
ESAIM: Pro
eedings

A
tes du 32

�

eme Congr

�

es

d'Analyse Num

�

erique : Canum2000

URL: http://www.emath.fr/pro
/Vol.8/

Vol. 8, Septembre 2000, 1-3

Re
ent results in the treatment of subgrid s
ales

F. Brezzi

Abstra
t. In re
ent times, several attempts have been made to re
over some

information from the subgrid s
ales and transfer them to the 
omputational s
ales.

Many stabilising te
hniques 
an also be 
onsidered as part of this e�ort. We dis
uss

here a framework in whi
h some of these attempts 
an be set and analysed.
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In the numeri
al simulation of a 
ertain number of problems, there are physi
al

e�e
ts that take pla
e on a s
ale whi
h is mu
h smaller than the smallest one representable

on the 
omputational grid, but have a strong impa
t on the larger s
ales, and, therefore,


annot be negle
ted without jeopardizing the overall quality of the �nal solution.

In other 
ases, the dis
retised s
heme la
ks the ne
essary stability properties be
ause

it does not treat in a proper way the smallest s
ales allowed by the 
omputational grid. As

a 
onsequen
e, some "smallest s
ale mode" appears as abnormally ampli�ed in the �nal

numeri
al results. Most types of numeri
al instabilities are produ
ed in this way, as the


he
kerboard pressure mode for nearly in
ompressible materials, or the �ne-grid spurious

os
illations in 
onve
tion-dominated 
ows. See for instan
e [21℄ and the referen
es therein

for a 
lassi
al overview of several types of these and other instabilities of this nature.

In the last de
ade it has be
ome 
lear that several attempts to re
over stability, in

these 
ases, 
ould be interpreted as a way of improving the simulation of the e�e
ts of

the smallest s
ales on the larger ones. By doing that, the small s
ales 
an be seen by the

numeri
al s
heme and therefore be kept under 
ontrol.

These two situations are quite di�erent, in nature and s
ale. Nevertheless it is not

unreasonable to hope that some te
hniques that have been developed for dealing with the

latter 
lass of phenomena might be adapted to deal with the former one. In this sense, one

of the most promising te
hnique seems to be the use of Residual-Free Bubbles (see e.g.

[10℄, [19℄.) In the following se
tions, we are going to summarise the general idea behind it,

trying to underly its potential and its limitations. In parti
ular, we shall �rst present in

Se
tion 1 the basi
 prin
iples of the strategy: divide and 
onquer, stati
 
ondensation and

approximate solution. In Se
tion 2 we present some examples of toy-problems, related to

adve
tion dominated 
ows, 
omposite materials and vis
ous in
ompressible 
ows, in order
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to show how the general theory 
an be applied. We shall see in parti
ular that several

other methods, like SUPG, Petrov-Galerkin, ups
aling methods, multis
ale methods, and

others 
an a
tually be seen as being variants of the RFB pro
edure. Finally, in Se
tion 3,

we dis
uss some questions related to the implementation of these methods.

1 The augmented problem and the bubble equation

At a very general level, the Residual-Free Bubbles approa
h 
an be summarised as follows.

We start with a given problem, that for simpli
ity we assume to be linear, and in variational

form:

(1)

8

<

:

�nd u 2 V su
h that :

L(u; v) = (f; v); 8v 2 V:

We assume that we are given a dis
retised problem:

(2)

8

<

:

�nd u

h

2 V

h

su
h that :

L(u

h

; v

h

) = (f; v

h

); 8v

h

2 V

h

;

where V

h

� V is a �nite element spa
e, 
orresponding to a given de
omposition T

h

of the


omputational domain. To �x the ideas, we shall use a two-dimensional lexi
on, and in our

examples we shall always assume that the 
omputational domain is two-dimensional. The

basi
 idea, however, is quite general, and 
ould be applied in any dimension. We suppose,

roughly speaking, that T

h

is the �nest grid we are ready to a�ord in the 
omputation, in

the sense that we are not ready to solve a �nal system having mu
h more unknowns than

the dimension of V

h

.

To the spa
e V and to the de
omposition T

h

we asso
iate the spa
e of bubbles

B(V ;T

h

) de�ned as

(3) B(V ;T

h

) := �

K

B

V

(K)

where, for ea
h K in T

h

,

(4) B

V

(K) := fvj v 2 V; supp(v) � Kg:

Let us see some examples that will help understanding how the spa
es B

V

(K) 
hange for

di�erent 
hoi
es of V . As a �rst, and most typi
al example, 
onsider the 
ase V = H

1

0

(
).

Then 
learly B

V

(K) = H

1

0

(K) (the usual bubbles). If however V = H

1

(
), then we still

have B

V

(K) = H

1

0

(K) for the elements internal to 
, but if K has one or more edges

on �
, there the elements of B

V

(K) are allowed to be di�erent from zero. On the other

hand, if we are dealing, for instan
e, with a problem written in mixed formulation, and

(5) V = H(div; 
)� L

2

(
);
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then the spa
e B

V

(K) will have the form B

V

(K) = �

B

(K)� U

B

(K) with

(6) �

B

(K) := f� 2 H(div;K); su
h that � � n = 0 on �K \ 
g;

where, as usual, n represents the outward unit normal to �K, and

(7) U

B

(K) := L

2

(K):

In other 
ases, as for instan
e in plate bending problems, the spa
e V is H

2

0

(
), and

a

ordingly ea
h B

V

(K) = H

2

0

(K). And so on.

Problem (2) is now, temporarily and arti�
ially, augmented by 
onsidering a new

subspa
e of V :

(8) V

A

:= V

h

+B

h

;

where B

h

has the form

(9) B

h

:= �

K

B

h

(K);

and, for every K in T

h

, B

h

(K) is a subset (possibly in�nite dimensional) of B

V

(K). The

augmented problem reads now:

(10)

8

<

:

�nd u

A

2 V

A

su
h that :

L(u

A

; v

A

) = (f; v

A

); 8v

A

2 V

A

:

At this level of generality, we 
annot do better than assuming that (10) has a unique

solution for every right-hand side f 2 V

0

, although, in general, its solution will not be


omputable in pra
ti
e. In prin
iple, problem (10) should be able to take into a

ount all

the small s
ales that do not 
ross the boundaries of the elements K, (in a sense that, as

we have seen, depends on the nature of V .) This is a severe limitation, but 
orresponds

to a sort of divide and 
onquer prin
iple that might, in the end, ensure some feasibility

to the whole pro
edure. If ne
essary, the spa
e V

A


ould be further augmented, in a sort

of iterative, self-adaptive strategy. For instan
e, out of a previous resolution, we might

have hints that, on 
ertain edges of T

h

, there are one or two �ne grid-modes that should

be taken into a

ount. We might then add, for every su
h edge e, the fun
tions having

support in the union of the elements having e as an edge, and having the 
ru
ial �ne-grid

mode as tra
e on e. For the sake of simpli
ity, we shall not dis
uss this option here, apart

from a short hint at the hand of the paper.

We now pro
eed to eliminate, at least formally, the bubble unknowns from problem

(10). The te
hnique that we are going to use is well known in the Engineering pra
ti
e,

under the name of stati
 
ondensation. However, here we apply it in a more general,

in�nite dimensional, 
ase.

