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Abstract. In recent times, several attempts have been made to recover some
information from the subgrid scales and transfer them to the computational scales.
Many stabilising techniques can also be considered as part of this effort. We discuss
here a framework in which some of these attempts can be set and analysed.
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In the numerical simulation of a certain number of problems, there are physical
effects that take place on a scale which is much smaller than the smallest one representable
on the computational grid, but have a strong impact on the larger scales, and, therefore,
cannot be neglected without jeopardizing the overall quality of the final solution.

In other cases, the discretised scheme lacks the necessary stability properties because
it does not treat in a proper way the smallest scales allowed by the computational grid. As
a consequence, some ”smallest scale mode” appears as abnormally amplified in the final
numerical results. Most types of numerical instabilities are produced in this way, as the
checkerboard pressure mode for nearly incompressible materials, or the fine-grid spurious
oscillations in convection-dominated flows. See for instance [21] and the references therein
for a classical overview of several types of these and other instabilities of this nature.

In the last decade it has become clear that several attempts to recover stability, in
these cases, could be interpreted as a way of improving the simulation of the effects of
the smallest scales on the larger ones. By doing that, the small scales can be seen by the
numerical scheme and therefore be kept under control.

These two situations are quite different, in nature and scale. Nevertheless it is not
unreasonable to hope that some techniques that have been developed for dealing with the
latter class of phenomena might be adapted to deal with the former one. In this sense, one
of the most promising technique seems to be the use of Residual-Free Bubbles (see e.g.
[10], [19].) In the following sections, we are going to summarise the general idea behind i,
trying to underly its potential and its limitations. In particular, we shall first present in
Section 1 the basic principles of the strategy: divide and conquer, static condensation and
approzimate solution. In Section 2 we present some examples of toy-problems, related to
advection dominated flows, composite materials and viscous incompressible flows, in order
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to show how the general theory can be applied. We shall see in particular that several
other methods, like SUPG, Petrov-Galerkin, upscaling methods, multiscale methods, and
others can actually be seen as being variants of the RFB procedure. Finally, in Section 3,
we discuss some questions related to the implementation of these methods.

1 The augmented problem and the bubble equation

At a very general level, the Residual-Free Bubbles approach can be summarised as follows.
We start with a given problem, that for simplicity we assume to be linear, and in variational
form:

find u € V such that :

(1)
L(u,v) = (f,v), YveW

We assume that we are given a discretised problem:

find uy, € V}, such that :

(2)
E(Uh,’l)h) = (fa 'Uh)a vvh € Vha

where V;, C V is a finite element space, corresponding to a given decomposition 7j of the
computational domain. To fix the ideas, we shall use a two-dimensional lexicon, and in our
examples we shall always assume that the computational domain is two-dimensional. The
basic idea, however, is quite general, and could be applied in any dimension. We suppose,
roughly speaking, that 7 is the finest grid we are ready to afford in the computation, in
the sense that we are not ready to solve a final system having much more unknowns than
the dimension of V},.

To the space V and to the decomposition 7; we associate the space of bubbles
B(V;Ty) defined as

(3) B(V;Th) =1k By (K)
where, for each K in Tj,
(4) By (K) = {v|v €V, supp(v) C K}.

Let us see some examples that will help understanding how the spaces By (K) change for
different choices of V. As a first, and most typical example, consider the case V = H} ().
Then clearly By (K) = H}(K) (the usual bubbles). If however V = H'(f2), then we still
have By (K) = H{(K) for the elements internal to €, but if K has one or more edges
on 0N, there the elements of By (K) are allowed to be different from zero. On the other
hand, if we are dealing, for instance, with a problem written in mixed formulation, and

(5) V = H(div; Q) x L*(Q),
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then the space By (K) will have the form By (K) = Xp(K) x Ug(K) with
(6) Yp(K) :={r € H(div; K), such that 7-n =0 on K N Q},
where, as usual, n represents the outward unit normal to 0K, and

(7) Up(K) = LX(K).

In other cases, as for instance in plate bending problems, the space V is HZ(f), and
accordingly each By (K) = HZ(K). And so on.

Problem (2) is now, temporarily and artificially, augmented by considering a new
subspace of V:

(8) VA = Vh —+ Bh,
where Bj, has the form
(9) Bh = HK Bh(K),

and, for every K in 7, By(K) is a subset (possibly infinite dimensional) of By (K). The
augmented problem reads now:

find uy4 € V4 such that :
(10)
L(ug,va) = (f,va),  VYva € Va.

At this level of generality, we cannot do better than assuming that (10) has a unique
solution for every right-hand side f € V', although, in general, its solution will not be
computable in practice. In principle, problem (10) should be able to take into account all
the small scales that do not cross the boundaries of the elements K, (in a sense that, as
we have seen, depends on the nature of V.) This is a severe limitation, but corresponds
to a sort of divide and conquer principle that might, in the end, ensure some feasibility
to the whole procedure. If necessary, the space V4 could be further augmented, in a sort
of iterative, self-adaptive strategy. For instance, out of a previous resolution, we might
have hints that, on certain edges of T, there are one or two fine grid-modes that should
be taken into account. We might then add, for every such edge e, the functions having
support in the union of the elements having e as an edge, and having the crucial fine-grid
mode as trace on e. For the sake of simplicity, we shall not discuss this option here, apart
from a short hint at the hand of the paper.

We now proceed to eliminate, at least formally, the bubble unknowns from problem
(10). The technique that we are going to use is well known in the Engineering practice,
under the name of static condensation. However, here we apply it in a more general,
infinite dimensional, case.

