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Abstract

Eigenvalue problems for mixed formulation show peculiar features that
make them substantially different from the corresponding mixed direct
problems. In this paper we analyze, in an abstract framework, necessary
and sufficient conditions for their convergence.

1 Introduction

In a general way, we say that a variational problem is written in mized form if
it fits the following abstract setting. We assume that

® and = are Hilbert spaces, (1)

a(y, ) and b(y, £) are bilinear forms on & x ® and ¢ x = respectively, (2)

a(-,-) and b(+,-) are continuous, that is

M, >0 Vo€ ® a(p,p) < MYl (3)
My >0 Vped, VEEE b(p, &) < Myllellallé]l=,

and, to simplify the presentation, we also assume that
a(-,-) is symmetric and positive semidefinite. (4)

Setting ||¢|a := (a(yp,¢))*/? (which in general will only be a seminorm on &)
this immediately gives

Vi, o €@ a(yh, @) <||Yllallolla- (5)
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Properties (1) to (4) will be assumed to hold throughout all the paper.
For any given pair (f,g) in ® x Z’ we consider now the problem

find (¢, x) in ® x E such that
{ a(ih,p) +ble,x) =< f,o > Vpe® (6)
b, &) =< g, > Ve € E.

It is known that, in order to have existence, uniqueness and continuous de-
pendence from the data for problem (6) it is necessary and sufficient that the
bilinear forms a(-,-) and b(-,-) satisfy the following conditions

there exists § > 0, such that

(1S) inf sup (g, §) > 3 (7)
e pea |lollall€]l=
there exists o > 0, such that
EK ’ 8
EK) alp0) > allplly Ve K ®)

where the kernel IK is defined as:
IK = {p € ® such that b(p,&) =0V € E}.

Example 1. Stokes problem. We take ® = (Hy(Q))?, 2 = L*(Q)/p, a(¢,¢) =
(V), V), b(,€) = —(dive, €) where, as usual, (-,-) is the inner product in
L?(Q) orin (L2(2))2. Tt is easy to see that (7) and (8) are satisfied. Moreover if
we take g = 0 the solution of (6) is related to the solution of the Stokes problem

[1]

—Au+Vp=f in{
divu=0 in Q 9)
u=20 on Of)

by the relations ¢ = u and x = p. Approximations based on this approach are
classical and are usually called approximations in the primitive variables.
Example 2. Dirichlet problem with Lagrange multipliers. We take ® = H*(12),
E=H'2(09), a(y,p) = (Vip, V) and b(1), £) =< 1, € >aq (duality between
H'?(9Q) and Z). It is easy to see that (7) and (8) are satisfied. Moreover, for
every f € H-'(Q) and g € H'/?(99) the unique solution of (6) is related to the
solution of

—Au=f inQ
u=g on 012, (10)
by the relations ¢ = v and x = —g—z. Approximations based on this approach

where first introduced by Babuska [2].
Example 3. Mized formulation of second order linear elliptic problems. We

take ® = H(div;Q), E = L*(Q), a(y, p) = (¥, ¢), b(1),€) = (div ey, £). Tt is easy



to see that (7) and (8) are satisfied. Moreover if we take f = 0 the solution
of (6) is related to the solution of the problem

Au=g in{
u=~0 on 02 (1)

by the relations y = u and ¥ = Vu. Approximations based on this approach
where first introduced by Raviart—Thomas [24].

Example 4. Biharmonic problem. We take ® = H(Q2), Z = H}(Q), a(¢, p) =
(¥, ) and b(y, &) = —(V, VE). Tt is easy to see that (7) is satisfied, but (8) is
not. However, if ) is smooth enough and we take f = 0 then (6) has a unique
solution, related to the solution of

9 .
Ayu=—-g inQ (12)
u=%5r=0 on 0,

by the relations x = u and ¥ = —Awu. Approximations based on this approach
where first introduced by Glowinski [16] and analyzed by Ciarlet—Raviart [13]
and Mercier [20].

For many other examples of mixed formulations of boundary value problems
related to various applications in fluidmechanics and in continuous mechanics
we refer, for instance, to [9].

