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We develop the general a priori error analysis of residual-free bubble finite element
approximations to non-self-adjoint elliptic problems of the form (εA+C)u = f subject to
homogeneous Dirichlet boundary condition, where A is a symmetric second-order elliptic
operator, C is a skew-symmetric first-order differential operator, and ε is a positive
parameter. Optimal-order error bounds are derived in various norms, using piecewise
polynomial finite elements of degree k ≥ 1.

1. Introduction

Although the paper deals with a slightly more general case, let us consider here,

for simplicity, the following model problem: find u ∈ H1
0 (Ω) such that

−ε∆u+ ux = f in Ω, (1.1)

where Ω is a bounded polygonal domain in the plane, f is given in L2(Ω), and ε > 0

is very small compared with the diameter of Ω, so that (1.1) is advection-dominated.

Let {Th}h be a sequence of partitions of Ω into triangles T , let k ≥ 1 be an integer,

and consider the finite element space

Wh ≡W k
h (Th,Ω) = {v ∈ H1

0 (Ω) : v|T ∈ Pk|T for each T in Th}. (1.2)

Here h is a positive discretisation parameter which measures the granularity of the

partition Th, and Pk|T denotes the space of polynomials of degree ≤ k on T . The

usual Galerkin finite element approximation to (1.1) is then find uGh ∈Wh such that∫
Ω
(ε∇uGh · ∇v + uGhxv) dx =

∫
Ω
fv dx ∀v ∈Wh.

(1.3)
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It is well known that, whenever ε/h << 1, this method is unstable, which manifests

itself in large maximum-principle-violating oscillations in the numerical solution.

Among several possible remedies for this undesirable feature of the usual Galerkin

approximation, the SUPG method ([7], [15]) has attracted considerable attention

over the last decade, primarily because of its attractive combination of structural

simplicity, generality and the quality of the resulting numerical solution. For prob-

lem (1.1) the SUPG method reads
find uSh ∈Wh such that∫
Ω
(ε∇uSh · ∇v + uSh,xv) dx− S(uSh , v) =

∫
Ω
fv dx ∀v ∈Wh,

where S(uSh , v) =
∑

T τT
∫
T
(−ε∆uSh + uSh,x − f)(−ε∆v − vx) dx,

(1.4)

and τT is a parameter which needs to be chosen suitably. Reasonable rules of thumb

for the choice of τT can be found, for instance, in [9] and the references therein; the

corresponding error analysis (for model problems like (1.1)) is given in [14].

In recent years, the SUPG method has been frequently viewed in a more general

context (see, e.g., [1], [2] and the references therein), and appropriate choices for

the value of τT (or, more generally, for a suitable form of the stabilizing term to be

added to (1.3)) found a different, and philosophically more appealing, justification.

For the particular case of piecewise linear elements, for instance, it was shown

that SUPG can be also derived by the so-called residual-free bubble approach (RFB

from now on; see [6], [10]) as well as by the local Green’s function approach ([12]).

The connections between these two approaches were clarified in [2]: both strategies

lead precisely to (1.4), with a very specific value for τT which can be, therefore,

considered as optimal, at least from the theoretical point of view.

Since for k = 1 the SUPG method and the RFB approach (or its equivalent

local Green’s function counterpart) yield the same scheme, the results of [14] can

be used for the error analysis. However, as it was shown in [4], an analysis based

on the residual-free bubble framework can arrive at the same results by means of a

completely different procedure, casting a new light on the basic underlying features

of the new methodology.

In contrast with the case of k = 1, for k > 1 the RFB approach produces a

stabilizing term similar but not identical to that of (1.4). As a matter of fact, for

k > 1, (1.4) may be obtained by suitable virtual bubbles (see [1]) – an approach

which does not follow from the RFB methodology.

The objective of this paper is then to perform the error analysis of the residual-

free bubble method for the case of k > 1. This can be seen, in a sense, as an

extension of [4], although the techniques of error analysis presented here are quite

different and, to the best of our knowledge, completely new in this context. They

are based on sharp interpolation results in certain Besov spaces of differential order

1/2 which do not coincide with the usual Hilbertian Sobolev spaces H1/2 or H
1/2
00 .