The first problem that arises is that (8) might not correspond to a direct sum. To
fix the ideas, if the original V}, is made of all piecewise cubic continuous functions, then
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it already contains one cubic bubble per element, that however might appear in B} as
well. Our choice (roughly speaking) is to keep, as much as possible, all the elements of
the intersection By NV}, in By, and reduce, if necessary, V},, introducing a proper subspace
Vh# C Vj,. This rule, however, will not be the best one in every case. Let us see some
examples in order to clarify the situation.

Ezample 1.1 Assume as before that V = H{ (Q) and V}, is made of piecewise cubic functions.
Assume moreover that the space Bj is the biggest one allowed, that is B, = B(V;Ty),
given by (3) and (4). Then we have several choices. For instance, we might take as Vh#
the set of functions ¥, that are polynomials of degree < 3 on the interelement boundaries,
and verify

(11) Lip =0

separately in each element K, where L is the operator associated with the bilinear form
L. On the other hand, we can take as Vh# any space of piecewise cubic continuous func-
tions whose value can be determined in a unique way by their traces at the interelement
boundaries. For instance, any serendipity cubic element would do; see, as an example,
the element described in [12], page 50. Notice that these two choices produce the same
augmented space Vy4, and hence the same solution u4 to (10).

Ezample 1.2 As another example assume now that V = H(div; Q) x L?(£2) and its approx-
imation V;, = 3, x U}, is made by lowest order Raviart-Thomas elements (see for instance
[3]). Assume again that B, = B(V;Tj,). Then we might take Vh# to be the space X5, x {0}
(all the piecewise constant displacements are bubbles!). However, in most cases, for rea-
sons that will become clear in a while, it will be more convenient to keep the piecewise
constants (that are in Uy) in Vh#. This implies that we take now Bj,(K) = Sp(K)xU%(K),
where Y p(K) is given by (6) and

(12) UR(K) := L§(K) = {v € L*(K), such that / vdz = 0}.

K
In most cases, the use of bubbles in ¥ 5(K) whose normal component does not vanish on
the boundary 02 will be unnecessary (and in particular it would complicate the notation.)
In these cases, we might use instead

(13) Yp(K) := Hy(div; K) = {7 € H(div; K), such that 7-n =0 on 0K}.

With these choices we will have Vh# =V}, and By, (as given through (13) and (7)) will be
the space of all pairs (7,v) € V such that 7 has zero normal component at the boundary
of each element, and v has zero mean value in each element. The same choice for By,
would be suitable also in the case of higher order Raviart-Thomas spaces (or, say, for
BDM spaces; see always [3]), but then V3, should lose all internal degrees of freedom, apart
from the piecewise constant scalars. At a more general level we notice, however, that for
problems in mixed form the choice of By, might be delicate, and might have to satisfy some
particular requirements. Indeed, for some naive choice of By, the augmented problem (10)
might lose existence and/or uniqueness in Vjy.
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Ezample 1.3 A similar approach can be taken for a Stokes problem, where V = (H{ ())? x
L3(Q), and LZ(Q) is, as in (12), the space of L? functions with zero mean value in .
Assume, this time, that V}, is made of piecewise quadratic velocities in (H}(£2))?, and
piecewise linear discontinuous pressures. In this case one can see that the space B(V;Tj)
as defined in (3)-(4) has the form B(V;7;,) = (Ilx(H{(K))?) x LE(Q). It will then be
convenient to take By, = I {(H}(K))? x LE(K)}, and reduce the space V3, taking as Vh#
the space of quadratic velocities and constant pressures. It is easy to check that with this
last choice we have a direct sum in (8).

We shall come back later to the merits and drawbacks of the different choices. One
way or another, we shall have in the end

(14) Vi =V @By,

with a direct sum. Once this point has been, at least partly, clarified, we can now take an
easier notation, dropping the # in (14) and assuming that in (8) we have a direct sum of
subspaces of V. We can then write u4 and v4, in a unique way, as:

(15) uUp = Up +up,
and
(16) v4 = v +UB,

respectively. Inserting (15) into (10), and taking v4 = vp we obtain the so-called bubble
equation:

find up € By, such that :
(17)
L(up,vp) = —L(up,vB) + (f,vB), Yup € By,

The bubble equation (17) will play an important role in the following discussion. We take
advantage of the split nature of the space Bj,. For every element K in 7;, we define up g
as the restriction of upg to the element K. Then we have

(18) L(up,r,¢) = (f — Lup, ), Vo € By(K),

where, as in (11), L indicates the operator associated with the bilinear form L. In certain
problems, the existence and uniqueness of the solution of each equation (18) will be im-
mediate. However, for other types of problems (for instance for problems in mixed form)
the choice of the spaces By (K) has to be made taking into account the unique solvability
of (18), that is an important feature in the whole procedure. Here, at the abstract level,
we shall make the assumption that the problem

find wp € By, such that :
(19)
L(wp,vg) = (g,vB), Yug € By,.
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has a unique solution for every right-hand side g, say, in V'. We have then an operator
L3! from V' into By, which is defined as the solution operator of (19), in the sense that
wp = Lz'g iff wp is the solution of (19). Tt is clear that (19) could also be split in
independent problems, similar to (18), one in each element K. Accordingly, Lgl can be
spilt as a sum of independent operators LE,’IK where L]}}Kg is the restriction wp x to K
of wp = Lglg .

In many cases problem (18) can easily be written in strong form as

(20) L’U,B,K = f — Luh n K,

with the associated boundary conditions. Let us stress the fact that, in order to write the
problem in the strong form (20), it is usually essential that the space Bp(K) is chosen to
be equal to the full bubble space By (K) of (4). As far as the boundary conditions are
concerned, they are usually included in the requirement up x € By (K), that is

(21) up,k €V and supp(upi) C K.
For instance, if By (K) is equal to H}(K), then the boundary conditions will simply be
(22) up,k = 0 on OK.