Let us now consider the problem of discretization. Assume that we are given
two families of finite dimensional subspaces ®; and Z, of ® and =, respectively.
We consider the discretized problem:

find (’L/J}L,Xh) in (I)h X Eh such that
{ a(tn, on) + blon, xn) =< f,on > Vo € @4 (13)
b(Yn,&n) =< g,&n > V&, € Ep.

It is known that discrete analogues of (7) and (8) are sufficient to ensure solvabil-
ity of the discrete problem together with optimal error bounds. More precisely
if the spaces ®; and Zj, satisfy the following conditions

there exists a > 0, independent of h, such that

DEK 14
PEK) (o, on) > allonllh Vion € I (14
where the discrete kernel IK}, is defined as
IKp, = {pn € Py, such that b(ep,&r) =0 VE, € Ep}
and
there exists 8 > 0, independent of A, such that
(DIS) b(n, n) (15)

> p,

inf sup ———"—
€n€2n oy ey |l@nlle|Enll=



then we have unique solvability of (13) and the following error estimate

16— nlle + lIx = xallz < € ( inf [l — llo + inf [l —£||a) . ()
PYED EEE

As we shall see, conditions (14) and (15) are also necessary for having (16), in
a suitable sense.

We turn now to the eigenvalue problems. As we can see from the examples
above, the eigenvalue problem which is naturally associated with the correspond-
ing boundary value problem in strong form (namely (9), (10), (11) or (12)) does
not correspond to taking (A, Ax) as right-hand side of (6). Instead, according
with the different cases, the natural eigenvalue problem is obtained by taking
(A,0) or (0, —Ax) as right-hand side of (6). One expects, as for instance in [21],
that (14) and (15), together with suitable compactness properties, are sufficient
to ensure good convergence of the eigenvalues. However, when the problem is
set in mixed variational form, compactness is more delicate to deal with. In a
previous paper [5] we showed that, for the particular case of Example 3, even
if the operator mapping g into u in (11) is clearly compact, assumptions (14)
and (15) are not sufficient to avoid, for instance, the presence of spurious eigen-
values in the discrete spectrum. Here we address a more general problem, in
abstract form, and we look for sufficient (and, possibly, necessary) conditions in
order to have good approximation properties for the eigenvalue problems having
either (A,0) or (0, —Ax) at the right-hand side. As we shall see, in each of the
two cases, (14) and (15) might be neither necessary nor sufficient for that.

Our approach turns out to be more similar to the one of [14] rather than
the one of [8] or [1]. Important references for the study of eigenvalue problems
in mixed form are [21, 3, 23]. As far as the sufficient conditions are concerned,
we have only little improvements over the previous papers. For instance, our
bilinear form af(-,-) is not supposed to be positive definite as in the previous
literature. Moreover, previous related papers deal mostly with cases in which
the two components of the solution of the direct problem are both convergent,
while we accept discretizations that can produce singular global matrices. On
the other hand, having assumed symmetry of a(-,-), we do not have to consider
adjoint problems as in [14]. However, in practical cases, the actual gain is negli-
gible. The major interest of the paper, in our opinion, consists in showing that
our sufficient conditions are, mostly, also necessary, thus providing a severe test
for assessing whether a given discretization is suitable for computing eigenval-
ues or not. This justifies, in our opinion, the apparently excessive generality of
our abstract approach. Indeed, as we shall see, convergence of discrete eigen-
values does not even imply, for mixed formulations, the nonsingularity of the
corresponding global matrices.

Finally we point out that in this paper we do not look for a priori estimates
for eigenvalues and eigenvectors, but only deal with convergence. This is some-
how in agreement with the fact that necessary conditions are a major issue here.



However, in most cases, a priori error estimates can be readily deduced checking
the last step in the proofs of sufficient conditions and/or applying the general
instruments of, say, [7, 21, 3].

An outline of the paper is the following. In Section 2 we state the problem
and relate the convergence of the spectrum with the uniform convergence of the
resolvent operators. Moreover we point out the role of the discrete conditions
(DEK) and (DIS) is order to have existence and boundedness of the different
components of the solution of (13).