The outline of the paper is as follows. In Section 2 we present our model problem,

and we recall the basic features of the RFB method applied to it. In Section 3 we
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recall the definitions of the Besov spaces mentioned above and we prove some simple

properties of these which will be used in the subsequent analysis. Finally, the error

analysis is presented in Section 4.

Numerical experiments to compare the relative performances of SUPG and RFB

for values of k > 1 would be very interesting but are beyond the scope of this paper

and are not discussed here.

2. Statement of the problem

Suppose that Ω is a bounded polyhedral domain in Rn and let L be a second-order

linear differential operator of the form

L = εA+ C, (2.1)

where A and C are defined, for w,say, in H1(Ω), by

Aw ≡ −
n∑

i,j=1

∂

∂xj

(
aij(x)

∂w

∂xi

)
, Cw ≡

n∑
i=1

ci(x)
∂w

∂xi
.

We assume that, for almost every x in Ω, the n × n matrix (aij(x)) is symmetric

and positive definite, with smallest eigenvalue ≥ α > 0 and largest eigenvalue ≤ 1,

independent of x. In a sense, we are normalizing the operator A in the product εA.

To the operator A we assign the bilinear form

a(w, v) =

∫
Ω

n∑
i,j=1

aij(x)
∂w

∂xi

∂v

∂xj
dx, w, v ∈ H1(Ω). (2.2)

With the above assumptions A is a symmetric operator from H1
0 (Ω) into H−1(Ω)

verifying

a(w, v) = ⟨Aw, v⟩ = ⟨w,Av⟩ ∀w, v ∈ V, (2.3)

where, from now on,

V = H1
0 (Ω), V ′ = H−1(Ω),

equipped with respective norms ∥ · ∥H1(Ω) and ∥ · ∥H−1(Ω), and ⟨·, ·⟩ denotes the

duality pairing between V and V ′. Moreover, the bilinear form a(·, ·) is V -elliptic

and normalised to 1, that is,

α|v|2H1(Ω) ≤ a(v, v) ∀v ∈ V, (2.4)

a(v, w) ≤ |v|H1(Ω)|w|H1(Ω) ∀v, w ∈ V, (2.5)

where | · |H1(Ω) is the seminorm of V = H1
0 (Ω).

Similarly, we assume that, for almost every x in Ω, the n-component vector

(ci(x)) has Euclidean norm ≤ γ, independent of x, and we introduce the bilinear

form c(·, ·), defined by

c(w, v) =

∫
Ω

n∑
i=1

ci(x)
∂w

∂xi
v dx, w ∈ H1(Ω), v ∈ L2(Ω). (2.6)
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As a consequence, we have

c(w, v) = (Cw, v) ∀w ∈ H1(Ω), ∀v ∈ L2(Ω), (2.7)

where (·, ·) signifies the inner product in L2(Ω). Our hypotheses imply that

|c(w, v)| ≤ γ|w|H1(Ω)∥v∥L2(Ω) ∀w ∈ H1(Ω), ∀v ∈ L2(Ω), (2.8)

where ∥ · ∥L2(Ω) is the norm of L2(Ω). We make the additional assumption that the

bilinear form c(·, ·) is skew-symmetric on V ; namely,

c(w, v) = −c(v, w) = (Cw, v) = −(w,Cv) ∀w, v ∈ V. (2.9)

This can be ensured by requiring that the vector field c = (c1, . . . , cn) is divergence-

free on Ω in the sense of distributions.

For f given in L2(Ω), say, we consider the boundary value problem{
Lu = f in Ω,
u = 0 on ∂Ω.

(2.10)

Let L(·, ·) be the bilinear form on V × V associated with the operator L, namely,

L(w, v) = εa(w, v) + c(w, v) ∀w, v ∈ V. (2.11)

We consider the variational form of (2.10):{
find u ∈ V such that
L(u, v) = (f, v) ∀v ∈ V.

(2.12)

Applying (2.11), (2.4) and (2.9), it is easy to check that

αε|v|2H1(Ω) ≤ L(v, v) ∀v ∈ V. (2.13)

By virtue of (2.13) and the Lax-Milgram lemma, (2.12) has a unique solution in V .