We can now write the solution of (17) as up = Lg'(f — Luy), or, in its split form,
as

(23) upg = Ly (f — Lup), VK € Th.
We then go back to (10) and take v4 = vy; inserting (15) and (23) we obtain:

find uj, € V}, such that :
(24)
‘C(uhavh) + ZK ‘C(LB}K(f - LUh),’Uh) = (f7 ’Uh), V’Uh € Vh-

Note that (24) has the same form (and the same number of unknowns) of (2). However,
the additional term

(25) L(up,vn) = LILG (f = Lun),vn) = L(L5' (f — Lup), v)
K

takes now into account the effect of some small scales (the ones that do not cross the
interelement boundaries) onto the scales that are visible on the computational grid. As
we mentioned, one can try to improve the situation by adding some fine-grid mode at the
interelement boundaries, but we are not going to discuss it now. It is clear that the effect
of small scales onto the coarse ones will be reproduced in a better way by taking the space
By, as big as possible, as we have done in our examples so far. It is also clear that if, as in
all our examples, the space By, is infinite dimensional, the bubble equations (18) will be
practically unsolvable. Then it will be necessary to compute an approximate solution of
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the bubble equation, that however can be done in parallel. Moreover, as we shall see, in a
certain number of applications, the structure of the additional term (25) is such that only
some averaged quantities will be needed. In these cases, the approximate solution of (18)
will not need to be extremely accurate. We shall come back to this point in a moment. For
the time being, we point out that, when applied to a certain number of problems, the RFB
procedure gives back classical stabilising techniques, as the so-called SUPG methods [11],
[16], or variants of them (like in [30]). See for instance[10], [27], [4], [28], [9] for advection
dominated flows, and [27], [4], [19], [15], [17] for more general problems (including Stokes,
Reissner-Mindlin, Helmholtz, and others.) Error bounds for these methods can be proved
by analysing the stabilised form (24) (see for instance [29], [24], or [31] and the references
therein), or, with a more recent approach, by looking directly at the form (10), as done in
(7], [9], and [33].

The procedure sketched above follows the classical derivation of [10] and [19]. In
particular we point out that the name Residual-Free Bubbles comes from the fact that w4
will satisfy the equation

(26) L(ua,p) = (f,¢), Vo€ Br(K),

which, in many cases, will imply exactly Lus = f separately in each K € T;, (that is, the
residual will be zero in each K.)

However, in order to see in a better way the connections with other older and newer
procedures, we point out here a different way of looking at problem (10). Indeed, using
the unique solvability of (19) and forgetting again the problem of the actual computation
of its solution, we could tackle (10) in a different way. We might think to associate, to
every function v, € V},, a new function v, solution of

find 75, € V4 such that 9, — vy, € By, and :
(27)
L(vp,vp) =0, Voup € By,

that in many cases could also be written as
(28) Lo, =0 in K, VK €T

Taking all possible v,’s in V},, we construct a new space ‘7;1, which is in one-to-one corre-
spondence with V}, (we use here the fact that in (8) we have a direct sum.) As we remarked
before, when discussing the different ways of splitting the elements of V4, we still have
V4 = Vi, + By, and we still have a direct sum. We can now write the solution u4 of (10)
as u4 = U + wp. Taking vy € By in (10) we have a new bubble equation

(29) L(wp,vp) = —L(tn,vp) + (f,vB), Yvp € By
that however, this time, becomes
(30) L(wp,vp) = (f,vB), Yvp € By,
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and, with some surprise, is independent of 1. Substituting back in (10) with v4 = ), we
have now that uy is the unique solution of the problem

find 7, € Vj, such that :
(31)
‘c(ahaﬁh) = —E(U)B,ﬁh) + (fa 6h)7 V'Ijh € Vh-

It has to be pointed out that the two formulations (24) and (31) are perfectly equivalent,
and up + up = Uy + wp = uy, solution of (10). Along these lines, we might also think
about another variant. Indeed, we might assume that the adjoint problem of (27) is also
uniquely solvable for every right-hand side g € V'. Then, always for every v, € V},, we
might construct another function, vy, solution of

find ¥; € V4 such that o} — v, € By, and :
(32)
L(UB,ﬁ;;) =0, VYvp € By,

Applying this procedure to every v;, we generate a new space, Vh , that in general will be
different from Vh, unless the bilinear form £ is symmetric. We have again V4 = Vh + By,
always with a direct sum. Therefore in (10) we might think of using the splitting uy =
up +wp for uy, and the splitting vq = 07 + vp for va, always without changing the final
solution us. An easy computation shows that 4 can also be seen as the unique solution
of

find 4y, € 17h such that :
(33)
L(tp,05) = (f,05), Voy €V

On the other hand, wp will (obviously) still be the solution of (30). We also notice that the
solutions up, and 4y will have the same values at the interelement boundaries. Therefore
if, for some reason, we are just interested in the values of the approximate solution on the
coarse grid, then uy, and @y will provide the same information.

We shall see in the next section that these alternative formulations of (10) have, in
various applications, strong connections with other procedures that were introduced before
and after the Residual-Free Bubbles, following different and independent arguments.

2 Some examples

It is now convenient to see the above (abstract) procedures at work on some particular
simple problem.