Section 3 and 4 are devoted to the analysis of the eigenvalue problems as-
sociated to (6) when the right-hand side is of the type (A,0) or (0, —Ax),
respectively. In both cases we state sufficient and necessary conditions for the
good approximation of the spectrum. At the end of each section we will show
how the known good approximations of the problems in the examples above
satisfy our sufficient conditions for convergence of eigenvalues and eigenvectors,
and more generally we discuss the validity of other possible approximations in
light of our conditions.

2 Statement of the problems

Let H be a Hilbert space and 7' : H — H a selfadjoint compact operator. To
simplify the presentation we assume that 7' is nonnegative.
We are interested in the eigenvalues A € R defined by

AMu=u, withue H)\{0}. (17)

In the above assumptions it is well-known that there exists a sequence {\;} and
an associated orthonormal basis {u;} such that

)\iTui:ui,

0<A <A< A<, (18)
lim \; = 4o0.

71— 00

We also set, for i € N, E; = span(u;).

The following mapping will be useful. Let m : N — N be the applica-
tion which to every N associates the dimension of the space generated by the
eigenspaces of the first IV distinct eigenvalues; that is

m(l) =dim {®;E; : \j = A1},

m(N + 1) = m(N) + dim {®:E; : A = An(xys1} - (19)

Clearly, Apy1); - - Am(ny (V € N) will now be the first N distinct eigenvalues
of (17).

Assume that we are given, for every h > 0, a selfadjoint nonnegative operator

T, : H — H with finite range. We denote by A" € R the eigenvalues of the
problem

AMpu=u, withue H\{0}. (20)



Let Hj be the finite-dimensional range of T}, and dim H;, =: N(h); then T},
admits N (h) real eigenvalues denoted A\? such that

0< A < <A< A - (21)
The associated discrete eigenfuntions ul, i = 1,..., N(h), give rise to an
orthonormal basis of Hj, with respect to the scalar product of H. Let El :=
span(ult).
We assume that
lim || — Ty () = 0. (22)
h—0

It is a classical result in spectrum perturbation theory that (22) implies the
following convergence property for eigenvalues and eigenvectors:

Ve >0, VN € N 3hg > 0 such that Vh < hy
Y
max ) |>\z >‘z | S €, (23)

i=1,...,m(

d@r Ve, oTMVE) <e,

where S(E, F), for E and F linear subspaces of H, represents the gap between
FE and F and is defined by

5(E,F) = max[6(E, F),8(F, E)],
0(E,F) = sup inf |ju — v||m. (24)
u€E, ||ullp=1 VEF

Viceversa, it is not difficult to prove that (23) is a sufficient condition for (22).

We are interested in having (23) for eigenvalue problems in mixed form.

Let us therefore go back to the abstract framework already used in the intro-
duction, with the assumptions therein. In particular assume, for the moment,
that (7) and (8) are satisfied and that (13) has a solution for every (f,g) in
®' x E'. Problems (6) and (13) define then, in a natural way, two operators
S(f,g9) = (¥, x) (solution of (6)) and Sy(f,g) = (¥, xr) (solution of (13)).

It is well-known (see [9]) that (DIS) and (DEK) (cfr. equations (15) and (14))
imply that the discrete operator Sy, is bounded from @}, x =} to ® x =, uniformly
in b (see (16)). Moreover, the converse holds true, as it is proved in the following
Lemma 1. Before it we introduce the following notation: for every h > 0 we

define

</ > < g,&p >
flle, = sup SLE2= g, = sup S0

—e (25)
[PINS 3N ||‘10h||<1> EREER ||£h||5

Lemma 1 If there exists a constant C' such that for all f € ® and g € =/

15w (f; 9)llexz < C(l|flle;, + [l9ll=;) (26)

for all h > 0, then (DIS) and (DEK) are verified.



Proof. Let 1, belong to IKj, then (5,0, f,0) satisfies (13) with < f, @y >:=
a(p,pn), for all pp € ®p. Hence the inequality (26) gives (DEK) with a =
1/(C*M,), M, being the continuity constant of a (see (3)).