The �rst problem that arises is that (8) might not 
orrespond to a dire
t sum. To

�x the ideas, if the original V

h

is made of all pie
ewise 
ubi
 
ontinuous fun
tions, then
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it already 
ontains one 
ubi
 bubble per element, that however might appear in B

h

as

well. Our 
hoi
e (roughly speaking) is to keep, as mu
h as possible, all the elements of

the interse
tion B

h

\V

h

in B

h

, and redu
e, if ne
essary, V

h

, introdu
ing a proper subspa
e

V

#

h

� V

h

. This rule, however, will not be the best one in every 
ase. Let us see some

examples in order to 
larify the situation.

Example 1.1 Assume as before that V = H

1

0

(
) and V

h

is made of pie
ewise 
ubi
 fun
tions.

Assume moreover that the spa
e B

h

is the biggest one allowed, that is B

h

= B(V ;T

h

),

given by (3) and (4). Then we have several 
hoi
es. For instan
e, we might take as V

#

h

the set of fun
tions ~v

h

that are polynomials of degree � 3 on the interelement boundaries,

and verify

(11) L~v

h

= 0

separately in ea
h element K, where L is the operator asso
iated with the bilinear form

L. On the other hand, we 
an take as V

#

h

any spa
e of pie
ewise 
ubi
 
ontinuous fun
-

tions whose value 
an be determined in a unique way by their tra
es at the interelement

boundaries. For instan
e, any serendipity 
ubi
 element would do; see, as an example,

the element des
ribed in [12℄, page 50. Noti
e that these two 
hoi
es produ
e the same

augmented spa
e V

A

, and hen
e the same solution u

A

to (10).

Example 1.2 As another example assume now that V = H(div; 
)�L

2

(
) and its approx-

imation V

h

= �

h

�U

h

is made by lowest order Raviart-Thomas elements (see for instan
e

[3℄). Assume again that B

h

= B(V ;T

h

). Then we might take V

#

h

to be the spa
e �

h

�f0g

(all the pie
ewise 
onstant displa
ements are bubbles!). However, in most 
ases, for rea-

sons that will be
ome 
lear in a while, it will be more 
onvenient to keep the pie
ewise


onstants (that are in U

h

) in V

#

h

. This implies that we take now B

h

(K) = �

B

(K)�U

0

B

(K),

where �

B

(K) is given by (6) and

(12) U

0

B

(K) := L

2

0

(K) � fv 2 L

2

(K); su
h that

Z

K

v dx = 0g:

In most 
ases, the use of bubbles in �

B

(K) whose normal 
omponent does not vanish on

the boundary �
 will be unne
essary (and in parti
ular it would 
ompli
ate the notation.)

In these 
ases, we might use instead

(13) �

B

(K) := H

0

(div;K) � f� 2 H(div;K); su
h that � � n = 0 on �Kg:

With these 
hoi
es we will have V

#

h

= V

h

, and B

h

(as given through (13) and (7)) will be

the spa
e of all pairs (�; v) 2 V su
h that � has zero normal 
omponent at the boundary

of ea
h element, and v has zero mean value in ea
h element. The same 
hoi
e for B

h

would be suitable also in the 
ase of higher order Raviart-Thomas spa
es (or, say, for

BDM spa
es; see always [3℄), but then V

h

should lose all internal degrees of freedom, apart

from the pie
ewise 
onstant s
alars. At a more general level we noti
e, however, that for

problems in mixed form the 
hoi
e of B

h

might be deli
ate, and might have to satisfy some

parti
ular requirements. Indeed, for some naive 
hoi
e of B

h

the augmented problem (10)

might lose existen
e and/or uniqueness in V

A

.
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Example 1.3 A similar approa
h 
an be taken for a Stokes problem, where V = (H

1

0

(
))

2

�

L

2

0

(
), and L

2

0

(
) is, as in (12), the spa
e of L

2

fun
tions with zero mean value in 
.

Assume, this time, that V

h

is made of pie
ewise quadrati
 velo
ities in (H

1

0

(
))

2

, and

pie
ewise linear dis
ontinuous pressures. In this 
ase one 
an see that the spa
e B(V ;T

h

)

as de�ned in (3)-(4) has the form B(V ;T

h

) = (�

K

(H

1

0

(K))

2

) � L

2

0

(
). It will then be


onvenient to take B

h

= �

K

f(H

1

0

(K))

2

�L

2

0

(K)g, and redu
e the spa
e V

h

, taking as V

#

h

the spa
e of quadrati
 velo
ities and 
onstant pressures. It is easy to 
he
k that with this

last 
hoi
e we have a dire
t sum in (8).

We shall 
ome ba
k later to the merits and drawba
ks of the di�erent 
hoi
es. One

way or another, we shall have in the end

(14) V

A

= V

#

h

�B

h

;

with a dire
t sum. On
e this point has been, at least partly, 
lari�ed, we 
an now take an

easier notation, dropping the # in (14) and assuming that in (8) we have a dire
t sum of

subspa
es of V . We 
an then write u

A

and v

A

, in a unique way, as:

(15) u

A

= u

h

+ u

B

;

and

(16) v

A

= v

h

+ v

B

;

respe
tively. Inserting (15) into (10), and taking v

A

= v

B

we obtain the so-
alled bubble

equation:

(17)

8

<

:

�nd u

B

2 B

h

su
h that :

L(u

B

; v

B

) = �L(u

h

; v

B

) + (f; v

B

); 8v

B

2 B

h

:

The bubble equation (17) will play an important role in the following dis
ussion. We take

advantage of the split nature of the spa
e B

h

. For every element K in T

h

we de�ne u

B;K

as the restri
tion of u

B

to the element K. Then we have

(18) L(u

B;K

; ') = (f � Lu

h

; '); 8' 2 B

h

(K);

where, as in (11), L indi
ates the operator asso
iated with the bilinear form L. In 
ertain

problems, the existen
e and uniqueness of the solution of ea
h equation (18) will be im-

mediate. However, for other types of problems (for instan
e for problems in mixed form)

the 
hoi
e of the spa
es B

h

(K) has to be made taking into a

ount the unique solvability

of (18), that is an important feature in the whole pro
edure. Here, at the abstra
t level,

we shall make the assumption that the problem

(19)

8

<

:

�nd w

B

2 B

h

su
h that :

L(w

B

; v

B

) = (g; v

B

); 8v

B

2 B

h

:
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has a unique solution for every right-hand side g, say, in V

0

. We have then an operator

L

�1

B

from V

0

into B

h

whi
h is de�ned as the solution operator of (19), in the sense that

w

B

= L

�1

B

g i� w

B

is the solution of (19). It is 
lear that (19) 
ould also be split in

independent problems, similar to (18), one in ea
h element K. A

ordingly, L

�1

B


an be

spilt as a sum of independent operators L

�1

B;K

where L

�1

B;K

g is the restri
tion w

B;K

to K

of w

B

= L

�1

B

g .