Next we formulate the RFB-approximation of (2.12). Suppose that we are given

a shape-regular family of partitions {Th}h of Ω into open n-simplices T (referred

to as elements), and an integer k ≥ 1. We recall that {Th}h is said to be a shape-

regular family if there exists a fixed positive constant µ such that, for each Th and

each T ∈ Th,
hT
ρT

≤ µ, (2.14)

where hT denotes the diameter of the n-simplex T (i.e. its longest edge), and ρT is

the diameter of the largest ball inscribed in T . We set

Vh ≡ V k
h (Th,Ω)={v ∈ V : v|e ∈ Pk|e for each (n− 1)-dimensional

face e of any element T in the partition Th}. (2.15)

Here Pk|e denotes the set of all polynomials in (n − 1) variables of degree ≤ k on

the face (or edge for n = 2) e. The discrete counterpart of (2.12) is then
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{
find uh ∈ Vh such that
L(uh, vh) = (f, vh) ∀vh ∈ Vh.

(2.16)

Notice that Vh is not the usual finite element space of continuous piecewise

polynomial functions (that would be the space Wh defined in (1.2)), but can be

thought of as being obtained by supplementing Wh by the space of all functions in

H1
0 (T ), for all T in Th. More precisely,

Vh =Wh +Bh, (2.17)

where

Bh =
⊕
T∈Th

H1
0 (T ). (2.18)

In particular, Vh is not finite-dimensional. In the following discussion we shall

show that problem (2.16) is equivalent to a finite-dimensional one. However, work-

ing on formulation (2.16) makes the analysis simpler. For instance we can imme-

diately point out that, for every T ∈ Th, and for every φ ∈ C∞
0 (T ), it is possible

to construct vh ∈ Vh by selecting vh = φ in T , and vh identically zero outside T .

Consequently, from (2.16), we conclude easily that

Luh = f in each T in Th, (2.19)

which is the property that justifies the name residual-free.

In the remaining part of this Section we shall analyse (2.16) from the point of

view of the possible computational techniques. In doing so, we shall also clarify its

relationships with the SUPG-method.

We start the analysis with the following considerations, typical of the RFB-

approach (see, e.g., [2]). The solution uh of (2.19) is a polynomial of degree k on

each e of ∂T (see (2.15)). Let pk be a polynomial of degree ≤ k in T having the

same boundary value (on ∂T ) as uh. Such a polynomial is not unique for k > n,

but this is not essential. Then,

uh = pk + ub, (2.20)

where ub ∈ H1
0 (T ) and, using (2.19), solves

LTub = −Lpk + f in each T in Th. (2.21)

where LT : H1
0 (T ) → H−1(T ) denotes the restriction of the operator L to T ;

namely, LTw = Lw for all w ∈ H1
0 (T ), T ∈ Th. Notice that LT is injective, so that

(2.21) can be written as

ub = L−1
T (−Lpk + f) in each T in Th. (2.22)

Assume now that f is a piecewise polynomial of degree ≤ (k−1), and A and C have

piecewise constant coefficients. Then, in each T , the right-hand side of (2.21) is a
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polynomial of degree ≤ (k − 1), and consequently ub must belong to the subspace

B(T ) of H1
0 (T ) made up of all possible solutions of LTub = g when g ranges through

Pk−1, that is,

B(T ) = {vb ∈ H1
0 (T ) : Lvb ∈ Pk−1(T )}. (2.23)

Clearly B(T ) is a finite-dimensional space, and its dimension is bounded by(
k − 1 + n

n

)
.

Finally, from (2.20) we deduce that, for all T , uh|T belongs to Pk + B(T ), so that

uh belongs to the space Ṽh defined as

Ṽh =Wh ⊕ B̃h,

where

B̃h =
⊕
T∈Th

B(T ).

and B(T ) is still given by (2.23). In particular, uh will coincide with the unique

solution ũh of the problem{
find ũh ∈ Ṽh such that

L(ũh, v) = (f, v) ∀v ∈ Ṽh.
(2.24)

As problem (2.24) is clearly finite-dimensional, we can see that (2.16) is equivalent

to a finite-dimensional problem. For low k, a set of basis functions for B(T ) can

be computed approximately, at a reasonable cost, at least for ε << hT , where

hT = diam(T ) (see [6], [10], [3] [5], [2] for various developments of this idea). The

elements of B(T ) are referred to as residual-free bubbles. A possible variant of

(2.24), although not equivalent to (2.16), is to choose B(T ), on each element T , as

a finite dimensional subspace of H1
0 (T ) such that B(T ) ∩ Pk = {0}, the selection

of B(T ) being guided by the desire to resolve features of the analytical solution

which could not otherwise be captured by seeking a numerical solution from the

classical finite element space Wh. In fact, such an enhancement of Wh achieves

more than merely improving the ‘resolution of fine scales’, as we shall now show by

investigating the relationships of (2.16) with the SUPG approach.