For x5 € Zp, then (0, xs, f,0) satisfies (13), with < f, pn >:= b(¢n, xn) for
all pp, € ®). Hence the inequality (26) yields (DIS) with 5 =1/C. 0O
Remark 1 In the statement of Lemma 1 we implicitly assumed that the oper-
ator Sy, was defined for every f and g. However, as it can be clearly seen in the
proof, this was not really necessary. Indeed it is sufficient to assume that there
exists a constant C' > 0 such that for every A > 0 and for every quadruplet
(Yn,Xn, f,9) € Py x B, X ®' x = satisfying (13), one has

[¥nlle +1lxnllz < C(l|flls, + llgll=;)- (27)
This should not surprise, as (13) is always a linear system with a square ma-
trix. O

Consider now the eigenvalue problem. For the sake of simplicity, let us
assume for the moment that there exist two Hilbert spaces Hy and Hz such
that we can identify

Hs = H ,
H= = H_;_f (28)
and such that ,
®CHs CP
=CHzCZ (29)

hold with dense and continuous embedding, in a compatible way.

The restrictions of S and S, to Hg x Hz define now two operators from
Hg x Hgz into itself.

As a consequence of (16) and Lemma 1, it is immediate to prove the following
proposition.

Proposition 1 Assume that (DIS) and (DEK) hold. Then Sy converges uni-
formly to S in L(He X Hz) if and only if S (from He x Hg into itself) is
compact.

This proposition concludes the convergence analysis for the eigenvalue prob-
lems associated to (6) and (13). However in the applications one finds more
often eigenvalue problems associated to (6) and (13) when one of the two com-
ponents of the datum is zero. Let us set these eigenvalue problems in their
appropriate abstract framework introducing the following operators:

Cp: P — &' x = Cz:Z - & xE&

Ca(f) = (£,0) C=(g) = (0, 9) (30)
and their adjoints
C’%:@XE—)@ C§:¢X5—>E
Ci(0,6) = ¢ CE(p.6) = €. (31)



We shall say that (6) is a problem of the type f > if the right-hand side

0
in (6) satisfies ¢ = 0. Similarly, we shall say that (6) is a problem of the type
if the right-hand side in (6) satisfies f = 0. Correspondingly, we shall

study the approximation of the eigenvalues of the following operators:

Te =C;0S0Cs: 9" — &, for problems of the type g ),
(32)
T==CtoSo(Cz:E - E, for problems of the type 2 >

Whenever the associated discrete problems are solvable, we can introduce the
discrete counterparts of Te and Tk as:

Th=Chto0S,0Cs: 9 — &, for problems of the type < (J; >,
(33)
Th=C%o0S,00z:5 — =, for problems of the type < 2 )

In the remaining part of this section we are going to relate the solvability and
boundedness of the discrete operators with either (DIS) or (DEK).

Proposition 2 If (DEK) (see (14)) holds and g = 0, then problem (13) has at
least one solution (Vn,xn). Moreover 1y, is uniquely determined by f and

onllo < ~11f1ls;, (34)

(where « is the constant appearing in (14)).

Proof. Let 1y, be the unique solution of a(¢y, pr) =< f,pn > for all pj, in IK},.
Clearly v, exists, is unique and satisfies (34). Now look for x;, in =5, such that
b(on, xrn) = (f,on) — aln, en) for all g, € ®p. As the right-hand side is in the
polar set of IKj, the system is compatible and hence has at least one solution. [J

Proposition 3 Assume that there exists a constant C > 0 such that for every
h > 0 and for every quadruplet (Y¥n, Xn, f,0) € @ x Zp x ®' X E' satisfying (13)
one has

[Ynlle < ClIfllar, (35)

then the operator TY is defined in all ®' and (DEK) holds with o = 1/(C*M,),
M, being the continuity constant of a (see (3)).

Proof. With the same proof as in Lemma 1 we see that (DEK) holds true. The
solvability of (13) is now a consequence of Proposition 2. O



Proposition 4 Assume that the following weak discrete inf-sup condition holds:
for every h > 0, there exists a constant B, > 0 such that

i b(en, &n)
DIS inf sup —————— > Gp. 36
(DS Jnf sup 1 allnls = (36)

!

Then for every g € Z' and f = 0 problem (13) has at least one solution (Y, xn)
and xp is uniquely determined by g.

