A PRIORI ERROR ANALYSIS OF RESIDUAL-FREE BUBBLES
FOR ADVECTION-DIFFUSION PROBLEMS*

F. BREZZI'S, T. J. R. HUGHES!, L. D. MARINIt§, A. RUSSO$, AND E. SULIY

Abstract. We develop an a priori error analysis of a finite element approximation to the elliptic
advection-diffusion equation —eAu + a - Vu = f subject to a homogeneous Dirichlet boundary
condition, based on the use of residual-free bubble functions. An optimal order error bound is
derived in the so-called stability-norm
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where hp denotes the diameter of element 7' in the subdivision of the computational domain.

1. Introduction. Suppose that  is a bounded polygonal domain in the plane
and assume, for simplicity, that @ = (a;,as) is a two-component vector function whose
entries are constant on . Assume further that f is a piecewise constant function
defined on (2. We note that our results are valid under more general hypotheses on
the data (which will be discussed in the final section) and in any number of space
dimensions. Given that € is a positive constant, we consider the elliptic boundary-
value problem

(1.1) {—EAu—l-a'Vu = f in Q,

v = 0 onON.

This is a fundamental model problem in computational fluid dynamics and one that
exposes the weaknesses of classical numerical approaches, such as central and upwind
finite difference methods, as well as Galerkin finite element methods (see [6] for ex-
amples and elaboration). To simultaneously achieve stability and accuracy, uniformly
in advection- and diffusion-dominated limits, a new finite element method was intro-
duced by Hughes and colleagues in a series of papers (see [6] and references therein
for earlier works). This method was referred to as SUPG and is now viewed as falling
within the general class of techniques referred to as stabilised methods, which have
been further developed and studied by a number of authors (see, e.g., [8], [9], [17],
[18], [20]). The basic idea is this: starting with the Galerkin finite element method,
add terms depending on the residual which enhance stability. This can be done in
such a way that accuracy is retained simultaneously with achieving better stability
behaviour, and thus the method represents a solution to a long-standing and funda-
mental problem of computational fluid dynamics. The original instantiation of the
method was developed intuitively and corroborated with Fourier analysis of simple
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cases and numerical verification. Johnson and collaborators soon after discerned the
mathematical structure of the method and developed error estimates in Sobolev norms
exhibiting uniform behaviour over the full range of advective-diffusive phenomena [21].
The mathematical analysis of stabilised methods is by now a mature topic and many
practically important cases have been investigated.

In recent years, attempts have been made to derive stabilised methods from fun-
damental principles and thereby attain at once a deeper understanding and a road
map to more precise generalisations. This goal has led to the development of two
methodologies: residual-free bubbles (see, [1], [2], [5], [11], [12], [13], [14], [23], [24],
[10]) and the variational multiscale method (see, [15], [16], [19]). Both methods view
the numerical solution to be composed of a standard finite element approximation
and additional functions which are constructed to improve resolution of scales which
are unresolvable by conventional finite element approximations. This can take a va-
riety of forms, and only the simplest incarnations of the idea have been extensively
studied so far, namely, the case in which the additional functions are the so called
residual-free bubbles which vanish on element boundaries and are chosen to satisfy the
advection-diffusion equation strongly on each element. Remarkably, this idea provides
a complete framework for deriving classical stabilised methods.

It needs to be mentioned that many stabilised methods, such as SUPG, GLS
(Galerkin/Least-Squares), GGLS (Galerkin/Gradient Least-Squares), etc., usually do
not fit exactly within the framework of residual-free bubbles. Nevertheless, these
methods are closely related to the one derived from residual-free bubbles. Likewise,
the variational multiscale method suggests a more general structure for stabilised
methods (see [15], [16], [19]), but these newer ideas still remain in an initiatory and
untested state.

Our current understanding of the mathematical behaviour of methods derived
from residual-free bubbles and variational multiscale concepts emanates from their
identification with stabilised methods, which, as mentioned previously, is mathemat-
ically well-developed. It has occurred to us that it should be possible, and may be
enlightening, to directly perform a mathematical analysis of these newer methods.
We embark upon this path in the current work in which we investigate the residual-
free bubbles method assuming underlying piecewise linear, C°-continuous triangular
finite elements. In this case, the classical SUPG and GLS methods coincide with
what Johnson refers to as the streamline diffusion method. We caution the reader
that in more general situations there is a lot more to stabilised methods than a sim-
ple addition of a streamline diffusion operator. Even in the present case there is an
absolutely crucial alteration to the source term f, which cannot be omitted without
serious degeneration of accuracy (see [6]).