Going back to the splitting (2.17), we can decompose uh as

uh = uk + ub, uk ∈Wh, ub ∈ Bh. (2.25)

We observe at this point that Vh is not a direct sum of Wh and Bh, and therefore

the decomposition (2.25) of uh is non-unique. In practice, this conceptual difficulty

does not arise, since, as already pointed out, instead of operating on the whole of

Vh one would be computing on its finite-dimensional subspace Ṽh. On inserting the

decomposition (2.25) into (2.16), and choosing vh = vk ∈Wh and vh = vb ∈ Bh, we

obtain, respectively,

L(uk, vk) + L(ub, vk) = (f, vk) ∀vk ∈Wh, (2.26)

L(uk, vb) + L(ub, vb) = (f, vb) ∀vb ∈ Bh. (2.27)
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As w = vb|T ∈ H1
0 (T ) for each T in Th, after integration by parts (2.27) can be

rewritten in the form

(Lub, w)T = (f − Luk, w)T ∀w ∈ H1
0 (T ), T ∈ Th. (2.28)

As we already saw in (2.22), equation (2.28) implies that

ub = L−1
T (f − Luk).

Substituting this into (2.26) and recalling from (2.1) that L = C+ εA, we find that

L(uk, vk) +
∑
T∈Th

(
L−1
T (C + εA)uk, (C − εA)vk

)
T

= (f, vk) +
∑
T

(
L−1
T f, (C − εA)vk

)
T

∀vk ∈Wh. (2.29)

Now, (2.29) can be viewed as a stabilised finite element approximation of the

convection-diffusion problem (2.12) over the standard finite element space Wh. A

particularly simple case is when k = 1; then Auk = 0 and Avk = 0 for each vk ∈Wk.

Moreover, if f and the coefficients of C are piecewise constant, the space B(T ), de-

fined in (2.23), has dimension one. Therefore (2.29) reduces to the SUPG method;

see [4] for further details.

3. The functional analytic setting

In this section we introduce the function spaces and norms which will be used below

in the error analysis. Let T be an element in Th and let hT denote the diameter of

T . We recall the definitions of some Besov spaces on T ; of course, these definitions

still hold more generally when the element T is replaced by a bounded open set

with, say, Lipschitz-continuous boundary. In tandem with the usual natural norm

∥ · ∥H1(T ) we shall use in H1(T ) the equivalent norm |[·]|H1(T ) defined by

|[v]|2H1(T ) = h−2
T ∥v∥2L2(T ) + |v|2H1(T ). (3.1)

For v ∈ Σ(T ) := L2(T ) +H1(T ) (≡ L2(T )) and t > 0, we set

K(t, v) = inf
v = v0 + v1

v0 ∈ L2(T ), v1 ∈ H1(T )

{
∥v0∥L2(T ) + t|[v1]|H1(T )

}
. (3.2)

Similarly, for any v ∈ Σ0(T ) := L2(T ) +H1
0 (T ) (≡ L2(T )) and t > 0, we define

K0(t, v) = inf
v = v0 + v1

v0 ∈ L2(T ), v1 ∈ H1
0 (T )

{
∥v0∥L2(T ) + t|v1|H1(T )

}
. (3.3)

Following the notation of [17] we introduce now the function spaces

X(∞, T ) = {v ∈ Σ0(T ) : t 7→ t−1/2K0(t, v) ∈ L∞(0,∞)}, (3.4)

Y (1, T ) = {v ∈ Σ(T ) : t 7→ t−3/2K(t, v) ∈ L1(0,∞)}, (3.5)
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with respective norms ∥ · ∥X(∞,T ) and ∥ · ∥Y (1,T ), defined by

∥v∥X(∞,T ) = ∥t−1/2K0(·, v)∥L∞(0,∞), (3.6)