Ezample 2.1 Let us consider the classical toy-problem of advection-dominated linear equa-
tions. From the physical point of view, we may think to the problem of the passive trans-
port of a scalar diffusive quantity in a fluid whose velocity is known. Let then Q be, for
instance, a convex polygon, € a positive number (= diffusion coefficient), ¢ a bounded
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mapping from Q to IR? (= velocity field) and f, say, an element of L?(Q) (= source term).
We consider then the problem of finding v in H}(Q) such that:

(34) —eAu+c-Vu=f in .
We can set Lu := —eAu + ¢ - Vu, and
(35) L(u,v) := ea(u,v) + c(u,v) Vu,v € HEH(Q),

where, in a natural way,
(36) a(u,v) := / Vu-Voudz, and c(u,v):= / c-Vuvdz, Yu,v€ HLHQ).
Q Q

Assume now that we are given a decomposition 7 of € into triangles, and assume
moreover that ¢ and f are piecewise constant on 7,. We take then V} to be the space of
piecewise linear continuous functions vanishing on 052, and By, as in (9) with By (K) =
By (K) = H}(K) for each K. The unique solvability of the augmented problem (10), in
this case, in obvious. If we apply the theory of the previous section, the bubble equation
(20) becomes, in each triangle K: find up x in H{(K) such that:

(37) —cAup g +c-Vupg = —(—cAup+c-Vup)+ f in K,

where, for a better understanding of more general cases, we kept the term Awuy that is
actually zero in each K. We point out that, in this case, the unique solvability of (37) is
also obvious. On the other hand, even for the present toy problem, the solution of (37)
cannot be computed in practice. However, we want to point out here the use that has to
be done of it. In particular, it is not difficult to check that, in the present case, we have
a(up,vp) = 0 for every up € By, and for every v, € V}. Hence the additional term (25)
arising in (24) becomes

(38) L(up,vn) = c(up,vp) = /

c-Vquhdxz—/uBc-Vvhd:c,
Q

Q

with an obvious integration by parts. We also remark that the term ¢ - Vv, is piecewise
constant. Hence we see that only the mean value of up in each K will be used in the
final system (24) for computing uj. Moreover, still in our assumptions, we observe that
the right-hand side of (37) is also constant in K, so that up , in each K, can be written
as

(39) up,k = bk Rk,
where
(40) R = —(—cAup +c-Vuy) + f
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is the residual in K (taking uj; as approximate solution,) and the bubble b is the solution
of the scaled problem:

find bx € H}(K) such that :
(41)
—eAbg +¢-Vbg =1 in K.

A simple computation shows that, inserting (39) in (38), the additional term (25) becomes
br dz
(42) L(up,vn) = c(up,vp) =Y fﬂTIj / (¢ Vup — f)e- Vo, dz,
K
K

where b is still the solution of (41). This, as already pointed out in [10] (see also [27], [4],)
corresponds to the use of the well known SUPG method (see [11], [16]) with the stabilising
parameter chosen as

fK brdx
(43) — L
K|

Assume now that we proceed with the alternative formulations (31) or (33). In this
case, the space ‘7;1 will be made of functions ¥ that are linear along each interelement
boundary, and satisfy Lo, = 0 in each K. On the other hand ‘7,;* will be made of functions
0y that are linear along each interelement boundary, and satisfy

(44) L5} = —eAdf —c- Vi =0, VK €T

The formulations (31) and, mostly, (33) are clearly in the family of Petrov-Galerkin meth-
ods that have been proposed, with several variants, for convection diffusion problems. See
for instance [30] and the references therein. We underline once more that the three formu-
lations (24), (31), and (33) are perfectly equivalent, and uj, +up = Uy +wp = u 4, solution
of (10). However, the computational strategy that they suggest is different. Nevertheless,
as we shall see in the last section, the computational effort related to these different strate-
gies would also come out to be comparable. The different formulations can also suggest
different strategies for analysing the method, in order to prove stability and error esti-
mates. In our opinion, the (more recent) strategy of looking directly at the formulation
(10), as in [9], [33], is more effective, but the situation might change from one case to
another. We point out that the bubble component up could also be used for deriving a
posteriori error estimates (see e.g. [32]).

Ezample 2.2 We consider now another toy-problem, related to composite materials. Let
Q be our computational domain and let a(x) > ay > 0 be a function from Q into R (we
took for simplicity the scalar case, but in applications « could often be a matrix). Let
again f be a given forcing term (like an external load, or a source term) and consider the
problem of finding u in V = H}(Q) such that:

(45) Lu = —div(aVu) = f in Q.
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Problem (45) is meant to mimic for instance a linear elasticity problem, or a pressure
equation in oil recovery problems, where « (that we assume to be rapidly varying, although
not necessarily periodical) represents the properties of a composite material. We can set
now

(46) L(u,v) = / aVu-Vodz, Yu,v € Hy(Q),
Q

and write (45) in the usual variational form
(47) L(u,v) = (f,v) VveV.

Assume now that we are given, as in the previous example, a decomposition T of
Q into triangles. We take again V}, as the space of piecewise linear continuous functions
vanishing on 99, and By, as in (9) with B,(K) = B(K) = H{(K) for each K. If we want
to apply the theory of the previous section, we see again that existence and uniqueness
of the solution of the augmented problem (10) are trivially proved. Moreover the bubble
equation (20) becomes, in each triangle K: find up g in H}(K) such that:

(48) —div(aVug k) = div(aVu,) + f  in K.

In this case as well, the unique solvability of (48) is obvious. It is also clear that, at the
practical level, equation (48) is (as all the other ones so far) unsolvable. However, as in
the previous example, we can check the structure of the additional term (25), which is
now

(49) L(up,vp) = / aVup - Vo, dz,
Q

with v, € Vj. Although the “bubble stress” —aVup will surely have a complicated
structure in each triangle K (if we think that « is rapidly varying) it will again be true
that only its mean value (actually, the mean value of each component) is needed in the
computation of (49), since Vuvy, is constant within each element.