In many 
ases problem (18) 
an easily be written in strong form as

(20) Lu

B;K

= f � Lu

h

in K;

with the asso
iated boundary 
onditions. Let us stress the fa
t that, in order to write the

problem in the strong form (20), it is usually essential that the spa
e B

h

(K) is 
hosen to

be equal to the full bubble spa
e B

V

(K) of (4). As far as the boundary 
onditions are


on
erned, they are usually in
luded in the requirement u

B;K

2 B

V

(K), that is

(21) u

B;K

2 V and supp(u

B;K

) � K:

For instan
e, if B

V

(K) is equal to H

1

0

(K), then the boundary 
onditions will simply be

(22) u

B;K

= 0 on �K:

We 
an now write the solution of (17) as u

B

= L

�1

B

(f � Lu

h

), or, in its split form,

as

(23) u

B;K

= L

�1

B;K

(f � Lu

h

); 8K 2 T

h

:

We then go ba
k to (10) and take v

A

= v

h

; inserting (15) and (23) we obtain:

(24)

8

<

:

�nd u

h

2 V

h

su
h that :

L(u

h

; v

h

) +

P

K

L(L

�1

B;K

(f � Lu

h

); v

h

) = (f; v

h

); 8v

h

2 V

h

:

Note that (24) has the same form (and the same number of unknowns) of (2). However,

the additional term

(25) L(u

B

; v

h

) = L(L

�1

B

(f � Lu

h

); v

h

) =

X

K

L(L

�1

B;K

(f � Lu

h

); v

h

)

takes now into a

ount the e�e
t of some small s
ales (the ones that do not 
ross the

interelement boundaries) onto the s
ales that are visible on the 
omputational grid. As

we mentioned, one 
an try to improve the situation by adding some �ne-grid mode at the

interelement boundaries, but we are not going to dis
uss it now. It is 
lear that the e�e
t

of small s
ales onto the 
oarse ones will be reprodu
ed in a better way by taking the spa
e

B

h

as big as possible, as we have done in our examples so far. It is also 
lear that if, as in

all our examples, the spa
e B

h

is in�nite dimensional, the bubble equations (18) will be

pra
ti
ally unsolvable. Then it will be ne
essary to 
ompute an approximate solution of

ESAIM: Pro
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the bubble equation, that however 
an be done in parallel. Moreover, as we shall see, in a


ertain number of appli
ations, the stru
ture of the additional term (25) is su
h that only

some averaged quantities will be needed. In these 
ases, the approximate solution of (18)

will not need to be extremely a

urate. We shall 
ome ba
k to this point in a moment. For

the time being, we point out that, when applied to a 
ertain number of problems, the RFB

pro
edure gives ba
k 
lassi
al stabilising te
hniques, as the so-
alled SUPG methods [11℄,

[16℄, or variants of them (like in [30℄). See for instan
e[10℄, [27℄, [4℄, [28℄, [9℄ for adve
tion

dominated 
ows, and [27℄, [4℄, [19℄, [15℄, [17℄ for more general problems (in
luding Stokes,

Reissner-Mindlin, Helmholtz, and others.) Error bounds for these methods 
an be proved

by analysing the stabilised form (24) (see for instan
e [29℄, [24℄, or [31℄ and the referen
es

therein), or, with a more re
ent approa
h, by looking dire
tly at the form (10), as done in

[7℄, [9℄, and [33℄.

The pro
edure sket
hed above follows the 
lassi
al derivation of [10℄ and [19℄. In

parti
ular we point out that the name Residual-Free Bubbles 
omes from the fa
t that u

A

will satisfy the equation

(26) L(u

A

; ') = (f; '); 8' 2 B

h

(K);

whi
h, in many 
ases, will imply exa
tly Lu

A

= f separately in ea
h K 2 T

h

(that is, the

residual will be zero in ea
h K.)

However, in order to see in a better way the 
onne
tions with other older and newer

pro
edures, we point out here a di�erent way of looking at problem (10). Indeed, using

the unique solvability of (19) and forgetting again the problem of the a
tual 
omputation

of its solution, we 
ould ta
kle (10) in a di�erent way. We might think to asso
iate, to

every fun
tion v

h

2 V

h

, a new fun
tion ~v

h

solution of

(27)

8

<

:

�nd ~v

h

2 V

A

su
h that ~v

h

� v

h

2 B

h

and :

L(~v

h

; v

B

) = 0; 8v

B

2 B

h

;

that in many 
ases 
ould also be written as

(28) L~v

h

= 0 in K; 8K 2 T

h

:

Taking all possible v

h

's in V

h

, we 
onstru
t a new spa
e

e

V

h

, whi
h is in one-to-one 
orre-

sponden
e with V

h

(we use here the fa
t that in (8) we have a dire
t sum.) As we remarked

before, when dis
ussing the di�erent ways of splitting the elements of V

A

, we still have

V

A

=

e

V

h

+B

h

, and we still have a dire
t sum. We 
an now write the solution u

A

of (10)

as u

A

= ~u

h

+ w

B

. Taking v

A

2 B

h

in (10) we have a new bubble equation

(29) L(w

B

; v

B

) = �L(~u

h

; v

B

) + (f; v

B

); 8v

B

2 B

h

that however, this time, be
omes

(30) L(w

B

; v

B

) = (f; v

B

); 8v

B

2 B

h

;
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and, with some surprise, is independent of ~u

h

. Substituting ba
k in (10) with v

A

= ~v

h

we

have now that ~u

h

is the unique solution of the problem

(31)

8

<

:

�nd ~u

h

2

e

V

h

su
h that :

L(~u

h

; ~v

h

) = �L(w

B

; ~v

h

) + (f; ~v

h

); 8~v

h

2

e

V

h

:

It has to be pointed out that the two formulations (24) and (31) are perfe
tly equivalent,

and u

h

+ u

B

= ~u

h

+ w

B

= u

A

, solution of (10). Along these lines, we might also think

about another variant. Indeed, we might assume that the adjoint problem of (27) is also

uniquely solvable for every right-hand side g 2 V

0

. Then, always for every v

h

2 V

h

, we

might 
onstru
t another fun
tion, ~v

�

h

, solution of

(32)

8

<

:

�nd ~v

�

h

2 V

A

su
h that ~v

�

h

� v

h

2 B

h

and :

L(v

B

; ~v

�

h

) = 0; 8v

B

2 B

h

:

Applying this pro
edure to every v

h

we generate a new spa
e,

e

V

�

h

, that in general will be

di�erent from

e

V

h

, unless the bilinear form L is symmetri
. We have again V

A

=

e

V

�

h

+B

h

,

always with a dire
t sum. Therefore in (10) we might think of using the splitting u

A

=

~u

h

+ w

B

for u

A

, and the splitting v

A

= ~v

�

h

+ v

B

for v

A

, always without 
hanging the �nal

solution u

A

. An easy 
omputation shows that ~u

h


an also be seen as the unique solution

of

(33)

8

<

:

�nd ~u

h

2

e

V

h

su
h that :

L(~u

h

; ~v

�

h

) = (f; ~v

�

h

); 8~v

�

h

2

e

V

�

h

:

On the other hand, w

B

will (obviously) still be the solution of (30). We also noti
e that the

solutions u

h

and ~u

h

will have the same values at the interelement boundaries. Therefore

if, for some reason, we are just interested in the values of the approximate solution on the


oarse grid, then u

h

and ~u

h

will provide the same information.

We shall see in the next se
tion that these alternative formulations of (10) have, in

various appli
ations, strong 
onne
tions with other pro
edures that were introdu
ed before

and after the Residual-Free Bubbles, following di�erent and independent arguments.

2 Some examples

It is now 
onvenient to see the above (abstra
t) pro
edures at work on some parti
ular

simple problem.

Example 2.1 Let us 
onsider the 
lassi
al toy-problem of adve
tion-dominated linear equa-

tions. From the physi
al point of view, we may think to the problem of the passive trans-

port of a s
alar di�usive quantity in a 
uid whose velo
ity is known. Let then 
 be, for

instan
e, a 
onvex polygon, " a positive number (= di�usion 
oeÆ
ient), 
 a bounded
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mapping from 
 to IR

2

(= velo
ity �eld) and f , say, an element of L

2

(
) (= sour
e term).