Proof. The assumption (36) implies that, with obvious notation, By, is surjec-
tive. Hence for g € =’ there exists at least one ), € ®;, such that By, = g.
Then find ¢y, € IK}, such that a(Yg, pn) = —a(Yy, pn) Yep € IK},. Finally, take
Xn € Ep such that b(pn, xn) = —a(¥g, on) — a(Yr, ¢n) for all ¢, € ®5. Such
a xp exists, by the same argument used in the proof of Proposition 2. Finally
observe that (¢4 + 9, x1) solves (13) with (0, g) as right-hand side.

To see the uniqueness, assume that (¢}, x%) (i = 1,2) are two solutions.
Clearly a(y} — 3, n) = 0 for all ), € IK),. Taking ¢, =1, — 1} one obtains
that a(y} —¢2,¢+ —1?) = 0 and hence as a is symmetric and positive semidef-
inite, a(¢; — Y32, ¢p) = 0 for all ¢, € &y, (use (5)). Now b(pn, X1, — x3) = 0 for
all ¢y, in @, and (DIS,) implies x}, = x3. O

Proposition 5 Assume that there exists a constant C' > 0 such that for every
h > 0 and for every quadruplet (Yn, xn,0,9) € ®p X Ep X ®' X E' satisfying (13)
one has

lIxrll= < Cligllz, , (37)

=/

then the operator TEh is defined in all Z' and the weak discrete inf-sup condition
(DIS}y,) holds. In general, (87) does not imply (DIS).

Proof. Remark first that the assumption (37) implies that, with obvious nota-

tion, B} is injective, therefore By, will be surjective and this implies (DIS},).
In order to see that (DIS) cannot be deduced in general, consider the case

when a =0, &, = =, and b is h times the scalar product in ®. O

Proposition 6 Assume that there exists a constant C' > 0 such that for every
h > 0 and for every quadruplet (V¥n, xn,0,9) € ®p X Ep x B’ X 2’ satisfying (13)
one has

[¥nlle + [Ixnllz < Cllgllz; (38)
then both TE and C% o Sy 0 Cz are defined on Z' and (DIS) holds with 3 = 1/C.

Proof. Remark first that, from Proposition 4, problem (13) has at least one
solution for every g € =/, but now the estimate (38) ensures that such solution

=/

is unique. Hence C§ o Sj, o Cg is also well-defined in Z'. Let now &, be an



element of Zp,, and let g € Z' be such that [|g||z, =1 and < g,& >= [[&|=.
Taking ¢y = Cg o S, 0 Czg we have

bWr, &) <9, > =z _ 1

Wille ~ Tills  illle = 01 (39
O
Proposition 7 If there exists C > 0 such that
IC2 0 Sh o Callz(@, =5, <C (40)
for every h > 0, then (DIS) holds with 8 =1/C.
Proof. The same proof as in Lemma, 1. O

We see from Propositions 3 and 7, that for problems of the type ( g )the
estimate (35) on ¢y, implies (DEK) and the estimate (40) on yj implies (DIS).

Analogue properties do not entirely hold for problems of the type

f

3 Problems of the type 0

In this section, together with (1)-(4), we assume that (EK) and (IS) are verified.
We also assume that we are given a Hilbert space Hge (that we shall identify
with its dual space Hj) such that

® C Hy C O (41)
with continuous and dense embeddings. We consider the eigenvalue problem

find (A, %) in R x ®, with ¢ # 0,
such that there exists y € E verifying

42
{609 3860 =20 Yo 2 ()
b(4,£) =0 VEeE,
which in the formalism of the previous section can be written
ATph = . (43)

We assume that the operator T3 is compact from Hg to ®.

10



Suppose now that we are given two finite dimensional subspaces ®; and =
of ® and =, respectively. Then the approximation of (42) reads

find (\p,¥y) in R x @5, with ¢, # 0 such that

there exists xp € Zj verifying

{ a(tn, en) + b(on, Xn) = An(Vn, on)He  Von € @
b(Yn,&n) =0 VEé, € B,

that is
MTgbn = . (45)

We are now looking for necessary and sufficient conditions that ensure the
uniform convergence of T# to Te in L£L(He,®) which, as we have seen, implies
the convergence of eigenvalues and eigenvectors (see (23)).