We could also follow, even in the present example, the alternative formulation (31),
that now would coincide with (33) as the problem is symmetric. In this case, Vj, = ‘7;2‘ will
be the space of functions o5, that are linear on the interelement boundaries and satisfy the
homogeneous equation div(aVd,) = 0 separately in each element K. Again, with some
attention, the computational aspects of the two approaches can be made very similar. It
is interesting to see that in this case the approach (31) is quite close to the strategy which
has been developed for instance in the multilevel approach of [25], [26], although using a
quite independent derivation.

Ezample 2.3 We consider now the same problem of the previous example, but, this time,
writing problem (45) in mixed form. We introduce therefore the “stress field”

(50) o= —aVu,
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and the spaces ¥ = H(div; ) and U = L?(Q2). We also set

(51) a0, 7) = /

o lo-rdz, Vo,r€X, and b(r,v) = /vdivrdx, Vr e X, Vo e U.
Q

The mixed formulation of (45) reads now

find(o,u) € V =% x U such that :
(52) a(o,7) —b(r,u) =0, Vre,
b(o,v) = (f,v), VYveU.

Assume that we have a triangulation 7, as before. We can take, as in Example 1.2,
Vi, = X, x Uy, where %, is the space of lowest order Raviart-Thomas vectors and Uy, the
space of piecewise constant scalars. Assume now that By, is chosen as in Example 1.2, in
particular discarding the “boundary bubbles”. We recall that this means that each By, (K)
has the form Bj,(K) = Xp(K) x U%(K) with ¥5(K) given by (13) and U% by (12). We
introduce some additional notation. We set $5 = [IxXp(K) and Uy = HrUS(K).
Then X4 := X, +Xg and Uy = Uy + U%. Finally V4 := %4 X Us. The augmented
problem (10) becomes now

find (o,u) € V4 such that :
(53)

a(op +0p,74) — b(Ta,up +up) =0, V74 € X4,
b(O’h + O'B,UA) = (f,’UA), Vog € Uy,

To prove existence and uniqueness of the solution of (53) is an exercise, using the general
theory of mixed methods and the properties of Raviart-Thomas spaces (see e.g. [3].)
Essentially, you have to show that you can construct a continuous lifting of the divergence
operator from L?(2) back into ¥ 4. For this, given a v € L?(£2) you first take its projection
¥ into the space of piecewise constants, and you take a 75, € ¥p, such that div7, = 9. This
is possible since Raviart-Thomas spaces satisfy the inf-sup condition. Then, in every K,
you can find a 75 x € Y p(K) such that divrg x = v — v. This is possible since v — v has
zero mean value in each K. Clearly div(7, + 75,x) = v.
We consider now, in each K, the local bubble equation (18), that is

find (op,up) € Lp(K) x U%(K) such that :
(54) a(op, ) — b(TB,up) = —a(op, 78) + b(tB,up) = —a(on,78), V7B € Lp(K),
b(op,vB) = —b(on,vB) + (f,vB) = (f,vB), Vup € UR(K).

We notice that u; disappears from the first equation of (54) since b(7g,up) = 0 for all
Tp having vanishing normal component on each 0K, and o, disappears from the second
equation since b(op,vg) = 0 for all vp having zero mean value in each K. To prove
existence and uniqueness of the solution of (54) is also very easy. In particular, for doing
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this, we make again use of the fact that the divergence operator is surjective (and has
a bounded lifting) from ©p5(K) onto US(K). This would not have been true, had we
chosen Up(K) = L?(K) as scalars for the bubble spaces, instead of U%(K). Whence the
importance of having kept the piecewise constant scalars into V},, as suggested in Example
1.2.

With some manipulations, one can check that the strong form of the bubble equation
(54) is

(55) { —div(aVug) = fo +divey,  in K,

—aVug -n=o0p-n on 0K,

where fj is the difference between f and its mean value on K. We see in this case that
(55) does not have exactly the general form (20), because our choice of By (K) does not
coincide with the full bubble space By (K). Indeed, the piecewise constant scalars have
been kept in V} (with very good reasons.) Existence and uniqueness of (55) can clearly
be deduced from those of (54), but they can also be checked directly. Indeed, existence
is ensured by the compatibility of the two right-hand sides, and uniqueness is ensured by
the requirement that up has zero mean value in K. The bubble stress op can then be

deduced from op + 05, = —aVup. Notice that if f is piecewise constant then fp = 0.
If moreover, say, @ = 1, then for our case (lowest order Raviart-Thomas elements) the
solution of (55) would be the (unique) function up having Vup = —op, and zero mean

value in K. In particular op would be zero. This case would be particularly uninteresting,
since the additional term (25) would then vanish. All the procedure would just produce a
sort of a post-processing giving o4 = o, and u4 = up, + up where the scalars would have
slightly better convergence properties. We discard this curiosity, and we go back to the
more interesting case of a general coefficient «. In particular we note that the additional
term (25) is now

(56) L((oB,up), (Th,vn)) = alos, ) — b(th,us) + blop,vy) = a(op, )

where we made use once more of Gauss theorem in each K. We note again that in (56)
only the “stress part” op of the solution of the bubble equation will be needed, and, most
important, only its integral against a Raviart-Thomas vector. As an alternative, one might
also compute the additional term by using in each K the formula

(57) ax(oB,Th) = —/ Vup,k - mhdr = —/ up,KTh - nds,
K oK

with obvious meaning for the bilinear form ax; then only the mean value of ug on each
edge would be used.