∥v∥Y (1,T ) = ∥t−3/2K(·, v)∥L1(0,∞). (3.7)

Alternatively, exploiting the interpolation functor (·, ·)θ,p, 0 < θ < 1, 1 ≤ p ≤ ∞,

of the K-method of function space interpolation, X(∞, T ) and Y (1, T ) can be

identified with certain Besov spaces:

X(∞, T ) = (L2(T ), H
1
0 (T ))1/2,∞ =

◦
B

1/2

2,∞(T ),

Y (1, T ) = (L2(T ), H
1(T ))1/2,1 = B1/2

2,1 (T ). (3.8)

We have the following result.

Proposition 1 Let T be an element in Th. Then, for every v in X(∞, T ) and

every t with 0 < t < ∞, there exist v0 ∈ L2(T ) and v1 ∈ H1
0 (T ) with v = v0 + v1

such that

t−1/2∥v0∥L2(T ) + t1/2|v1|H1(T ) ≤ 2∥v∥X(∞,T ). (3.9)

Proof: The result follows immediately from (3.6) and the definition of K0(t, v)

given in (3.3). ⋄
We now consider the master element

T̂ = {x̂ = (x̂1, . . . , x̂n) ∈ Rn : x̂i > 0, i = 1, . . . , n, x̂1 + . . .+ x̂n < 1}

and the affine transformation x̂ ∈ T̂ 7→ x = Mx̂ +N where M is an n × n matrix

and N is an n × 1 column vector. Given a function v defined on T , we introduce

the function v̂ on T̂ by v̂(x̂) = v(x). Since the partition Th is shape regular (c.f.

(2.14)), there exist positive constants β1 = β1(µ) and β2 = β2(µ) such that [8]

β1h
n/2
T ∥v̂∥

L2(T̂ )
≤ ∥v∥L2(T ) ≤ β2h

n/2
T ∥v̂∥

L2(T̂ )
, v ∈ L2(T ), (3.10)

β1h
n/2−1
T |v̂|

H1(T̂ )
≤ |v|H1(T ) ≤ β2h

n/2−1
T |v̂|

H1(T̂ )
, v ∈ H1(T ). (3.11)

From (3.10)-(3.11) we can deduce the analogous inequalities for other norms. In

particular, we immediately have for the norm (3.1)

β1h
n/2−1
T |[v̂]|

H1(T̂ )
≤ |[v]|H1(T ) ≤ β2h

n/2−1
T |[v̂]|

H1(T̂ )
, v ∈ H1(T ). (3.12)

Similarly, with some additional computation we can easily deduce:

β1h
(n−1)/2
T ∥v̂∥

X(∞,T̂ )
≤ ∥v∥X(∞,T ) ≤ β2h

(n−1)/2
T ∥v̂∥

X(∞,T̂ )
, v ∈ X(∞, T ), (3.13)

β1h
(n−1)/2
T ∥v̂∥

Y (1,T̂ )
≤ ∥v∥Y (1,T ) ≤ β2h

(n−1)/2
T ∥v̂∥

Y (1,T̂ )
, v ∈ Y (1, T ). (3.14)

For instance, a typical crucial step is

t−1/2h
−n/2
T ∥v0∥L2(T ) + t1/2h

−n/2+1
T |v1|H1(T )

= h
(1−n)/2
T

{
t−1/2h

−1/2
T ∥v0∥L2(T ) + t1/2h

1/2
T |v1|H1(T )

}
= h

(1−n)/2
T

{
τ−1/2∥v0∥L2(T ) + τ1/2|v1|H1(T )

}
,

(3.15)
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with τ = thT . Finally, denoting, as usual, by (X(∞, T ))′ the dual space of X(∞, T )

and using the definition of dual norm we have

β1h
(n+1)/2
T ∥v̂∥

(X(∞,T̂ ))′
≤ ∥v∥(X(∞,T ))′ ≤ β2h

(n+1)/2
T ∥v̂∥

(X(∞,T̂ ))′
. (3.16)

Using the above inequalities, one can show that the various constants which

arise in our analysis below are independent of the diameter hT of the element T

considered. In particular, we have the following Gagliardo–Nirenberg type inequal-

ity.