Several noteworthy aspects of the present study emerge:

e We are able to recapture the standard error estimates for the streamline
diffusion method with piecewise linear finite element approximation.

e We are also able to estimate the error in the entire solution consisting of the
finite element approximation supplemented with residual-free bubbles.

e The mesh-dependent norm employed in the analysis of stabilised methods,
referred to herein as the stability norm, emerges naturally from the present
analysis as well as a precise formula for the so-called stabilisation parameter.

In addition, we view the present analysis as more fundamental and revealing than
the usual analysis of the related stabilised methods. However, the downside is that
it is considerably more involved. Hopefully, it will represent the first step towards
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a complete analysis of a broader class of residual-free bubbles/variational multiscale
methods which we believe will be useful for the development of improved methodology
for computational fluid dynamics and other important physical problems.

The paper is structured as follows. In Section 2, we study the properties of the
bubble function, and derive an upper bound on its maximum norm and a lower bound
on its Ly norm. These preliminary results will play a crucial role in the error analysis.
In Section 3, we formulate the discrete problem and show that the use of the bubble
function induces a natural norm, the so called stability-norm, on H}(Q). In particular,
we show that the stability norm is similar to the norm that arises in the analysis of
the streamline diffusion method. In Section 4, we embark on the error analysis of the
method and derive optimal bounds on the error in the stability norm. We conclude,
in Section 5, by commenting on various extensions of our theoretical results.

2. Basic properties of the bubble b!. A fundamental ingredient of the nu-
merical method and its error analysis is the bubble function b, which is defined, in
every triangle T, as the solution of the local boundary value problem

(2.1) —eAbT +a-VbT 1 inT,
‘ ¥ =0 ondT.

Multiplying (2.1) by b and integrating over T, we have

(22) IVE R = [ o s,
T
an equality that will be used frequently throughout the paper.

Lemma 1.1 For every e > 0 and every triangle T, we have
(2.3) 0<b <a-(x—1z4)/|al? Ve eT,
where x4 is the “upwind-most” point in T, defined by the inequality

(2.4) a-(x—24)>0 Yz e T.

Proof. The first inequality in (2.3) follows directly from the maximum principle.
Indeed,

2.5) { o7 = —eAbY +a-VHY =1>0 inT,

I >0 on OT.
The second inequality in (2.3) follows by considering the auxiliary function
(2.6) w(z) =a-(z —x4)/|la|> = b

Since

(2.7) {Lw io in T,

w 0 on 0T,

we have w(z) > 0 in all T', again from the maximum principle, and the result follows.
]
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Lemma 1.1 gives rise to some useful inequalities. Upon defining

(2.8) hg = maxa - (z — za)/|al?,
zeT

we have from (2.3) and (2.8) that
(2.9) 0<bl <h% VreT,

which implies

(2.10) / bl dx < hS|T), / (b1)? dz < h“T/ bl da.
T T T

In what follows, it will be convenient to set

~ 1
(2.11) hr = m/ bl dz, R ::/ (b2 da:// b! de.
T T T
Note that, from (2.10), we have
2.12) hr < h% < hr/|al, 5 < h% < hr/|al, r = diameter of T
hr <h% <h By < h% < h hr =d f7

N.B.: In several applications (e.g. in fluid dynamics), u represents a velocity, and the
right-hand side f is a force per unit mass (i.e., it has dimension of an acceleration).
In that case, the quantities b7, TLT, h} and h$ have dimensions of time, whereas hr
has dimension of length. Hughes and collaborators refer to hr as the “intrinsic time
scale” and denote it by 7 (see, e.g., [15]). It plays a fundamental role in the definition
of the stability norm and in the error analysis.

The following formulae will be used in the sequel: from (2.11) we have, for any
constant function ¢y on T,

(213) ch [ o do = Frllerla
from (2.2) we also have
(2.14) 167 116.2 = hpell VOT I3 2

In our analysis we shall also need a lower bound on ?LT; this is provided by the
following Lemma.