We 
onsider then the problem of �nding u in H

1

0

(
) su
h that:

(34) �"�u+ 
 � ru = f in 
:

We 
an set Lu := �"�u+ 
 � ru, and

(35) L(u; v) := "a(u; v) + 
(u; v) 8u; v 2 H

1

0

(
);

where, in a natural way,

(36) a(u; v) :=

Z




ru � rv dx; and 
(u; v) :=

Z





 � ru v dx; 8u; v 2 H

1

0

(
):

Assume now that we are given a de
omposition T

h

of 
 into triangles, and assume

moreover that 
 and f are pie
ewise 
onstant on T

h

. We take then V

h

to be the spa
e of

pie
ewise linear 
ontinuous fun
tions vanishing on �
, and B

h

as in (9) with B

h

(K) =

B

V

(K) = H

1

0

(K) for ea
h K. The unique solvability of the augmented problem (10), in

this 
ase, in obvious. If we apply the theory of the previous se
tion, the bubble equation

(20) be
omes, in ea
h triangle K: �nd u

B;K

in H

1

0

(K) su
h that:

(37) �"�u

B;K

+ 
 � ru

B;K

= �(�"�u

h

+ 
 � ru

h

) + f in K;

where, for a better understanding of more general 
ases, we kept the term "�u

h

that is

a
tually zero in ea
h K. We point out that, in this 
ase, the unique solvability of (37) is

also obvious. On the other hand, even for the present toy problem, the solution of (37)


annot be 
omputed in pra
ti
e. However, we want to point out here the use that has to

be done of it. In parti
ular, it is not diÆ
ult to 
he
k that, in the present 
ase, we have

a(u

B

; v

h

) = 0 for every u

B

2 B

h

and for every v

h

2 V

h

. Hen
e the additional term (25)

arising in (24) be
omes

(38) L(u

B

; v

h

) = 
(u

B

; v

h

) =

Z





 � ru

B

v

h

dx = �

Z




u

B


 � rv

h

dx;

with an obvious integration by parts. We also remark that the term 
 � rv

h

is pie
ewise


onstant. Hen
e we see that only the mean value of u

B

in ea
h K will be used in the

�nal system (24) for 
omputing u

h

. Moreover, still in our assumptions, we observe that

the right-hand side of (37) is also 
onstant in K, so that u

B;K

, in ea
h K, 
an be written

as

(39) u

B;K

= b

K

R

K

;

where

(40) R

K

:= �(�"�u

h

+ 
 � ru

h

) + f
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is the residual in K (taking u

h

as approximate solution,) and the bubble b

K

is the solution

of the s
aled problem:

(41)

8

<

:

�nd b

K

2 H

1

0

(K) su
h that :

�"�b

K

+ 
 � rb

K

= 1 in K:

A simple 
omputation shows that, inserting (39) in (38), the additional term (25) be
omes

(42) L(u

B

; v

h

) = 
(u

B

; v

h

) =

X

K

R

K

b

K

dx

jKj

Z

K

(
 � ru

h

� f) 
 � rv

h

dx;

where b

K

is still the solution of (41). This, as already pointed out in [10℄ (see also [27℄, [4℄,)


orresponds to the use of the well known SUPG method (see [11℄, [16℄) with the stabilising

parameter 
hosen as

(43) �

K

=

R

K

b

K

dx

jKj

:

Assume now that we pro
eed with the alternative formulations (31) or (33). In this


ase, the spa
e

e

V

h

will be made of fun
tions ~v

h

that are linear along ea
h interelement

boundary, and satisfy L~v

h

= 0 in ea
h K. On the other hand

e

V

�

h

will be made of fun
tions

~v

�

h

that are linear along ea
h interelement boundary, and satisfy

(44) L

�

~v

�

h

:= �"�~v

�

h

� 
 � r~v

�

h

= 0; 8K 2 T

h

:

The formulations (31) and, mostly, (33) are 
learly in the family of Petrov-Galerkin meth-

ods that have been proposed, with several variants, for 
onve
tion di�usion problems. See

for instan
e [30℄ and the referen
es therein. We underline on
e more that the three formu-

lations (24), (31), and (33) are perfe
tly equivalent, and u

h

+u

B

= ~u

h

+w

B

= u

A

, solution

of (10). However, the 
omputational strategy that they suggest is di�erent. Nevertheless,

as we shall see in the last se
tion, the 
omputational e�ort related to these di�erent strate-

gies would also 
ome out to be 
omparable. The di�erent formulations 
an also suggest

di�erent strategies for analysing the method, in order to prove stability and error esti-

mates. In our opinion, the (more re
ent) strategy of looking dire
tly at the formulation

(10), as in [9℄, [33℄, is more e�e
tive, but the situation might 
hange from one 
ase to

another. We point out that the bubble 
omponent u

B


ould also be used for deriving a

posteriori error estimates (see e.g. [32℄).

Example 2.2 We 
onsider now another toy-problem, related to 
omposite materials. Let


 be our 
omputational domain and let �(x) � �

0

> 0 be a fun
tion from 
 into IR (we

took for simpli
ity the s
alar 
ase, but in appli
ations � 
ould often be a matrix). Let

again f be a given for
ing term (like an external load, or a sour
e term) and 
onsider the

problem of �nding u in V = H

1

0

(
) su
h that:

(45) Lu := �div(�ru) = f in 
:
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Problem (45) is meant to mimi
 for instan
e a linear elasti
ity problem, or a pressure

equation in oil re
overy problems, where � (that we assume to be rapidly varying, although

not ne
essarily periodi
al) represents the properties of a 
omposite material. We 
an set

now

(46) L(u; v) :=

Z




�ru � rv dx; 8u; v 2 H

1

0

(
);

and write (45) in the usual variational form

(47) L(u; v) = (f; v) 8v 2 V:

Assume now that we are given, as in the previous example, a de
omposition T

h

of


 into triangles. We take again V

h

as the spa
e of pie
ewise linear 
ontinuous fun
tions

vanishing on �
, and B

h

as in (9) with B

h

(K) = B(K) = H

1

0

(K) for ea
h K. If we want

to apply the theory of the previous se
tion, we see again that existen
e and uniqueness

of the solution of the augmented problem (10) are trivially proved. Moreover the bubble

equation (20) be
omes, in ea
h triangle K: �nd u

B;K

in H

1

0

(K) su
h that:

(48) �div(�ru

B;K

) = div(�ru

h

) + f in K:

In this 
ase as well, the unique solvability of (48) is obvious. It is also 
lear that, at the

pra
ti
al level, equation (48) is (as all the other ones so far) unsolvable. However, as in

the previous example, we 
an 
he
k the stru
ture of the additional term (25), whi
h is

now

(49) L(u

B

; v

h

) =

Z




�ru

B

� rv

h

dx;

with v

h

2 V

h

. Although the \bubble stress" ��ru

B

will surely have a 
ompli
ated

stru
ture in ea
h triangle K (if we think that � is rapidly varying) it will again be true

that only its mean value (a
tually, the mean value of ea
h 
omponent) is needed in the


omputation of (49), sin
e rv

h

is 
onstant within ea
h element.