Proposition 2 Suppose that T is an element in Th. Then there exists a positive

constant β0 = β0(µ), independent of T , such that

∥v∥Y (1,T ) ≤ β0∥v∥1/2L2(T )|[v]|
1/2
H1(T ) (3.17)

for each v in H1(T ) and each T ∈ Th.

Proof: From (3.8), with T replaced by the master element T̂ , we have that

Y (1, T̂ ) = (L2(T̂ ),H
1
0 (T̂ ))1/2,1; thus, by Theorem 1.3.3(g) in Triebel [18],

∥v̂∥
Y (1,T̂ )

≤ c0∥v̂∥1/2
L2(T̂ )

∥v̂∥1/2
H1(T̂ )

∀v̂ ∈ H1(T̂ ), (3.18)

where c0 is a fixed positive constant. On returning from x̂ ∈ T̂ to our original

variable x ∈ T , with v(x) = v̂(x̂), using (3.14), (3.18), (3.10)–(3.11), and (3.1), the

estimate (3.17) follows. ⋄
Now we apply a deep result from the theory of function space interpolation due

to Tartar [17].

Proposition 3 Suppose that T is an element in Th. Then there exists a positive

constant β0 = β(µ) (possibly different than in Proposition 2), independent of T ,

such that

∥v∥X(∞,T ) ≤ β0∥v∥Y (1,T ). (3.19)

for each v in Y (1, T ) and each T in Th.

Proof: By Theorem 5 in the work of Tartar [17], Y (1, T̂ ) ⊂ X(∞, T̂ ) with contin-

uous embedding; thus, there exists a fixed positive constant c0 (possibly different

than in (3.18)), such that

∥v̂∥
X(∞,T̂ )

≤ c0∥v̂∥Y (1,T̂ )
∀v̂ ∈ Y (1, T̂ ).

Applying (3.14) and (3.13) we deduce (3.19), with β0 = c0β2/β1. ⋄
We emphasise here that, as (for instance) H1(T ) ⊂ Y (1, T ), the result of Propo-

sition 3 implies

H1(T ) ⊂ Y (1, T ) ⊂ X(∞, T ). (3.20)

We end this section with an inverse-type inequality which will be useful in the

next section.
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Proposition 4 Let T be an element in Th, and let k be a non-negative integer.

There exist two positive constants β1 = β1(µ, k), and β2 = β2(µ, k), independent of

T , such that, for every w in Pk(T ),

β1h
1/2
T ∥w∥L2(T ) ≤ ∥w∥(X(∞,T ))′ ≤ β2h

1/2
T ∥w∥L2(T ). (3.21)

Proof: The proof follows easily from (3.10) and (3.16) by a standard scaling

argument (see, e.g., [8]) and exploiting the equivalence of norms on Pk(T̂ ). ⋄

4. Error analysis

Now we embark on the a priori error analysis of the method (2.16). As a first step

we need the basic Lemma stated below. We shall use the notation

|||w|||2T = γT ∥w∥L2(T )|[w]|H1(T ), w ∈ H1(T ),

where

γT =

 n∑
j=1

∥cj∥2L∞(T )

1/2

,

and we put

|||w|||2 =
∑
T

|||w|||2T , w ∈ H1(Ω).

Lemma 1 There exists a positive constant β = β(µ), such that, for every ψ in

H1(Ω), and every φ in H1(Ω) satisfying

εAφ+ Cφ = 0 in T for every T ∈ Th,

we have

|(ψ,Cφ)| ≤ βε1/2|φ|H1(Ω)|||ψ|||. (4.1)

Proof: Consider ψ ∈ H1(Ω) and φ ∈ H1(Ω), as in the statement of the Lemma.