Lemma 1.2 Assume that the minimum angle of T is bounded below by a fixed positive
constant 68y > 0. Then, there exists a constant K, independent of T, a and ¢, such
that

- h h
(2.15) ho > KT i { hrlel 4
lal £

Proof. Let T be a triangle having one vertex at the origin of the (Z1,Z2) coordinate
system, and another vertex at (1,0), such that T' can be mapped onto T by means of
rigid movements (translation and rotation) and dilation by a factor 1/hy, so that the
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longest edge of T is mapped into a subset of the Z; axis. The image by of bT' defined
on T satisfies

Ab1+h— Ve, =1 inT,

~

(2.16) hZ. R
bp =0 on 0T,

where a is such that |a| = |a|. Now let X1, A2, A3 be the barycentric coordinates on
T, and put

(2.17) bs == Aoz,

We set

(2.18) Ma = m§x|A33|, M, := max |V/I;3|,
T T

and remark that these quantities depend continuously on the coordinates of the third
vertex of T'. Finally, we define

1 hr 1
2.19 == mindr U
(219 e b )
(2.20) W = bs,
(2.21) ¥ = hy'by,

and introduce the operator
(2.22) Ly :=—ch7'Ap +a-Ve.
Now, using (2.20), (2.18)), and (2.19)) we have

(2.23) |LdD| = | —ehp'AD + @ - V| < y(ehp Ma + [@]M,) < 1
so that, from (2.21), (2.16) and (2.23) we deduce
(2.24) LG —d)=Lo—Li=1-Ld > 0.

As both ¥ and w vanish on 8?, the maximum principle gives
(2.25) o>w Voel.
Thus, using (2.21), (2.25), and (2.19)-(2.20),

Jabido =hy [50 do > hy fA@ dz

(2.26) > hr s mm{ }fT by da
=: hy min {hTT, I}TI} IA((f)

Clearly K (JA“) depends continuously on the coordinates of the third vertex of T. The
assumptlon on the minimum angle forces this vertex to remain inside a compact set,
so that K (T) has a positive minimum K depending only on 6. Finally, from (2. 26)
we obtain

~ hr 1 ~
(2.27) hy = / bl dx/|T| = / by dz > hTmln{ |A|}K
T

which is equivalent to (2.15). "
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3. The discrete problem and the “stability norm”. Let 7 be a subdivision
of 2 into triangles (satisfying the usual minimum angle condition [7], and the addi-
tional requirement that no edge of any triangle crosses a line of discontinuity of f) and
let Vi be the space of piecewise linear functions on 7 that are in H}(Q2). For every
triangle T in T we consider the one-dimensional space By spanned by the function
b defined in (2.1), and we set

(31) VB = @ BT.

TeT

Finally, we define
(3.2) Vi=V. +Vg.
The discrete problem now reads

find up, = ur, + up in V}, such that
(3.3)
€ Jo Vun - Vo dz + [, (a-Vup)vpde = [, fopdz Vo, € V.

It is easy to verify, using the Lax-Milgram lemma, that problem (3.3) has a unique
solution. Moreover, for every triangle T, taking v;, = b gives

(3.4) 5/ Vuh-Vblem+/(a-Vuh)b1Tdm:/fblea:.
T T T

Inserting up = ur, + up into (3.4) and observing that

(3.5) / Vor,-Vbl'dz =0 VYo, €V,
T
we obtain
(3.6) 5/ VuB-Vblea:+/(a.vuL)blex+/(a-qu)b1de:/fblea:;
T T T T

rearranging terms and recalling that f and a are piecewise constant and globally
constant, respectively, we have from (3.6)

(3.7) a/Tqu~Vb1Tda:+/T(a-qu)blex: (f—a-VuL)|T/Tb1Tda:.

We remark now that up|r € By and therefore it must be a constant multiple of blT.
Using again the definition (2.1) of b7 we obtain from (3.7)

(3.8) up|r = (f —a-Vur)b" in each T.

In order to derive error estimates, we shall compare uj, with a suitable function u € V},
that is “close to u”. As an element of V}, the function @ will have the form

(3.9) a:’LNLL-l-’LNLB, ’LNLLEVL, ugp € Vg.
We now choose

(3.10) ur = (usual) piecewise linear interpolant of u at the vertices of T,
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and select up such that

(3.11) « /T V(u— @) - Vb da + /T(a -V(u—1)b] dz =0 for each T.

Let us see how (3.11) defines & ; we begin by rewriting (3.11) in the form

(3.12) E/TVU-Vblea:+/T(a-Vu)dem zs/TVﬁ-Vblem+/T(a-Vﬂ)dex.