We are now interested in seeing, in the present case, what happens if one follows
the alternative path (27)-(31). The procedure of Section 1 suggests that to every (73, vp)
in Xj, x Uy, we associate a pair (7, 0) € X4 X Uy defined as the solution of the problem

find (7~'h,’l~)h) € X 4 X Uy such that (7~'h - Th) € ¥, (Q~)h —vh) € U% and :
(58) a(7~'h,7'B) — b(TB,’F)h) =0, Vrg € ¥p,
b(%haUB) =0, Yuvp€ U%
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Notice that (58) corresponds to solving, in each K, the following Neumann problem (sim-
ilar to (b)) for vy := vy — v,

(59) —div(aVvy) = divry, in K,
—aViy-n=1,-n on 0K,
and then taking 7, = —aV1y and 0, = 0y + v. Existence and uniqueness of the solution

of (59) can be checked as we did for (55). We remark in particular that, starting from a
pair of the type (0,vy), we would obtain 7, = 0 and 9, = v;,. On the other hand, starting
from a pair (73,0) both 7, and 9, will, in general, be different from zero.

Our space V}, should now be made of the pairs (7, 7p) that can be constructed by
(58). This however does not have an “elementary” structure of product space, as it can be
easily seen from the above discussion. This might complicate, at least, the formalism. In
order to have a simple product space, it is then more convenient to consider just all 7,’s,
and generate with them the space X, that clearly has the same dimension of X;. We also
have ¥4 = 3, + X p as a direct sum. Using this last splitting (and leaving Uy = U}, + U%
unchanged) we have now the new bubble equation

find (xB,2B) € X X Ug such that :
(60) 3
a(XB,TB) — b(TB,ZB) = —a(oh,TB), VTB € EB,
b(xs,vB) = (f,vB), Vup € Uy,

where the terms b(up,, 78) and b(6,, vp) have been neglected being equal to zero. Using the
first equation of (58) we see that there exists a wp € Uy such that a(64,75) = b(7p, Wp)
for every 7p € X p. Hence the pair (xp, zp + wp) solves the problem

find (xp,wp) € ¥p X Ug such that :
61
( ) a(XB,TB)—b(TB,’UJB)ZO, VTBGEB,
b(xs,vB) = (f,vB), Yup € UY,

which is now independent of (65, u;). Hence, problem (53) can be solved by computing
first the solution (xp,wp) of (61), and then solving

find (6p,up) € S, % Uy, such that :
62 L ~ ~ ~ ~
( ) a(oh,rh) — b(Th,uh) = —a(XB,Th), Y7, € Eh,
b(&havh) = (favh)a V'Uh € Uh-

We notice that the bubble term does not disappear from (62) because we did not take the
true space 17h (in order to deal with a simple product space.) As we shall see in the next
section, the computational aspects related to different strategies are however more alike
than one might think at first sight. It is interesting to see that a quite similar approach,
with a different derivation, is used in the upscaling technique of [1], [2].
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Ezample 2./ To conclude, we consider now an example related to the Stokes problem for
viscous incompressible fluids. We shall deal again with a toy-problem, namely

find (u,p) € (H3(Q))? x L3(Q) such that :
(63) —Au+Vp=f 1inQ,
divu =0 in Q,

where f is a “forcing term”, for instance in (L?(2))2. Our discussion will be very short
since, by now, the general idea should already be sufficiently clear. Introducing the spaces
V = (H}(Q))? and Q = L3(2) and the usual bilinear forms

(64) a(u,v) = / Vu : Vodz, Yu,v €V, and b(v,q) = /qdivudx, Yv € V,Vq € Q,
Q

we get the usual variational formulation

find (u,p) € V=V x @Q such that :
%) an,v) ~ b{v.p) = (£.0), Vo€V,
b(u,q) =0, VgeQ.

Assume that the choices for V}, and Bj, are made as in Example 1.3. We recall that this
means that in V;, (= V), X Q) we have piecewise quadratic continuous velocities and
piecewise constant pressures, and By, (= Vp x Qp) is given by g (H} (K))? x T L3(K).

The existence and uniqueness of the solution to (10), in the present case, is also
very easy. The lifting of the divergence operator can be constructed with a procedure that
mimics the one of the previous example, just using piecewise quadratic velocities (to take
care of the piecewise constant part of the pressure) instead of Raviart-Thomas vectors (see
always, e.g., [3]). The bubble equation will then be, in each K,

find (up,pg) € (H}(K))? x L3(K) such that :

(66) \ a(up,vm) — (o, ps) = —alun,vg) + bosps) + (fop), Vog € (HL(K))2,

b(up,qp) = —b(un,qB), Vqp € L3(K).

As in the previous example, existence and uniqueness of (66) are easily proven, making
profit of the choice of L3(K) as local pressure space for bubbles, instead of the whole
L?(K). The strong form of (66) would be, in each K:

find (UB,KapB,K) S (I‘I&(K’))2 X L%(K) such that :
67 .
( ) —AUB,K—I—VpB,KZf—l—A’U,h in Q
diVUB,K = —(divuh)g mn Q,
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where (divuy)g is the difference between divuy and its mean value in K. Again we see
that we do not get the form (20), having kept the piecewise constant pressures in ;. The
present version of (24) will then be

find (up,pn) € Vi = Vi X Qp, such that :
(68)
a(up,vy) — b(vg,pr) + a(up,vp) — b(pe,vy) = (f,vn), VYvu € Vp,
b(un,qn) =0, Vagn € Qp.

Writing the second equation of (68) we took advantage of the fact that (divup, gp) vanishes
for all piecewise constant g;. Integrating by parts we can see that the computation of the
additional term (25) requires now the mean value of up in each K and the two first order
moments of pp, always in each K.