We 
ould also follow, even in the present example, the alternative formulation (31),

that now would 
oin
ide with (33) as the problem is symmetri
. In this 
ase,

e

V

h

�

e

V

�

h

will

be the spa
e of fun
tions ~v

h

that are linear on the interelement boundaries and satisfy the

homogeneous equation div(�r~v

h

) = 0 separately in ea
h element K. Again, with some

attention, the 
omputational aspe
ts of the two approa
hes 
an be made very similar. It

is interesting to see that in this 
ase the approa
h (31) is quite 
lose to the strategy whi
h

has been developed for instan
e in the multilevel approa
h of [25℄, [26℄, although using a

quite independent derivation.

Example 2.3 We 
onsider now the same problem of the previous example, but, this time,

writing problem (45) in mixed form. We introdu
e therefore the \stress �eld"

(50) � = ��ru;
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and the spa
es � = H(div; 
) and U = L

2

(
). We also set

(51) a(�; �) =

Z




�

�1

� �� dx; 8�; � 2 �; and b(�; v) =

Z

v div� dx; 8� 2 �;8v 2 U:

The mixed formulation of (45) reads now

(52)

8

>

>

<

>

>

:

�nd(�; u) 2 V � �� U su
h that :

a(�; �) � b(�; u) = 0; 8� 2 �;

b(�; v) = (f; v); 8v 2 U:

Assume that we have a triangulation T

h

as before. We 
an take, as in Example 1.2,

V

h

= �

h

� U

h

, where �

h

is the spa
e of lowest order Raviart-Thomas ve
tors and U

h

the

spa
e of pie
ewise 
onstant s
alars. Assume now that B

h

is 
hosen as in Example 1.2, in

parti
ular dis
arding the \boundary bubbles". We re
all that this means that ea
h B

h

(K)

has the form B

h

(K) = �

B

(K)� U

0

B

(K) with �

B

(K) given by (13) and U

0

B

by (12). We

introdu
e some additional notation. We set �

B

:= �

K

�

B

(K) and U

0

B

:= �

K

U

0

B

(K).

Then �

A

:= �

h

+ �

B

and U

A

:= U

h

+ U

0

B

. Finally V

A

:= �

A

� U

A

. The augmented

problem (10) be
omes now

(53)

8

>

>

<

>

>

:

�nd (�; u) 2 V

A

su
h that :

a(�

h

+ �

B

; �

A

)� b(�

A

; u

h

+ u

B

) = 0; 8�

A

2 �

A

;

b(�

h

+ �

B

; v

A

) = (f; v

A

); 8v

A

2 U

A

:

To prove existen
e and uniqueness of the solution of (53) is an exer
ise, using the general

theory of mixed methods and the properties of Raviart-Thomas spa
es (see e.g. [3℄.)

Essentially, you have to show that you 
an 
onstru
t a 
ontinuous lifting of the divergen
e

operator from L

2

(
) ba
k into �

A

. For this, given a v 2 L

2

(
) you �rst take its proje
tion

�v into the spa
e of pie
ewise 
onstants, and you take a ��

h

2 �

h

su
h that div��

h

= �v. This

is possible sin
e Raviart-Thomas spa
es satisfy the inf-sup 
ondition. Then, in every K,

you 
an �nd a �

B;K

2 �

B

(K) su
h that div�

B;K

= v � �v. This is possible sin
e v � �v has

zero mean value in ea
h K. Clearly div(��

h

+ �

B;K

) = v.

We 
onsider now, in ea
h K, the lo
al bubble equation (18), that is

(54)

8

>

>

<

>

>

:

�nd (�

B

; u

B

) 2 �

B

(K)� U

0

B

(K) su
h that :

a(�

B

; �

B

)� b(�

B

; u

B

) = �a(�

h

; �

B

) + b(�

B

; u

h

) = �a(�

h

; �

B

); 8�

B

2 �

B

(K);

b(�

B

; v

B

) = �b(�

h

; v

B

) + (f; v

B

) = (f; v

B

); 8v

B

2 U

0

B

(K):

We noti
e that u

h

disappears from the �rst equation of (54) sin
e b(�

B

; u

h

) = 0 for all

�

B

having vanishing normal 
omponent on ea
h �K, and �

h

disappears from the se
ond

equation sin
e b(�

h

; v

B

) = 0 for all v

B

having zero mean value in ea
h K. To prove

existen
e and uniqueness of the solution of (54) is also very easy. In parti
ular, for doing
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this, we make again use of the fa
t that the divergen
e operator is surje
tive (and has

a bounded lifting) from �

B

(K) onto U

0

B

(K). This would not have been true, had we


hosen U

B

(K) = L

2

(K) as s
alars for the bubble spa
es, instead of U

0

B

(K). When
e the

importan
e of having kept the pie
ewise 
onstant s
alars into V

h

, as suggested in Example

1.2.

With some manipulations, one 
an 
he
k that the strong form of the bubble equation

(54) is

(55)

�

�div(�ru

B

) = f

0

+ div�

h

in K;

��ru

B

� n = �

h

� n on �K;

where f

0

is the di�eren
e between f and its mean value on K. We see in this 
ase that

(55) does not have exa
tly the general form (20), be
ause our 
hoi
e of B

h

(K) does not


oin
ide with the full bubble spa
e B

V

(K). Indeed, the pie
ewise 
onstant s
alars have

been kept in V

h

(with very good reasons.) Existen
e and uniqueness of (55) 
an 
learly

be dedu
ed from those of (54), but they 
an also be 
he
ked dire
tly. Indeed, existen
e

is ensured by the 
ompatibility of the two right-hand sides, and uniqueness is ensured by

the requirement that u

B

has zero mean value in K. The bubble stress �

B


an then be

dedu
ed from �

B

+ �

h

= ��ru

B

. Noti
e that if f is pie
ewise 
onstant then f

0

= 0.

If moreover, say, � = 1, then for our 
ase (lowest order Raviart-Thomas elements) the

solution of (55) would be the (unique) fun
tion u

B

having ru

B

= ��

h

and zero mean

value in K. In parti
ular �

B

would be zero. This 
ase would be parti
ularly uninteresting,

sin
e the additional term (25) would then vanish. All the pro
edure would just produ
e a

sort of a post-pro
essing giving �

A

= �

h

and u

A

= u

h

+ u

B

where the s
alars would have

slightly better 
onvergen
e properties. We dis
ard this 
uriosity, and we go ba
k to the

more interesting 
ase of a general 
oeÆ
ient �. In parti
ular we note that the additional

term (25) is now

(56) L((�

B

; u

B

); (�

h

; v

h

)) = a(�

B

; �

h

)� b(�

h

; u

B

) + b(�

B

; v

h

) = a(�

B

; �

h

)

where we made use on
e more of Gauss theorem in ea
h K. We note again that in (56)

only the \stress part" �

B

of the solution of the bubble equation will be needed, and, most

important, only its integral against a Raviart-Thomas ve
tor. As an alternative, one might

also 
ompute the additional term by using in ea
h K the formula

(57) a

K

(�

B

; �

h

) = �

Z

K

ru

B;K

� �

h

dx = �

Z

�K

u

B;K

�

h

� nds;

with obvious meaning for the bilinear form a

K

; then only the mean value of u

B

on ea
h

edge would be used.