Now inserting (3.9) into (3.12) and using (3.5) and the fact that « is the solution of
(1.1), we obtain

(3.13) / ol de = 5/ Vig - Vbl dz + / (a-Vir)bldz  for each T,
T T T
Rearranging terms,
(3.14) 5/ Viig - Vb] dz = / (f —a-Vig) bl dz for each T
T T

Since f — a - Vi, is constant in each T', and since, in each T, up must be a constant
multiple of b{, we immediately have from (2.2) that

(3.15) up|lr = (f —a- V)bl in each 7.
Now, by setting
(3.16) e=up—u€Vp,
we have naturally
(3.17) e=c¢eyr, +eg, with e, € V7, and eg € V3,
and from (3.8) and (3.15) we get
(3.18) eglr = —(a-Ver|r)b].
Let us introduce the bilinear form

(3.19) a(w,v) == 5/ Vw - Vodz + / (a - Vw)vdz;
Q Q

then, it follows that
(3.20) ale,e) = 5||Ve||(2)79.

Now we shall show that the norm appearing in (3.20) is not as weak as it might seem
at the first sight. Indeed, we have the following result.

THEOREM 3.1. Suppose that up, is the solution of (8.3) and let U be defined by
(8.9), (3.10) and (3.15). Suppose further that e, = up — @, as in (3.16), with the
natural decomposition (3.17). Then,

1/2
(3.21) | Velloo = (6I|V6LII3,9 +Y hrlla- VeLII%,T> -
T
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Proof. Let us rewrite (3.20) in a different form. In order to do so, we remark first
that, due to (3.5), we have, for every v = vy, + vp in Vj,

(3.22) 5||Vv||(2)79 = e(Vour + Vug,Vur, + Vug) = 5||VUL||%7Q + 8||VvB||%7Q.

On the other hand, by (3.18), using (2.2) and (2.13) we have

oy AVeslBr = Tela Venhel Vil
=Yr(a-Ver)i [ bf dv =3 r hrlla- Vel
Collecting (3.22) and (3.23) we obtain (3.21). "

The norm which appears on the right-hand side of (3.21) also arises in the analysis
of the streamline diffusion finite element method for advection-dominated problems,
and will be referred to in the remainder of the paper as the stability-norm. In fact, it
is in this norm that we shall derive our error bounds.

4. Error estimates. As usual, we begin by observing that the exact solution u
satisfies

(4.1) a(u,v) = / fvdx Yv € Hy(Q)

Q
and that (3.3) can be rewritten as
(4.2) a(up,vy) = / fopdz Yy, € Vi,

Q

so that, as Vj, C H{(2), we have the usual Galerkin property
(4.3) a(u — up,vp) =0 Yy, € V.
In order to estimate the error v — uy, we begin by seeking a bound on e = up — u.

For this purpose, we restart from (3.20). Upon adding and subtracting u, and using
(4.3) we obtain

(4.4) 8||Ve||%’9 =a(e,e) = a(up, — u,e) = a(up, —u,e) + a(u — u,e) = a(u — u,e).
Recalling the definition (3.19) of a(-,-) we have
(4.5) alu —u,e) = 8/ V(iu—1u)- Veda:+/(a -V(u —u)) edz.
Q Q
By (3.11), we have
(4.6) alu—u,bT)=0 VT €T,
and, since ep belongs to Vg, we have from (4.6) that
(4.7) a(lu—u,ep) =0,

so that we must only evaluate

(4.8) a(u —u,er) ZS/QV(U—G)-VeL dx+/g(a-V(u—ﬂ)) er, dz.
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Thus (4.4) becomes
(4.9) 5||Ve||%79 = 6/ V(u—1u)- Ve dzx + / (a-V(u—-1u)e,de=IT+11I.
Q Q

Thanks to (3.9), (3.5), and Cauchy-Schwarz inequality, the first term in (4.9) is easily
bounded as follows:

I = e[, V(u—Tgp—up) -Verdz =¢ [, V(u—1ur)-Verdz
(4.10)
< ellV(u—ap)lloellVerlloo-
Now, we deal with the second term in (4.9). Integration by parts and (3.9) give

I1 = - [,(u—u)(a-Ver)ds
(4.11)
= — Jolu—1L)(a-Ver)dz + [ up(a-Ver)de = IIT+1V.
The first term in (4.11) can be bounded via Cauchy-Schwarz inequality and (3.23)
=y / (@ —w(a-Ver)dz < S llr — ullo,r la- Verllor
T /T T

