is true in a wider variety of ases. Indeed, as

we already observed, it is always only the e�et of the small sales on the larger ones that

needs to be simulated. Even at a fully general level one an still notie that in (25) the

bubble term L

�1

B;K

(f � Lu

h

) is tested against v

h

, whih belongs to the oarse spae.

In the next setion we are going to see some more pratial aspets of the above

strategy.

3 Some hints on the implementation

We shall present now a brief disussion on various problems related with the implementa-

tion of the above strategies. To start with, a point that we did not stress so far is that, in

order to perform the stati ondensation, one has to be able to substitute u

B

(or atually,

in pratie, its approximation) as a funtion of the unknown u

h

in (24). We shall see now

with some more detail how this an be done.
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As a �rst step we identify, in eah K, the smallest linear spae that ontains all

possible residuals, namely

(69) R

K;h

:= spanff

jK

; Lv

h

jK

; v

h

2 V

h

g:

In many ases, f

jK

an be approximated, without major loss of information, by means of

elements of the spae (LV

h

)

jK

, that an therefore be used in plae of R

K;h

. Otherwise,

the dimension of R

K;h

will be equal to the dimension of (LV

h

)

jK

plus one.

The seond step is then to hoose, for eah K, a basis fg

i

K

g

i=1;::;N

K

of the spae

R

K;h

. Clearly, N

K

denotes the dimension of suh spae. Then, for eah i = 1; ::; N

K

, we

seek an approximate solution of the loal problem:

(70)

8

<

:

�nd  

i

K

2 B

h

(K) suh that :

L( 

i

K

; v) = (g

i

K

; v); 8v 2 B

h

(K):

Now, in eah K, we an express every possible right-hand side of (17) as a linear

ombination of the funtions fg

i

K

g

i=1;::;N

K

. In partiular, assume that fv

j

h

g

j=1;::;N

is the

basis that we hose for V

h

. Clearly, N denotes the dimension of V

h

. Then for eah K

and for eah v

j

h

we express the restrition to K of Lv

j

h

as a linear ombination of the g

i

K

.

Then the orresponding (approximate) solution L

�1

B;K

(�Lv

j

h

) an be obtained as a linear

ombination of the  

i

K

. Similarly, the ontribution L

�1

B;K

(f) to the right-hand side an

also be expressed as a ombination of the  

i

K

. The desired substitution in (24) an then

be done during the assembling proedure of the �nal sti�ness matrix.

In various appliations, N

K

will be rather small. Referring to the examples of the

previous setion, and assuming that f , in eah K, ould be approximated by elements

of (LV

h

)

jK

without major losses in auray, we have, for the examples of the previous

setion, N

K

= 1 in the �rst example, N

K

= 3 in Examples 2.2 and 2.3, and N

K

= 4 in the

last example. At a general level we might say that, for problems with onstant oeÆients

and without zero order terms (as in Examples 2.1 and 2.4,) N

K

will often be smaller (and

sometimes muh smaller) than the number of degrees of freedom of V

h

in K. For instane,

in Example 2.4 the number of degrees of freedom of V

h

in K is 13 (twelve veloities and

one pressure,) while, as we have seen, N

K

= 4. Notie that the original number of degrees

of freedom in V

h

was 15 (twelve veloities and three pressures) and went down to 13 when

we left in V

h

only the pieewise onstant part of the pressure.

Let us onsider now the alternative formulations (31) and (33). We laim that

the (approximate) resolution of the N

K

problems (70) is still an essential ingredient for

omputing the sti�ness matrix of (31). Clearly, the adjoint problems will also be needed

in order to use (33).

For the sake of simpliity, we onentrate on (31). We have to ompute a basis for

e

V

h

. An obvious hoie is to start from the basis fv

j

h

g of V

h

. Then we assoiate to every v

j

h

an element ~v

j

h

in

e

V

h

as in (27). To do that, we write ~v

j

h

as v

j

h

+ v

j

0

, with v

j

0

2 B

h

. Then,
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18 Reent results in the treatment of subgrid sales

in eah K, v

j

0

will be the solution of

(71) L(v

j

0

; v

B

) = �L(v

j

h

; v

B

) = �(Lv

j

h

; v

B

); 8v

B

2 B

h

(K):

It is lear that, in eah K, every v

j

0

an be expressed as a linear ombination of the N

K

solutions  

i

K

of (70). If we keep the assumption that, in eah K, the right-hand side f is

approximated by elements of (LV

h

)

jK

, then the solution w

B

of (30) an also be omputed,

element by element, as a linear ombination of the  

i

K

.