We are now interested in seeing, in the present 
ase, what happens if one follows

the alternative path (27)-(31). The pro
edure of Se
tion 1 suggests that to every (�

h

; v

h

)

in �

h

� U

h

we asso
iate a pair (~�

h

; ~v

h

) 2 �

A

� U

A

de�ned as the solution of the problem

(58)

8

>

>

<

>

>

:

�nd (~�

h

; ~v

h

) 2 �

A

� U

A

su
h that (~�

h

� �

h

) 2 �

B

; (~v

h

� v

h

) 2 U

0

B

and :

a(~�

h

; �

B

)� b(�

B

; ~v

h

) = 0; 8�

B

2 �

B

;

b(~�

h

; v

B

) = 0; 8v

B

2 U

0

B

:
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Noti
e that (58) 
orresponds to solving, in ea
h K, the following Neumann problem (sim-

ilar to (55)) for ~v

0

:= ~v

h

� v

h

(59)

�

�div(�r~v

0

) = div�

h

in K;

��r~v

0

� n = �

h

� n on �K;

and then taking ~�

h

= ��r~v

0

and ~v

h

= ~v

0

+ v

h

. Existen
e and uniqueness of the solution

of (59) 
an be 
he
ked as we did for (55). We remark in parti
ular that, starting from a

pair of the type (0; v

h

), we would obtain ~�

h

= 0 and ~v

h

= v

h

. On the other hand, starting

from a pair (�

h

; 0) both ~�

h

and ~v

h

will, in general, be di�erent from zero.

Our spa
e

e

V

h

should now be made of the pairs (~�

h

; ~v

h

) that 
an be 
onstru
ted by

(58). This however does not have an \elementary" stru
ture of produ
t spa
e, as it 
an be

easily seen from the above dis
ussion. This might 
ompli
ate, at least, the formalism. In

order to have a simple produ
t spa
e, it is then more 
onvenient to 
onsider just all ~�

h

's,

and generate with them the spa
e

e

�

h

, that 
learly has the same dimension of �

h

. We also

have �

A

=

e

�

h

+�

B

as a dire
t sum. Using this last splitting (and leaving U

A

= U

h

+U

0

B

un
hanged) we have now the new bubble equation

(60)

8

>

>

<

>

>

:

�nd (�

B

; z

B

) 2 �

B

� U

0

B

su
h that :

a(�

B

; �

B

)� b(�

B

; z

B

) = �a(~�

h

; �

B

); 8�

B

2 �

B

;

b(�

B

; v

B

) = (f; v

B

); 8v

B

2 U

0

B

;

where the terms b(u

h

; �

B

) and b(~�

h

; v

B

) have been negle
ted being equal to zero. Using the

�rst equation of (58) we see that there exists a ~w

B

2 U

0

B

su
h that a(~�

h

; �

B

) = b(�

B

; ~w

B

)

for every �

B

2 �

B

. Hen
e the pair (�

B

; z

B

+ ~w

B

) solves the problem

(61)

8

>

>

<

>

>

:

�nd (�

B

; w

B

) 2 �

B

� U

0

B

su
h that :

a(�

B

; �

B

)� b(�

B

; w

B

) = 0; 8�

B

2 �

B

;

b(�

B

; v

B

) = (f; v

B

); 8v

B

2 U

0

B

;

whi
h is now independent of (~�

h

; u

h

). Hen
e, problem (53) 
an be solved by 
omputing

�rst the solution (�

B

; w

B

) of (61), and then solving

(62)

8

>

>

<

>

>

:

�nd (~�

h

; u

h

) 2

e

�

h

� U

h

su
h that :

a(~�

h

; ~�

h

)� b(~�

h

; u

h

) = �a(�

B

; ~�

h

); 8~�

h

2

e

�

h

;

b(~�

h

; v

h

) = (f; v

h

); 8v

h

2 U

h

:

We noti
e that the bubble term does not disappear from (62) be
ause we did not take the

true spa
e

e

V

h

(in order to deal with a simple produ
t spa
e.) As we shall see in the next

se
tion, the 
omputational aspe
ts related to di�erent strategies are however more alike

than one might think at �rst sight. It is interesting to see that a quite similar approa
h,

with a di�erent derivation, is used in the ups
aling te
hnique of [1℄, [2℄.
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Example 2.4 To 
on
lude, we 
onsider now an example related to the Stokes problem for

vis
ous in
ompressible 
uids. We shall deal again with a toy-problem, namely

(63)

8

>

>

<

>

>

:

�nd (u; p) 2 (H

1

0

(
))

2

� L

2

0

(
) su
h that :

��u+rp = f in 
;

divu = 0 in 
;

where f is a \for
ing term", for instan
e in (L

2

(
))

2

. Our dis
ussion will be very short

sin
e, by now, the general idea should already be suÆ
iently 
lear. Introdu
ing the spa
es

V = (H

1

0

(
))

2

and Q = L

2

0

(
) and the usual bilinear forms

(64) a(u; v) =

Z




ru : rv dx; 8u; v 2 V; and b(v; q) =

Z

q divudx; 8v 2 V;8q 2 Q;

we get the usual variational formulation

(65)

8

>

>

<

>

>

:

�nd (u; p) 2 V � V �Q su
h that :

a(u; v)� b(v; p) = (f; v); 8v 2 V;

b(u; q) = 0; 8q 2 Q:

Assume that the 
hoi
es for V

h

and B

h

are made as in Example 1.3. We re
all that this

means that in V

h

(= V

h

� Q

h

) we have pie
ewise quadrati
 
ontinuous velo
ities and

pie
ewise 
onstant pressures, and B

h

(= V

B

�Q

B

) is given by �

K

(H

1

0

(K))

2

��

K

L

2

0

(K).

The existen
e and uniqueness of the solution to (10), in the present 
ase, is also

very easy. The lifting of the divergen
e operator 
an be 
onstru
ted with a pro
edure that

mimi
s the one of the previous example, just using pie
ewise quadrati
 velo
ities (to take


are of the pie
ewise 
onstant part of the pressure) instead of Raviart-Thomas ve
tors (see

always, e.g., [3℄). The bubble equation will then be, in ea
h K,

(66)

8

>

>

<

>

>

:

�nd (u

B

; p

B

) 2 (H

1

0

(K))

2

� L

2

0

(K) su
h that :

a(u

B

; v

B

)� b(v

B

; p

B

) = �a(u

h

; v

B

) + b(v

B

; p

B

) + (f; v

B

); 8v

B

2 (H

1

0

(K))

2

;

b(u

B

; q

B

) = �b(u

h

; q

B

); 8q

B

2 L

2

0

(K):

As in the previous example, existen
e and uniqueness of (66) are easily proven, making

pro�t of the 
hoi
e of L

2

0

(K) as lo
al pressure spa
e for bubbles, instead of the whole

L

2

(K). The strong form of (66) would be, in ea
h K:

(67)

8

>

>

<

>

>

:

�nd (u

B;K

; p

B;K

) 2 (H

1

0

(K))

2

� L

2

0

(K) su
h that :

��u

B;K

+rp

B;K

= f +�u

h

in 


divu

B;K

= �(divu

h

)

0

in 
;
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where (divu

h

)

0

is the di�eren
e between divu

h

and its mean value in K. Again we see

that we do not get the form (20), having kept the pie
ewise 
onstant pressures in Q

h

. The

present version of (24) will then be

(68)

8

>

>

<

>

>

:

�nd (u

h

; p

h

) 2 V

h

� V

h

�Q

h

su
h that :

a(u

h

; v

h

)� b(v

h

; p

h

) + a(u

B

; v

h

)� b(p

B

; v

h

) = (f; v

h

); 8v

h

2 V

h

;

b(u

h

; q

h

) = 0; 8q

h

2 Q

h

:

Writing the se
ond equation of (68) we took advantage of the fa
t that (divu

B

; q

h

) vanishes

for all pie
ewise 
onstant q

h

. Integrating by parts we 
an see that the 
omputation of the

additional term (25) requires now the mean value of u

B

in ea
h K and the two �rst order

moments of p

B

, always in ea
h K.