To start with, we look for sufficient conditions.

We introduce some notation. Let ®{f and Z{ be the subspaces of ® and
=, respectively, containing all the solutions ¢ € ® and x € =, respectively, of
problem (6) when g = 0; that is, with the formalism of the previous section,

Off =Cg 0S8 0Cqs(Hs) =To(Hs) (46)
S = C% oS o Co(Hs).

Notice that the following inclusion holds true:
el C IK.

The spaces ®f and Z¥ will be endowed with the natural norm: that is, for
instance,
llelles = inf{||n||ms, Ton = ¢};

. 4
I€llzs = inf{][nllie, C% oS o0 Can = ¢} (47

Definition 1 We say that the weak approximability of Z{! is verified if there
exists w1 (h), tending to zero as h goes to zero, such that for every x € Z&

sup 200 ol (48)

pners, |lenlle

Notice that, in spite of its appearance, (48) is indeed an approximability prop-
erty. Actually as o5, € IKp, we have b(¢p, x) = b(¢n, x — x!) for every x! € Zp,
which has, usually, to be used to verify (48).

Definition 2 We say that the strong approximability of ®{! is verified if there
exists wa(h), tending to zero as h goes to zero, such that for every ) € ®L there
exists ! € IK}, such that

14 = ¥'lla < w2(B)[[W]]as- (49)

11



Theorem 1 Let us assume that (DEK) is verified (see (14)). Assume moreover
the weak approximability of = and the strong approximability of ®f. Then
the sequence TE converges uniformly to Te in L(Hg,®), that is there ewists
ws(h), tending to zero as h goes to zero, such that

||T¢f—T£f||<pSwg(h)||f||H¢, for all f € Hg. (50)

Proof. Let f € Hg and let (¢, x) € ®& x = be solution of (6): (v, x) = S(f,0).
As we assumed (DEK) Proposition 2 ensures that 7% is well defined on ®'.
Recall that ¢ := Te(f). Let ¢, := TE(f) and let x! be such that (15, x7) is a
solution of (13) (such x! might not be unique). In order to prove the uniform
convergence of T to T, we have to estimate the difference || —1p||a. We do
it by bounding the term ||/ — 9p||e, where ! is given by (49), and then by
using the triangular inequality. We have

a|lp’ — pll3 < a(p’ —n, T — n)
=a(@’ — ¢, " —Pn) + aly — Y, T —Pn)
< Mg||[9" = ¥lla||v" — ¥nlle — b(¥" — ¥n, x — xn)

< (Ma||¢’—z/)||¢+ sup M)||z/ﬂ—z/)h||<» (51)
oneky,  llenlle

N (Maw’—zpnw sup b“”’“”) 16" = ¢l

pn€K, ||(ph||<1>

The result then follows immediately from the strong approzimability of ®X
and the weak approzimability of Zf . In particular we can take ws(h) = (1 +
M,/a)ws(h) + wi(h)/a. O

In the following theorem we shall see that the assumptions of Theorem 1 are
also, in a sense, necessary for the uniform convergence of T# to Te in L(Hg, ®).

Theorem 2 Assume that the sequence T2 is bounded in L(®',®), and con-
verges uniformly to Te in L(He,®) (see (50)). Then, the ellipticity in the
kernel property (DEK) holds true. Moreover, both the strong approximability
of ®L and the weak approximability of 2 are satisfied.

Proof. The (DEK) property can be obtained applying Proposition 3. Let ¢ be
an element of ®!!. Then by definition of ®4 there is f € Hg such that 1) = Ty f.
Define ¢! := T2 f. Uniform convergence implies the strong approzimability of
ol

In a similar way, let x be an element of Zf. Then by definition of =,
X =C%0SoCyf for some f € Hp. There might be more than one such f. We
choose f such that ||f||g, < 2inf{||f||a, : C20SoCaf =x}= %HXH:gI- Let