Finally, let us ompare the e�ort for the atual omputation of the sti�ness matries

of (24) and of (31). In many appliations, the omputation of L(v

j

h

; v

k

h

) (j; k = 1; ::; N)

would be muh simpler than the diret omputation of L(~v

j

h

; ~v

k

h

). However, we note that,

using (27), we have

(72) L(~v

j

h

; ~v

k

h

) = L(~v

j

h

; v

k

h

+ v

k

0

) = L(~v

j

h

; v

k

h

) = L(v

j

h

; v

k

h

) + L(v

j

0

; v

k

h

):

We notie that the �rst term in the right-hand side of (72) is the same that would be

omputed in (24), and the seond term have the same nature as the right-hand sides of

(70). Indeed,

(73) L(v

j

0

; v

k

h

) = (v

j

0

; L

�

v

k

h

):

Finally, the term ontaining w

B

(whih disappears if L is symmetri) an be treated as

(74) L(w

B

; ~v

k

h

) = L(w

B

; v

k

h

) + (f; v

k

0

) = (w

B

; L

�

v

k

h

) + (f; v

k

0

):

We also observe that all the terms in (73) and (74) will require the omputation of the

integral of the produt of a bubble times an element of R

�

K;h

, that we de�ne as

(75) R

�

K;h

:= spanff

jK

; L

�

v

h

jK

; v

h

2 V

h

g:

This is the same that has to be done in the RFB approah, when omputing the additional

term (25). We an onlude that the omputational e�ort required by the two strategies

is omparable (after all, they are the same method, just written di�erently.) Similar

onsiderations hold for the formulation (33). We omit them, as they are a straightforward

extension of the above disussion. Other variants, as the one disussed in Example 2.3,

an be treated with similar arguments.

All these matters might deserve however a deeper investigation, in eah partiular

ase, in order to assess the most onvenient strategy that has to be adopted. For instane,

in ases like Example 2.2, where essentially N

K

equals the dimension of V

h

jK

, the easiest

way to takle (31) seems to solve diretly the problems

(76)

8

<

:

�nd

e

 

i

K

2 V

A

jK

suh that (

e

 

i

K

� v

i

h

) 2 B

h

(K); and :

L(

e

 

i

K

; v) = 0; 8v 2 B

h

(K);

and then to write the ~v

j

h

's as ombinations of the

e

 

i

K

's. And so on.
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Let us onsider now the problem of solving (70) or (76). The most general and

widely appliable strategy in order to obtain an approximate solution of, say, (70) onsists,

obviously, in the use of a Galerkin approximation, orresponding to a suitable hoie of

B

�

K

� B

h

(K) (warning: in spite of the notation, this has no partiular relationship with

the adjoint problem). Then one an solve N

K

problems of the type:

(77)

8

<

:

�nd  

�;i

K

2 B

�

K

suh that :

L( 

�;i

K

; v) = (g

i

K

; v); 8v 2 B

�

K

:

The tehnique has been suessfully applied to advetion dominated ows, also with the

use of suitably re�ned subgrid meshes (of Shishkin type) near the outow boundary of

eah K. See e.g. [18℄. For an appliation of this tehnique to the Helmholtz equation

see for instane [15℄, [17℄. This, essentially, is also what has been done for omputing

the solutions of (76), in problems related to omposite materials, in [1℄, [2℄, [25℄, [26℄,

although, as we have said, the derivation there was done in a framework independent of

the Residual-Free Bubbles approah.

In more speial lasses of problems one might also think of using some speial triks.