It might be interesting to noti
e that some bad initial 
hoi
es of V

h

are unredeemable

with the standard RFB approa
h. For instan
e, starting with pie
ewise linear 
ontinuous

velo
ities and 
onstant pressures, the augmented problem (10) would be ill-posed, no

matter whi
h subspa
e B

h

� B(V ;T

h

) we 
hoose. Indeed, taking in B

h

the biggest possible


hoi
e for velo
ities (that is �

K

(H

1

0

(K))

2

) and the smallest possible 
hoi
e for pressures

(that is f0g) the inf-sup 
ondition will still fail in the augmented spa
es. A
tually, the

divergen
es of velo
ities in �

K

(H

1

0

(K))

2

will always have zero mean value in ea
h K, and

they 
annot help in 
ontrolling pie
ewise 
onstants. The situation 
ould be improved only

by using ma
ro-bubbles, having support in more than one element (see e.g. [20℄), but we

shall not dis
uss it here.

Many aspe
ts of the above dis
ussion extend from the toy-problems of this se
tion

to more general situations. As we have seen, the main diÆ
ulty is that, in general, (17)


annot be solved expli
itly, so that the additional term (25) 
annot be 
omputed exa
tly.

We saw however in our examples that, in order to have a reasonable approximation of

(25), we will not need a very a

urate solution of (17), as only some averaged quantities

of the bubble 
omponent are needed. This is true in a wider variety of 
ases. Indeed, as

we already observed, it is always only the e�e
t of the small s
ales on the larger ones that

needs to be simulated. Even at a fully general level one 
an still noti
e that in (25) the

bubble term L

�1

B;K

(f � Lu

h

) is tested against v

h

, whi
h belongs to the 
oarse spa
e.

In the next se
tion we are going to see some more pra
ti
al aspe
ts of the above

strategy.

3 Some hints on the implementation

We shall present now a brief dis
ussion on various problems related with the implementa-

tion of the above strategies. To start with, a point that we did not stress so far is that, in

order to perform the stati
 
ondensation, one has to be able to substitute u

B

(or a
tually,

in pra
ti
e, its approximation) as a fun
tion of the unknown u

h

in (24). We shall see now

with some more detail how this 
an be done.
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As a �rst step we identify, in ea
h K, the smallest linear spa
e that 
ontains all

possible residuals, namely

(69) R

K;h

:= spanff

jK

; Lv

h

jK

; v

h

2 V

h

g:

In many 
ases, f

jK


an be approximated, without major loss of information, by means of

elements of the spa
e (LV

h

)

jK

, that 
an therefore be used in pla
e of R

K;h

. Otherwise,

the dimension of R

K;h

will be equal to the dimension of (LV

h

)

jK

plus one.

The se
ond step is then to 
hoose, for ea
h K, a basis fg

i

K

g

i=1;::;N

K

of the spa
e

R

K;h

. Clearly, N

K

denotes the dimension of su
h spa
e. Then, for ea
h i = 1; ::; N

K

, we

seek an approximate solution of the lo
al problem:

(70)

8

<

:

�nd  

i

K

2 B

h

(K) su
h that :

L( 

i

K

; v) = (g

i

K

; v); 8v 2 B

h

(K):

Now, in ea
h K, we 
an express every possible right-hand side of (17) as a linear


ombination of the fun
tions fg

i

K

g

i=1;::;N

K

. In parti
ular, assume that fv

j

h

g

j=1;::;N

is the

basis that we 
hose for V

h

. Clearly, N denotes the dimension of V

h

. Then for ea
h K

and for ea
h v

j

h

we express the restri
tion to K of Lv

j

h

as a linear 
ombination of the g

i

K

.

Then the 
orresponding (approximate) solution L

�1

B;K

(�Lv

j

h

) 
an be obtained as a linear


ombination of the  

i

K

. Similarly, the 
ontribution L

�1

B;K

(f) to the right-hand side 
an

also be expressed as a 
ombination of the  

i

K

. The desired substitution in (24) 
an then

be done during the assembling pro
edure of the �nal sti�ness matrix.

In various appli
ations, N

K

will be rather small. Referring to the examples of the

previous se
tion, and assuming that f , in ea
h K, 
ould be approximated by elements

of (LV

h

)

jK

without major losses in a

ura
y, we have, for the examples of the previous

se
tion, N

K

= 1 in the �rst example, N

K

= 3 in Examples 2.2 and 2.3, and N

K

= 4 in the

last example. At a general level we might say that, for problems with 
onstant 
oeÆ
ients

and without zero order terms (as in Examples 2.1 and 2.4,) N

K

will often be smaller (and

sometimes mu
h smaller) than the number of degrees of freedom of V

h

in K. For instan
e,

in Example 2.4 the number of degrees of freedom of V

h

in K is 13 (twelve velo
ities and

one pressure,) while, as we have seen, N

K

= 4. Noti
e that the original number of degrees

of freedom in V

h

was 15 (twelve velo
ities and three pressures) and went down to 13 when

we left in V

h

only the pie
ewise 
onstant part of the pressure.

Let us 
onsider now the alternative formulations (31) and (33). We 
laim that

the (approximate) resolution of the N

K

problems (70) is still an essential ingredient for


omputing the sti�ness matrix of (31). Clearly, the adjoint problems will also be needed

in order to use (33).

For the sake of simpli
ity, we 
on
entrate on (31). We have to 
ompute a basis for

e

V

h

. An obvious 
hoi
e is to start from the basis fv

j

h

g of V

h

. Then we asso
iate to every v

j

h

an element ~v

j

h

in

e

V

h

as in (27). To do that, we write ~v

j

h

as v

j

h

+ v

j

0

, with v

j

0

2 B

h

. Then,
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in ea
h K, v

j

0

will be the solution of

(71) L(v

j

0

; v

B

) = �L(v

j

h

; v

B

) = �(Lv

j

h

; v

B

); 8v

B

2 B

h

(K):

It is 
lear that, in ea
h K, every v

j

0


an be expressed as a linear 
ombination of the N

K

solutions  

i

K

of (70). If we keep the assumption that, in ea
h K, the right-hand side f is

approximated by elements of (LV

h

)

jK

, then the solution w

B

of (30) 
an also be 
omputed,

element by element, as a linear 
ombination of the  

i

K

.

Finally, let us 
ompare the e�ort for the a
tual 
omputation of the sti�ness matri
es

of (24) and of (31). In many appli
ations, the 
omputation of L(v

j

h

; v

k

h

) (j; k = 1; ::; N)

would be mu
h simpler than the dire
t 
omputation of L(~v

j

h

; ~v

k

h

). However, we note that,

using (27), we have

(72) L(~v

j

h

; ~v

k

h

) = L(~v

j

h

; v

k

h

+ v

k

0

) = L(~v

j

h

; v

k

h

) = L(v

j

h

; v

k

h

) + L(v

j

0

; v

k

h

):

We noti
e that the �rst term in the right-hand side of (72) is the same that would be


omputed in (24), and the se
ond term have the same nature as the right-hand sides of

(70). Indeed,

(73) L(v

j

0

; v

k

h

) = (v

j

0

; L

�

v

k

h

):

Finally, the term 
ontaining w

B

(whi
h disappears if L is symmetri
) 
an be treated as

(74) L(w

B

; ~v

k

h

) = L(w

B

; v

k

h

) + (f; v

k

0

) = (w

B

; L

�

v

k

h

) + (f; v

k

0

):

We also observe that all the terms in (73) and (74) will require the 
omputation of the

integral of the produ
t of a bubble times an element of R

�

K;h

, that we de�ne as

(75) R

�

K;h

:= spanff

jK

; L

�

v

h

jK

; v

h

2 V

h

g:

This is the same that has to be done in the RFB approa
h, when 
omputing the additional

term (25). We 
an 
on
lude that the 
omputational e�ort required by the two strategies

is 
omparable (after all, they are the same method, just written di�erently.) Similar


onsiderations hold for the formulation (33). We omit them, as they are a straightforward

extension of the above dis
ussion. Other variants, as the one dis
ussed in Example 2.3,


an be treated with similar arguments.