Let us first show that, for every T ∈ Th, we have

|(ψ,Cφ)T | ≤ 2(εγT )
1/2|φ|H1(T )∥ψ∥X(∞,T ), (4.2)

where (·, ·)T denotes the inner product of L2(T ). Applying Proposition 1 with

t = (ε/γT ) and v = ψ|T ∈ H1(T ) ⊂ X(∞, T ) (c.f. (3.20)) we deduce the existence

of ψ0 and ψ1, with ψ1 ∈ H1
0 (T ) such that

ψ = ψ0 + ψ1 on T (4.3)

and (
ε

γT

)−1/2

∥ψ0∥L2(T ) +

(
ε

γT

)1/2

∥ψ1∥H1(T ) ≤ 2∥ψ∥X(∞,T ). (4.4)
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Further, since Cφ = −εAφ ∈ L2(T ) and ψ1 ∈ H1
0 (T ), we can apply Green’s identity

to deduce that

(ψ1, Cφ)T = −ε(ψ1, Aφ)T = −ε
n∑

i,j=1

(
∂ψ1

∂xj
, aij

∂φ

∂xi

)
T

, (4.5)

and therefore, using (2.5),

|(ψ1, Cφ)T | ≤ ε|ψ1|H1(T )|φ|H1(T ). (4.6)

Now, applying (4.3), (2.8), (4.6) and (4.4) we have

|(ψ,Cφ)T | = |(ψ0, Cφ)T + (ψ1, Cφ)T |
≤ γT ∥ψ0∥L2(T )|φ|H1(T ) + ε|ψ1|H1(T )|φ|H1(T )

≤ (εγT )
1/2

{(
ε

γT

)−1/2

∥ψ0∥L2(T ) +

(
ε

γT

)1/2

∥ψ1∥H1(T )

}
|φ|H1(T ) (4.7)

≤ 2(εγT )
1/2|φ|H1(T )∥ψ∥X(∞,T ),

that is, (4.2). Using (3.19) and (3.17) in (4.2), we immediately have

|(ψ,Cφ)T | ≤ βε1/2|φ|H1(T )|||ψ|||T . (4.8)

Finally, summation over all T and the Cauchy-Schwarz inequality give the result.

⋄
We define

uI = quasi interpolant of u ∈ H1
0 (Ω) from Wh. (4.9)

For a definition of the quasi-interpolant and the associated error analysis we refer

for instance to the recent work of Verfürth [19] and references therein. We then set

e = u− uh, (4.10)

η = u− uI , (4.11)

and note that, from (2.19),

Le = 0 in each T in Th. (4.12)

Moreover, from (2.12), (2.16) we have the usual Galerkin property

L(u− uh, vh) = 0 ∀vh ∈ Vh.

Thereby, using (4.10) and (4.11),

L(e, η − e) = 0. (4.13)

From the above Lemma we immediately deduce the following result.
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Theorem 1 Let u and uh be the solutions of (2.12) and (2.16), respectively, and

let e and η be defined through (4.9)–(4.11). Then there exists a constant β∗ > 0,

independent of h, α, γ and ε, such that

α2ε|e|2H1(Ω) ≤ β∗
(
ε|η|2H1(Ω) + |||η|||2

)
.

Proof: Using (2.13), (4.13) and (2.11), we have that

αε|e|2H1(Ω) ≤ L(e, e) = L(e, η) = εa(e, η) + c(e, η). (4.14)

From (4.14), using (2.5) and (2.7), it follows that

αε|e|2H1(Ω) ≤ ε|η|H1(Ω)|e|H1(Ω) + |(η, Ce)|. (4.15)

Noting (4.12) and applying (4.1) with φ = e and ψ = η to the second term on the

right-hand side of (4.15), we deduce that

αε|e|2H1(Ω) ≤ ε1/2|e|H1(Ω)

{
ε1/2|η|H1(Ω) + β|||η|||

}
(4.16)

and the result easily follows. ⋄

Remark 1 It is estimate (4.1) of Lemma 1 that led us to introducing the rather

sophisticated function spaces of the previous section. While their use is convenient

and elegant, it is unclear whether this apparatus is absolutely necessary. Nev-

ertheless, our attempts to base our proofs on more conventional techniques were

unsuccessful.

The use of the property (4.12) seems essential in order to introduce the factor ε.

One would then like to be able to integrate by parts in the term containing εAψ, in

order to have only one derivative in L2 for each variable. Unfortunately, the (finite-

dimensional) space of functions which satisfy (4.12) and are polynomials at the

element interfaces depends on ε, so the boundary term with the conormal derivative

which would arise through possible integration by parts cannot be easily absorbed

in a mesh dependent H1(T )-type norm. The problem disappears if the function

ψ in (4.12) is contained in H1
0 (T ). This, however, is an unrealistic requirement in

view of its application in (4.16); in addition it would give rise to a full power of ε –

half a power more than necessary.