For instane, for onvetion-dominated ows with a very small di�usion oeÆient, we have

seen that (70) redues essentially to solve (41). Assuming that the onvetive oeÆient

is pieewise onstant, one an solve, instead of (41), the (limit) purely onvetive problem

(orresponding to " = 0) that an be dealt with by hand. See e.g. [10℄, [5℄.

Another possible hoie is to take B

�

K

with a very small dimension (sometimes even

one-dimensional) but hoosing it in a very suitable way, whih depends on the partiular

form of the equation in eah K. See for instane [8℄. The use of Shishkin subgrid meshes

for advetion dominated problems, as in [18℄, ould also be seen as being part of this

strategy.

On the other hand, for singularly perturbed problems where some arti�ial visosity

(or similar regularisation) is usually employed, the idea of using in (77) only one (or very

few) degrees of freedom with a kind of subgrid visosity (or subgrid regularisation,) as

in [22℄, [23℄, is surely appealing for its simpliity and rather wide range of appliability.

However, as shown in [6℄, the hoie of the atual value for the subgrid arti�ial visosity

appears to be ruial, and requires deeper investigations.

At a more general level the e�ets on error estimates (both a priori and a

posteriori) of taking an approximate solution for the bubble equation deserve a better

attention, and should be the objet of a more aurate analysis.

The appliation of the paradigm \divide and onquer/ stati ondensation/ approx-

imate solution" to some nonlinear problems is urrently under investigation. The obvious

hoie would be to apply it to the various linearised problems in an iterative proedure,

but in partiular ases the struture of the nonlinearity might suggest a better strategy.

Finally, we point out that, in some ases, the proedure of augmenting the spae V

h

an be done in two steps. Indeed, together with the addition of suitable bubble spaes in

eah K, we might think of adding some edge funtions where onvenient. For instane, just
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20 Reent results in the treatment of subgrid sales

to make an aademi example, one an deide that on a partiular edge e the addition of a

funtion with a speial shape ould be bene�ial for the overall quality of the approxima-

tion. This ould be a rapidly osillating one, with a given wavelength, or a funtion with a

\bump" (or a \step") at a given loation, and so on. Typially, in pratie, this ould only

be done in some iterative way, using information from the subgrid solutions at previous

iterations or time steps. One way or another, assume that you know that a ertain shape

'

�

is needed at a ertain edge e

�

. Then you might think of inreasing �rst the spae V

h

by adding a funtion having value '

�

on the edge e

�

, and having support in the union

of the (one or two) elements having e

�

as an edge. The value of suh a funtion inside

the element(s) ould pro�tably be de�ned as the solution of the homogeneous equation

(11). You are equipped for that, as you are ready to solve subgrid problems related to the

operator L. In general, there will not be just one edge and one funtion that is needed,

but we might expet that they are not too many. After this �rst enrihment of V

h

, the

bubble proedure an be started. It is lear that, after addition and elimination of the

bubbles, the total number of equations will be equal to the original number of boundary

degrees of freedom in V

h

plus the ones that were added during the �rst enrihment (these

will not go away in the stati ondensation proess). This proedure, on one hand, has

to be used with some are. Indeed, we started by assuming that V

h

orresponded roughly

to the �nest grid we were ready to a�ord. Clearly, the number of additional degrees of

freedom has to be limited to the essential. On the other hand this proedure an provide a

partial healing to the very undesirable (but, somehow, neessary) e�et of impermeability

of the interelement boundaries to the small sales that is inherent to the divide and on-

quer strategy. It is lear that muh more investigation and experimentation are needed in

order to design e�etive strategies for doing all that.

As a last point, the possible use of \nononforming bubbles" is surely worth inves-

tigating. A nononforming bubble would be a funtion having support in a single element

K, whose extension by zero outside K does not belong to the spae V . In some ases,

the boundary values of these nononforming bubbles might have zero mean value (or zero

moments up to some order k) at eah interelement edge (see for instane [14℄). In other

ases, this will have to be imposed by means of some interelement multiplier or similar

trik, in order to ompensate for the variational rime. This approah has been reently

applied with suess in [13℄, whih we refer to for additional information. It is reasonable

to assume that the idea might be extended to more general situations, and it is surely

quite appealing.
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