It might be interesting to notice that some bad initial choices of V}, are unredeemable
with the standard RFB approach. For instance, starting with piecewise linear continuous
velocities and constant pressures, the augmented problem (10) would be ill-posed, no
matter which subspace By, C B(V;T,) we choose. Indeed, taking in Bj, the biggest possible
choice for velocities (that is IIx (H} (K))?) and the smallest possible choice for pressures
(that is {0}) the inf-sup condition will still fail in the augmented spaces. Actually, the
divergences of velocities in Il (Hj (K ))? will always have zero mean value in each K, and
they cannot help in controlling piecewise constants. The situation could be improved only
by using macro-bubbles, having support in more than one element (see e.g. [20]), but we
shall not discuss it here.

Many aspects of the above discussion extend from the toy-problems of this section
to more general situations. As we have seen, the main difficulty is that, in general, (17)
cannot be solved explicitly, so that the additional term (25) cannot be computed exactly.
We saw however in our examples that, in order to have a reasonable approximation of
(25), we will not need a very accurate solution of (17), as only some averaged quantities
of the bubble component are needed. This is true in a wider variety of cases. Indeed, as
we already observed, it is always only the effect of the small scales on the larger ones that
needs to be simulated. Even at a fully general level one can still notice that in (25) the
bubble term LE}K( f — Luy,) is tested against v, which belongs to the coarse space.

In the next section we are going to see some more practical aspects of the above
strategy.

3 Some hints on the implementation

We shall present now a brief discussion on various problems related with the implementa-
tion of the above strategies. To start with, a point that we did not stress so far is that, in
order to perform the static condensation, one has to be able to substitute up (or actually,
in practice, its approximation) as a function of the unknown uy in (24). We shall see now
with some more detail how this can be done.
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As a first step we identify, in each K, the smallest linear space that contains all
possible residuals, namely

(69) Ry p = spcm{f|K,Lvh|K, vp € Vit

In many cases, fix can be approximated, without major loss of information, by means of
elements of the space (LV},) |k, that can therefore be used in place of Rf ;. Otherwise,
the dimension of Ry, will be equal to the dimension of (LV4) 5 plus one.

The second step is then to choose, for each K, a basis {g} }i=1,. x5, of the space
R p,. Clearly, Nk denotes the dimension of such space. Then, for each i = 1,.., Ng, we
seek an approximate solution of the local problem:

find 4% € By (K) such that :
(70) . ‘
[’(szav) = (glKav)a Vo € Bh(K)

Now, in each K, we can express every possible right-hand side of (17) as a linear
combination of the functions {gﬁ(}izl,“,NK. In particular, assume that {v{b}jzl,“,N is the
basis that we chose for Vj,. Clearly, N denotes the dimension of Vj,. Then for each K
and for each vfl we express the restriction to K of Lvi as a linear combination of the gﬁ(.
Then the corresponding (approximate) solution LB}K(—Lvi) can be obtained as a linear
combination of the 1%-. Similarly, the contribution LE;}K( f) to the right-hand side can
also be expressed as a combination of the 1% The desired substitution in (24) can then
be done during the assembling procedure of the final stiffness matrix.

In various applications, Ng will be rather small. Referring to the examples of the
previous section, and assuming that f, in each K, could be approximated by elements
of (LVh)| i Wwithout major losses in accuracy, we have, for the examples of the previous
section, Ng = 1 in the first example, Nx = 3 in Examples 2.2 and 2.3, and N = 4 in the
last example. At a general level we might say that, for problems with constant coefficients
and without zero order terms (as in Examples 2.1 and 2.4,) Ng will often be smaller (and
sometimes much smaller) than the number of degrees of freedom of V}, in K. For instance,
in Example 2.4 the number of degrees of freedom of V}, in K is 13 (twelve velocities and
one pressure,) while, as we have seen, Nx = 4. Notice that the original number of degrees
of freedom in V}, was 15 (twelve velocities and three pressures) and went down to 13 when
we left in V,, only the piecewise constant part of the pressure.

Let us consider now the alternative formulations (31) and (33). We claim that
the (approximate) resolution of the Nx problems (70) is still an essential ingredient for
computing the stiffness matrix of (31). Clearly, the adjoint problems will also be needed
in order to use (33).

For the sake of simplicity, we concentrate on (31). We have to compute a basis for
Vi,. An obvious choice is to start from the basis {v]} of Vi Then we associate to every v;

an element f)i in Vj, as in (27). To do that, we write o] as vi + vg, with vg € By. Then,
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in each K, vg will be the solution of

(71) L(v},vp) = —L(v],vp) = —(Lv],vp), Yup € By(K).

It is clear that, in each K, every vg can be expressed as a linear combination of the Ng
solutions 9% of (70). If we keep the assumption that, in each K, the right-hand side f is
approximated by elements of (LV3)|x, then the solution wp of (30) can also be computed,
element by element, as a linear combination of the 1)j..

Finally, let us compare the effort for the actual computation of the stiffness matrices
of (24) and of (31). In many applications, the computation of L(vi,vﬁ) (7, =1,..,N)
would be much simpler than the direct computation of 5(62, 6,@) However, we note that,
using (27), we have

(72) L5, 5F) = L&), 0f + k) = L(T],0F) = L(v],vf) + L(v], vF).

We notice that the first term in the right-hand side of (72) is the same that would be
computed in (24), and the second term have the same nature as the right-hand sides of
(70). Indeed,

(73) L(vj,vf) = (v}, L*vf).
Finally, the term containing wpg (which disappears if £ is symmetric) can be treated as
(74) L(wp,t}) = Llwp,vp) + (f,v5) = (wp, L) + (f,v5).