Hence the idea of decomposing ψ into a sum of two parts, balancing the regular-

ity (and the vanishing on ∂T ) with the required powers of ε. This decomposition,

then, naturally points in the direction of the function space X(∞, T ). We recall

from the theory of Besov spaces that Hs(T ) ⊂ X(∞, T ) with continuous embedding

for any s strictly greater than 1/2, so that the norm in X(∞, T ) can be bounded

in terms of the Hs−norm. Unfortunately, such an embedding is too crude for our

purposes as it would only provide a suboptimal error estimate. The result by Tartar

allows us to use a Besov space with a derivative index exactly equal to 1/2 (some-

how, the smallest of its kind) whose norm can then be bounded by the ||| · ||| norm,

thus providing an optimal error bound. ⋄
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We note now that, as we have already seen in [4] for the case of k = 1, the norm

ε1/2|e|H1(Ω)

is stronger than it might appear at the first sight. Actually, one has the following

result.

Theorem 2 Let u and uh be the solutions of (2.12) and (2.16), respectively, and

let e = u− uh. Then,

∥Ce∥2∗ ≤ 4ε|e|2H1(Ω),

where

∥w∥2∗ =
∑
T

1

γT
∥w∥2(X(∞,T ))′ .

Proof: From (4.2) one obtains, for every smooth function ψ,

|(ψ,Ce)T | ≤ 2(εγT )
1/2|e|H1(T )∥ψ∥X(∞,T ), (4.17)

which yields

∥Ce∥(X(∞,T ))′ ≤ 2(εγT )
1/2|e|H1(T ),

and taking the square

∥Ce∥2(X(∞,T ))′ ≤ 4εγT |e|2H1(T ).

Upon summation over all T in Th, this gives the desired inequality. ⋄
We note that ∥ · ∥∗ can be thought of as a sort of broken norm on a space with

negative-order 1/2. Its nature is further clarified by our next result.

Lemma 2 Let T be an element in Th, and let k be a non negative integer. There

exist two positive constants β1 = β1(µ, k), and β2 = β2(µ, k) independent of T , such

that,

β1∥w∥∗ ≤

(∑
T

hT
γT

∥w∥2L2(T )

)1/2

≤ β2∥w∥∗ (4.18)

for each w in Wh.

Proof: The proof follows immediately from Proposition 4 and the definition of the

norm ∥ · ∥∗. ⋄
We complete the error analysis by recalling from [19] the following standard local

approximation results for the quasi interpolant: there exists a positive constant

β = β(µ, k) such that for each Th and each T in Th,

∥u− uI∥L2(T ) ≤ βhr+1
T |u|Hr+1(S(T )), (4.19)

|u− uI |H1(T ) ≤ βhrT |u|Hr+1(S(T )), (4.20)

for 0 ≤ r ≤ k, where hT = diam(T ) and S(T ) is the union of all elements in Th
whose closure intersects the closure of T .
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Theorem 3 Let u and uh be the solutions of (2.12) and (2.16), respectively. As-

suming that u ∈ Hk+1(Ω) ∩H1
0 (Ω), there exists a positive constant β∗ = β∗(µ, k),

independent of h, α, γ and ε, such that

ε1/2|u− uh|H1(Ω) + ∥C(u− uh)∥∗

≤ β∗

α

(∑
T∈Th

(
εh2rT + γTh

2r+1
T

)
|u|2Hr+1(S(T ))

)1/2

, (4.21)

where 0 ≤ r ≤ k.

Proof: The result follows from Theorem 1, on noting that η = u−uI and applying

(4.19) and (4.20). ⋄
Suppose, in particular, that there is a fixed constant µ1 > 0 such that, on each

element T , the local mesh Peclet number

PeT =
γThT
ε

≥ µ1.

We note that this is a reasonable assumption when the problem (2.1) is convection-

dominated. Under this hypothesis, it follows from (4.21) that

ε1/2|u− uh|H1(Ω) ≤
β∗

α

(∑
T∈Th

γTh
2r+1
T |u|2Hr+1(S(T ))

)1/2

, (4.22)

where 0 ≤ r ≤ k and β∗ = β∗(µ, k, µ1).
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