All these matters might deserve however a deeper investigation, in ea
h parti
ular


ase, in order to assess the most 
onvenient strategy that has to be adopted. For instan
e,

in 
ases like Example 2.2, where essentially N

K

equals the dimension of V

h

jK

, the easiest

way to ta
kle (31) seems to solve dire
tly the problems

(76)

8

<

:

�nd

e

 

i

K

2 V

A

jK

su
h that (

e

 

i

K

� v

i

h

) 2 B

h

(K); and :

L(

e

 

i

K

; v) = 0; 8v 2 B

h

(K);

and then to write the ~v

j

h

's as 
ombinations of the

e

 

i

K

's. And so on.
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Let us 
onsider now the problem of solving (70) or (76). The most general and

widely appli
able strategy in order to obtain an approximate solution of, say, (70) 
onsists,

obviously, in the use of a Galerkin approximation, 
orresponding to a suitable 
hoi
e of

B

�

K

� B

h

(K) (warning: in spite of the notation, this has no parti
ular relationship with

the adjoint problem). Then one 
an solve N

K

problems of the type:

(77)

8

<

:

�nd  

�;i

K

2 B

�

K

su
h that :

L( 

�;i

K

; v) = (g

i

K

; v); 8v 2 B

�

K

:

The te
hnique has been su

essfully applied to adve
tion dominated 
ows, also with the

use of suitably re�ned subgrid meshes (of Shishkin type) near the out
ow boundary of

ea
h K. See e.g. [18℄. For an appli
ation of this te
hnique to the Helmholtz equation

see for instan
e [15℄, [17℄. This, essentially, is also what has been done for 
omputing

the solutions of (76), in problems related to 
omposite materials, in [1℄, [2℄, [25℄, [26℄,

although, as we have said, the derivation there was done in a framework independent of

the Residual-Free Bubbles approa
h.

In more spe
ial 
lasses of problems one might also think of using some spe
ial tri
ks.

For instan
e, for 
onve
tion-dominated 
ows with a very small di�usion 
oeÆ
ient, we have

seen that (70) redu
es essentially to solve (41). Assuming that the 
onve
tive 
oeÆ
ient

is pie
ewise 
onstant, one 
an solve, instead of (41), the (limit) purely 
onve
tive problem

(
orresponding to " = 0) that 
an be dealt with by hand. See e.g. [10℄, [5℄.

Another possible 
hoi
e is to take B

�

K

with a very small dimension (sometimes even

one-dimensional) but 
hoosing it in a very suitable way, whi
h depends on the parti
ular

form of the equation in ea
h K. See for instan
e [8℄. The use of Shishkin subgrid meshes

for adve
tion dominated problems, as in [18℄, 
ould also be seen as being part of this

strategy.

On the other hand, for singularly perturbed problems where some arti�
ial vis
osity

(or similar regularisation) is usually employed, the idea of using in (77) only one (or very

few) degrees of freedom with a kind of subgrid vis
osity (or subgrid regularisation,) as

in [22℄, [23℄, is surely appealing for its simpli
ity and rather wide range of appli
ability.

However, as shown in [6℄, the 
hoi
e of the a
tual value for the subgrid arti�
ial vis
osity

appears to be 
ru
ial, and requires deeper investigations.

At a more general level the e�e
ts on error estimates (both a priori and a

posteriori) of taking an approximate solution for the bubble equation deserve a better

attention, and should be the obje
t of a more a

urate analysis.

The appli
ation of the paradigm \divide and 
onquer/ stati
 
ondensation/ approx-

imate solution" to some nonlinear problems is 
urrently under investigation. The obvious


hoi
e would be to apply it to the various linearised problems in an iterative pro
edure,

but in parti
ular 
ases the stru
ture of the nonlinearity might suggest a better strategy.

Finally, we point out that, in some 
ases, the pro
edure of augmenting the spa
e V

h


an be done in two steps. Indeed, together with the addition of suitable bubble spa
es in

ea
h K, we might think of adding some edge fun
tions where 
onvenient. For instan
e, just
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to make an a
ademi
 example, one 
an de
ide that on a parti
ular edge e the addition of a

fun
tion with a spe
ial shape 
ould be bene�
ial for the overall quality of the approxima-

tion. This 
ould be a rapidly os
illating one, with a given wavelength, or a fun
tion with a

\bump" (or a \step") at a given lo
ation, and so on. Typi
ally, in pra
ti
e, this 
ould only

be done in some iterative way, using information from the subgrid solutions at previous

iterations or time steps. One way or another, assume that you know that a 
ertain shape

'

�

is needed at a 
ertain edge e

�

. Then you might think of in
reasing �rst the spa
e V

h

by adding a fun
tion having value '

�

on the edge e

�

, and having support in the union

of the (one or two) elements having e

�

as an edge. The value of su
h a fun
tion inside

the element(s) 
ould pro�tably be de�ned as the solution of the homogeneous equation

(11). You are equipped for that, as you are ready to solve subgrid problems related to the

operator L. In general, there will not be just one edge and one fun
tion that is needed,

but we might expe
t that they are not too many. After this �rst enri
hment of V

h

, the

bubble pro
edure 
an be started. It is 
lear that, after addition and elimination of the

bubbles, the total number of equations will be equal to the original number of boundary

degrees of freedom in V

h

plus the ones that were added during the �rst enri
hment (these

will not go away in the stati
 
ondensation pro
ess). This pro
edure, on one hand, has

to be used with some 
are. Indeed, we started by assuming that V

h


orresponded roughly

to the �nest grid we were ready to a�ord. Clearly, the number of additional degrees of

freedom has to be limited to the essential. On the other hand this pro
edure 
an provide a

partial healing to the very undesirable (but, somehow, ne
essary) e�e
t of impermeability

of the interelement boundaries to the small s
ales that is inherent to the divide and 
on-

quer strategy. It is 
lear that mu
h more investigation and experimentation are needed in

order to design e�e
tive strategies for doing all that.

As a last point, the possible use of \non
onforming bubbles" is surely worth inves-

tigating. A non
onforming bubble would be a fun
tion having support in a single element

K, whose extension by zero outside K does not belong to the spa
e V . In some 
ases,

the boundary values of these non
onforming bubbles might have zero mean value (or zero

moments up to some order k) at ea
h interelement edge (see for instan
e [14℄). In other


ases, this will have to be imposed by means of some interelement multiplier or similar

tri
k, in order to 
ompensate for the variational 
rime. This approa
h has been re
ently

applied with su

ess in [13℄, whi
h we refer to for additional information. It is reasonable

to assume that the idea might be extended to more general situations, and it is surely

quite appealing.
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