We also observe that all the terms in (73) and (74) will require the computation of the
integral of the product of a bubble times an element of R} ,, that we define as

(75) R’}(,h = span{f‘K,L*UMK, vy € Vi)

This is the same that has to be done in the RFB approach, when computing the additional
term (25). We can conclude that the computational effort required by the two strategies
is comparable (after all, they are the same method, just written differently.) Similar
considerations hold for the formulation (33). We omit them, as they are a straightforward
extension of the above discussion. Other variants, as the one discussed in Example 2.3,
can be treated with similar arguments.

All these matters might deserve however a deeper investigation, in each particular
case, in order to assess the most convenient strategy that has to be adopted. For instance,
in cases like Example 2.2, where essentially Nk equals the dimension of V}, g, the easiest
way to tackle (31) seems to solve directly the problems

find §% € Vi i such that (i —v}) € By(K), and :
(76)
‘C(T/)ll(ﬂ)) = 07 VYo € Bh(K)7

and then to write the 6i’s as combinations of the Jﬁ(’s. And so on.
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Let us consider now the problem of solving (70) or (76). The most general and
widely applicable strategy in order to obtain an approximate solution of, say, (70) consists,
obviously, in the use of a Galerkin approximation, corresponding to a suitable choice of
B} C Bp(K) (warning: in spite of the notation, this has no particular relationship with
the adjoint problem). Then one can solve Ng problems of the type:

find ¢;<’i € Bj; such that :
(77) |
L(pg',v) = (gk,v), Vv € B

The technique has been successfully applied to advection dominated flows, also with the
use of suitably refined subgrid meshes (of Shishkin type) near the outflow boundary of
each K. See e.g. [18]. For an application of this technique to the Helmholtz equation
see for instance [15], [17]. This, essentially, is also what has been done for computing
the solutions of (76), in problems related to composite materials, in [1], [2], [25], [26],
although, as we have said, the derivation there was done in a framework independent of
the Residual-Free Bubbles approach.

In more special classes of problems one might also think of using some special tricks.
For instance, for convection-dominated flows with a very small diffusion coefficient, we have
seen that (70) reduces essentially to solve (41). Assuming that the convective coefficient
is piecewise constant, one can solve, instead of (41), the (limit) purely convective problem
(corresponding to ¢ = 0) that can be dealt with by hand. See e.g. [10], [5].

Another possible choice is to take B} with a very small dimension (sometimes even
one-dimensional) but choosing it in a very suitable way, which depends on the particular
form of the equation in each K. See for instance [8]. The use of Shishkin subgrid meshes
for advection dominated problems, as in [18], could also be seen as being part of this
strategy.

On the other hand, for singularly perturbed problems where some artificial viscosity
(or similar regularisation) is usually employed, the idea of using in (77) only one (or very
few) degrees of freedom with a kind of subgrid viscosity (or subgrid regularisation,) as
n [22], [23], is surely appealing for its simplicity and rather wide range of applicability.
However, as shown in [6], the choice of the actual value for the subgrid artificial viscosity
appears to be crucial, and requires deeper investigations.

At a more general level the effects on error estimates (both a priori and a
posteriori) of taking an approximate solution for the bubble equation deserve a better
attention, and should be the object of a more accurate analysis.

The application of the paradigm “divide and conquer/ static condensation/ approx-
imate solution” to some nonlinear problems is currently under investigation. The obvious
choice would be to apply it to the various linearised problems in an iterative procedure,
but in particular cases the structure of the nonlinearity might suggest a better strategy.

Finally, we point out that, in some cases, the procedure of augmenting the space V},
can be done in two steps. Indeed, together with the addition of suitable bubble spaces in
each K, we might think of adding some edge functions where convenient. For instance, just
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to make an academic example, one can decide that on a particular edge e the addition of a
function with a special shape could be beneficial for the overall quality of the approxima-
tion. This could be a rapidly oscillating one, with a given wavelength, or a function with a
“bump” (or a “step”) at a given location, and so on. Typically, in practice, this could only
be done in some iterative way, using information from the subgrid solutions at previous
iterations or time steps. One way or another, assume that you know that a certain shape
" is needed at a certain edge e*. Then you might think of increasing first the space V},
by adding a function having value ¢* on the edge e*, and having support in the union
of the (one or two) elements having e* as an edge. The value of such a function inside
the element(s) could profitably be defined as the solution of the homogeneous equation
(11). You are equipped for that, as you are ready to solve subgrid problems related to the
operator L. In general, there will not be just one edge and one function that is needed,
but we might expect that they are not too many. After this first enrichment of V},, the
bubble procedure can be started. It is clear that, after addition and elimination of the
bubbles, the total number of equations will be equal to the original number of boundary
degrees of freedom in V}, plus the ones that were added during the first enrichment (these
will not go away in the static condensation process). This procedure, on one hand, has
to be used with some care. Indeed, we started by assuming that V}, corresponded roughly
to the finest grid we were ready to afford. Clearly, the number of additional degrees of
freedom has to be limited to the essential. On the other hand this procedure can provide a
partial healing to the very undesirable (but, somehow, necessary) effect of impermeability
of the interelement boundaries to the small scales that is inherent to the divide and con-
quer strategy. It is clear that much more investigation and experimentation are needed in
order to design effective strategies for doing all that.

As a last point, the possible use of “nonconforming bubbles” is surely worth inves-
tigating. A nonconforming bubble would be a function having support in a single element
K, whose extension by zero outside K does not belong to the space V. In some cases,
the boundary values of these nonconforming bubbles might have zero mean value (or zero
moments up to some order k) at each interelement edge (see for instance [14]). In other
cases, this will have to be imposed by means of some interelement multiplier or similar
trick, in order to compensate for the variational crime. This approach has been recently
applied with success in [13], which we refer to for additional information. It is reasonable
to assume that the idea might be extended to more general situations, and it is surely
quite appealing.
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