(4.12) =" by iin — ullor by lla - Verllo.r
T
1/2 1/2
< (Z hyt iz, — u||%,T> (Z hrlla - VeLu%,T)
T T
1/2
= (Z htllar — U||%,T> (51/2||V€B||0,Q) :
T

For the second term in (4.11), from (3.15), (3.18), (1.1), and integration by parts we
deduce

IV = Y, [:(f—a-Vur)bl(a Ver)dz = [(a-Vur — flepdz
(4.13) = [oeAu—a-Vu+a-Vig)epdz
= —[,eVu-Vepdr —[,(a-V(u—1ur))epdz =V + V1.
Now, from (3.5), Cauchy-Schwarz, and (2.14),
1) V== [ V=) Vends < oV~ ) foal Veslos,
and
VI = =37 [pla-V(u—ur))epds <3 rlla-V(u—1ur)lorllesllor

(4.15) = Yrlla-V(u—ip)llor(hi)/*"?|Ves|lo.r

IN

(S hilla-Vie—an)lR2r)"" (€72 Vesllog) -



10 F. BREZZI, T. J. R. HUGHES, L. D. MARINI, A. RUSSO, AND E. SULI

Inserting (4.14) and (4.15) into (4.13) gives

IV =V+VI

4.16 ~ " ~ 1/2
1) < c2Vepllon (219~ n)lloe + (S hilla- Vi —an)lB1) ")

Now substituting (4.12) and (4.16) into (4.11) yields

II

~ 1/2
IIT + 1V < /|| Veg|lo.q X {(ZT Bl — ul )

4.17 ~ " ~ 1/2
(*.17) + 2V = )l + (S illa - V=) [37) )

51/2||V€B||07Q {A + B+ C} .
Upon inserting (4.10) and (4.17) into (4.9), we have

ellVellg.o =T+ 1T <e||V(u =)o [Verlloo + &/ Veslloa (A + B+ C)
='2||Verllo B +€?||Veslloa (A+ B+ C)

IN

1 1
5 (ellVeLlls.q + €l Veslls o) + 3 (B> +(A+ B +0)?)

1 1
§a||Ve||aQ +3 (B>+(A+B+0)).

Noting that B? + (A + B + C)? < 4(A? + B? 4+ C?), we arrive at the following result.

THEOREM 4.1. Suppose that uy, is the solution of (3.3) and let u be defined by
(3.9), (3.10) and (3.15). Assume further that e = uj, — 4, and let hr and hy be
defined by (2.11). Then,

(4.18) el|Vell§ o < 4(A% + B* + C?),
where

A= hptllu—tcllyr, B =eY IV(u—ar)llor, C° =) hilla-Viu—ar)lr.
T T T

We proceed by assuming that u € H*(Q) N H} (), 1 < s < 2, to further bound
the terms A2, B2, C? which appear on the right-hand side of (4.18). In what follows
k will denote a generic positive constant which only depends on the minimum angle
in the triangulation 7", and we define

3
4.19 = 1,—— .
(4.19) e = lafmax {1,

Recalling (2.15), we have that

(4.20) A < kY yrhy T ul
T
Further, on writing

€= LhT|a| Smax{

hrlal }hT|a| = vyrhr,

13
1,———
hrlal
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it follows that

(1:21) BY < kY yrhd M uly
T

Finally, by (2.12) and (4.19),
hrlal® < hrla| < hoyr,
so that

(4.22) C® <k yrhy Hul} o
T

After substituting the bounds (4.20), (4.21) and (4.22) into (4.18) and recalling (3.21),
we deduce the following result.

THEOREM 4.2. Suppose that uy, is the solution of (3.3) and let u be defined by
(3.9), (3.10) and (3.15). Assume further that e = u,—1, and let hy and yr be defined
by (2.11) and (4.19), respectively. Then, supposing u € H*(Q) N HL(Q), 1 < 5 < 2,
we have that

(4.23) el Vellg.o < kD yrhy ull 1,
T

(4.24) ellVerligo + Y hrlla-Verllsr <k Y yrhi Hullr,
T T

where k is a positive constant which only depends on the minimum angle in the tri-
angulation T .
In order to complete the error analysis, it remains to bound

1/2
eV —a)oe  and <6||V(u—ﬂL)II3,Q+Z7LTIIG-V(U—%)II3,T> ;
T

note that, in contrast with (3.21), these two expressions are not equal. Once we have
obtained bounds on these, the final error estimates, stated in (4.27) and (4.28) below,
will follow from (4.23) and (4.24) by the triangle inequality.

First,

(4.25) 'V (u = a)lloe < &IV (u—ar)llos + /2 Visllog-

Further, by the identity (4.6), and performing an argument analogous to that which
led to (4.16), starting in (4.14) with ep replaced by @p, we find that

el|Vugllg o = alu — ur,up)

1/2
<e'?||Viglloo  e/2(IV(u = r)llog + (Z hrlla - V(u— ﬂL)II%y)
T
Hence, after simplification,

1/2
(4.26) £'/2|| Vg oo < e/?||V(u — tiL)loq + (Z Wylla - V(u— ﬂL)Hé,T) :
T
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Upon substituting (4.26) into (4.25) and recalling (4.21) and (4.22), we deduce that

1/2
51/2||V(u — )|l <2B+C < (kZ’YTMTSle,T) , for 1 <s<2.
T

Thus, by (4.23) and the triangle inequality,

1/2
(4.27) Y|V (u — up)lo.q < (kZ’yThgfle’T) , for1<s<2.
T

In order to obtain our second error bound, we write u —ur, = (u — 4r,) — ey, and
apply the triangle inequality for the stability norm to conclude, by (4.24), (4.21) and
(4.22), that

1/2 1/2
<8||V(u —ur)llfe+ D hrlla-V(u- UL)||(2),T> < (k Z7Th3“s_1|u|§,T>
T T

(4.28)
for1 <s<2.

The next theorem summarises the final error bounds.

THEOREM 4.3. Let up, denote the solution of (3.3), and suppose that uw € H*(Q2)N
H§(Q), 1< s <2. Then,

1/2
e 21V (u = un)lo,0< (k Z7Th§“51|u|§,T> ;
T
1/2

1/2
<8||V(u —ur)lloe+D_hrlla-V(u- UL)”%,T) < (k Z7Th3“s_1|u|§,T> :
T

T

where k is a positive constant which only depends on the minimum angle in the tri-
angulation T, and hr and vyr are defined by (2.11) and (4.19), respectively.

The results of the last two theorems are essentially known in the context of the
streamline diffusion method, in particular regarding the estimates on u —uy, (see, e.g.,
[21], [22]-) A good feature of the streamline derivative in the norm appearing on the
left-hand side in the last bound is that it provides a natural measure (based on the
residual) of the approximation error to the reduced problem which arises by taking the
limit € — 0. Another good feature is that error control in that norm guarantees that
the method will not develop excessive oscillations in the streamline direction, such as
those that typically arise in standard Galerkin methods. It is also noteworthy that
for the complete approximation which includes the bubble part of the solution the
estimate in the norm £'/2| .|, g, alone, contains so much information. Still, one might
argue that such a norm is too strong to be included in the left-hand side. Indeed,
for the exact solution u of a generic problem with smooth data, '/?|u|; o remains
bounded independent of &, but it is, in some sense, the strongest norm with this
property, leaving no margin for extracting positive powers of h in the error analysis,
given that 51/2|u|s,9 blows up as ¢ = 0 when s > 1. An estimate of the ideal type
would instead involve, say, the Li-norm of the discretization error in the left-hand
side, and the W{-norm of the solution in the right-hand side, with a multiplicative
constant independent of . Unfortunately, estimates of this type do not look very easy
to derive in the multi-dimensional case.
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5. Extensions, conclusions and implementational aspects. In this final
section, we comment on certain extensions of our results. Denoting by n the number
of space dimensions, we observe that our results trivially extend to the case of n = 1.
Concerning the extension to n = 3, Theorems 3.1 and 4.1 still hold, while Theorems
4.2 and 4.3 require 3/2 < s < 2 to ensure that the usual continuous piecewise linear
interpolant is well defined. If a linear quasi-interpolant of u is used as uy, instead of
a linear interpolant, then Theorems 3.1 to 4.1 remain unaffected and Theorems 4.2
and 4.3 still hold for 1 < s < 2; in fact, with this altered definition of uy, all of our
results extend to the case of n > 3.

Our second comment concerns the smoothness hypotheses on @ and f. Recall that
in our analysis the components of @ were taken to be constant and f was assumed to be
a piecewise constant function on Q. We now indicate a simple, although nonoptimal,
way of dealing with more general cases within the framework of the present paper.
Suppose that f € Ly(£2). Assume further that a is a divergence-free vector function
defined on © whose entries are in C*(2), |a| > 0 on Q, and for every element T in the
partition 7 there exists an “upwind-most” point x, € T such that a(xq)-(x —x4) > 0.
Under these hypotheses, all of our proofs can be completed in the same manner as
before, only with some small changes. For example, instead of (3.8) and (3.15), we
now have, respectively,

~ ~

UB|T = (fT—aT'VUL)b{, aB|T = (fT—aT'VﬂL)b{ in each T,

where we have used the notation

wr ::/wadw// bT da.
T T

The associated stability norm is defined by

1/2
<6IIWII3,9 +> hrlar- VU||(2),T> ;

T

and, subject to this minor alteration, Theorem 3.1 still holds. Due to the mismatch
between a and a, the error analysis leading to Theorem 4.1 will contain (in the
estimation of ITT) an additional term, denoted D? below, thus giving rise to the
bound 4(A% + B? 4+ C? 4 D?) on the right-hand side of (4.18), with A and B as before,

C* = hplar-V(u—u)jr and D*=3 e 'la—arlli_qpllu—allfr-
T T

Consequently, the right-hand sides in Theorems 4.2 and 4.3 will contain the added
expression

(5.1) kZ5_1||va||%w(T)h§“s+2|u|z,T
T
and its square-root, respectively, with 1 < s < 2; nevertheless, as long as
-1 2 3 - €
62 < IVal ot < Korr = Kool ommax {1

1
’ hT minT |0,|

where Ky is a fixed positive constant, the extra term displayed in (5.1) can be absorbed
into the bound on 4(A? + B? + C?), leading to the same error estimate as in the
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constant-coefficient case. When the problem is convection-dominated, (5.2) demands
that

, 1/3
hr < (KOE”a”Lm(T)/HVCLHLOO(T)) :

Whether this restriction on the mesh-size is acceptable from the practical point of
view depends on the nature of the problem. On the other hand, a different and
more general analysis [3] shows that optimal estimates can indeed be obtained for the
residual-free-bubble approach, in the variable coefficient case, without the assumption
(5.2).

We conclude this section with some remarks on computational aspects. It is
known that the introduction and the elimination of one bubble function (of any shape)
per element leads to a streamline diffusion method where the stabilising term

ET:TT/T(a-VuL—f)a-Vdex

is added to the continuous piecewise linear Galerkin approximation. In particular,
the value of 7, depends on the shape of the bubble function through the formula

o= 1 (fT dex)Q
TT) el Ve[ ¢

where by is the chosen bubble function in triangle T'. Tt is clear that any non-negative
function contained in H}(T) can be scaled so that (2.2) holds. Hence the actual
computation of the coefficient 7, can be reduced to the computation of the integral of
the scaled bubble function over T'. If, as in the present paper, the bubble function on
T is defined as the solution of the local problem (2.1) (which has already been scaled
so as to satisfy (2.2)), then the computation of the exact value of the integral of the
bubble over T' may be difficult to perform. We make two remarks in this respect.

First, as in [5], we note that for large values of the Péclet number the solution b
of (2.1) is close to the solution of the reduced problem

(5.3) a Vbl =1 inT,
' W =0 on the inflow part of 9T

Thus, in practice, the computation of the integral of b7 can be replaced by calculating
the integral of bl and this, in turn, is equivalent to finding the volume of a certain
pyramid with base T (see, [5], for details).

Second, in order to deal with problems where there is a substantial variation of the
Péclet number over the computational domain, one can consider choosing as bubble
an approximation br to b from within H}(T) (see [4]), always scaled in such a way
that (2.2) holds. Once this is done, we keep the formulae which define h% and hr as
in (2.11), with b replaced by br. We also have to assume that, in doing so, uniform
bounds for A% and hy similar to (2.12) and (2.15) hold true. Then, the error analysis
presented here immediately extends to this new case. We can then say that any bubble
br, scaled via (2.2), will work in our analysis, provided that the corresponding h’% and
hr are suitably bounded. This should not be surprising, as it matches perfectly the
situation encountered in SUPG, where one can change the stabilization parameter
7r by a multiplicative constant without affecting the proof of the asymptotic error
bounds. However, the choice (2.1) of b] has the merit of supplying a precise value for
7r. See the discussion in [2] for further details on this point.
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