¢ := Ty f. Correspondingly let o, := T2 f and let x5 be such that (¢n, x) is a

12



solution of (13) with the same right-hand side (such x; might not be unique).
Then we obtain
b(¢n, X) b(en, X — Xn) a(y —¥n, en)

sup = sup —>—""> = sup
oneky llonlle  oner,  llenlle oneky  llenlle

3
< Mol = ¥nlle < Maws(W|f]lrs < 5Maws(R)lxllzp

which gives (48) with wy(h) = £M,ws(h), that is the weak approzimability of
=d. O
E(;cample 1. We go back to the Example 1 of the Introduction (Stokes problem).
Now ® =V = (Hj(?))* and = = Q = L?*(Q)/p- It is easy to see that if
is, for instance, a convex polygon, Z&! is H! (Q)/R and ®4 is the subspace of
(H?(Q)N H (2))? made of free divergence functions (see [19]). In particular we
can check that [|u|lgz = ||Aullo ~ [|u/l2 and [|p|lzz = [|¥p[lo (with standard
notation, here and in the following, we denote by || - || the norm in H*(2) for
k € N). Let V,, and @, be finite dimensional subspaces of V' and @ respectively.
The weak approximability of Z¥ will surely hold if

inf |lp = anllo < wr(Wlpll for all p € H(Q) /R,
h h

which is satisfied by all choices of finite element spaces that one may seriously
think to use in practice.
The strong approximability of ®X’, which now reads

llu = u'[ly ws(h)llullz  for all u € &, (52)

is more delicate, as u’ has to be chosen in IKj. If the pair (V3,Qp) satisfies
the inf-sup condition (DIS) then the property trivially holds. Remark, however,
that the typical way to proving the inf-sup condition is to show, following [15],
that: for every u in V there exists u! in Vj such that ||u!||ly < COllullv (C
independent of u and h) and b(u —u', qr) = 0 Vg, € Qp, which is more difficult
than proving (52) directly. Moreover there are choices of elements that fail to
satisfy the inf-sup condition, for which (52) holds true. For instance, we may
think to the so-called ()1 — Py element, where

Vi = {u, € (CO)) : walic € (Q1(K))? VK € Tal,

Qrn ={an: anlx € Po(K) VK € Tp}, %

where, with standard finite element notation, for k integer > 0 Py (D) denotes
the space of polynomials of degree < k on a domain D, and Q (D) the space
of polynomials of degree < k separately in each variable. Hence, here Q1 (K)
is the set of bilinear polynomials on K, and Py(K) is the set of the constant
functions on K. We may assume, for simplicity, that €2 is a square and that the
decomposition Ty is made by 2N x 2N equal subsquares. It is known that this
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choice of elements does not satisfy the inf-sup condition: the operator B} has
a non trivial kernel (the checkerboard mode), and by discarding it we still have
at best (DISy) with 8, ~ h (see [22, 18, 6]). Nevertheless, for u € ®{ C IK,
we can construct u! as follows: let @& be the vector in V3, which is bilinear in
each square of the N x N (coarser) grid and agrees with u at the vertices of the
coarser grid. Let now @& be the vector in V}, with the following properties. It
vanishes at the vertices of the coarser grid; its tangential component vanishes
on the midpoints of the edges of the coarser grid; its normal component at
the midpoints of each edge e of the coarser grid is chosen in such a way that
fe (u—a—u)-n = 0, and finally the values at the center of each element K of the
coarser grid are chosen to satisfy fK (u—1a—1a)q, =0 for ¢, = sign(z — z.) and
qn, = sign(y — y.) (where (z.,y.) is the center of K). It is not difficult to check
that u! = @ + @ satisfies (52) with ws(h) = O(h). For a similar construction
see [9], pages 241-242. We have here a first example in which the eigenvalues
are approximated correctly even though the global matrix associated to (13) is
singular.

Example 2. Dirichlet problem with Lagrange multipliers. Here ® =V =
H'(Q) and Z = M = H~'/2(8Q). Tt is well-known (see e.g. [17]), that if Q is,
for instance, a convex polygon, then ®f = H2(Q)NH} (Q) and Z = H'/2(8Q).
Let now {7} be a regular sequence of decompositions of Q (see e.g. [12]), {T}'}
be a regular sequence of decompositions of 0f2, k; and ko be integers with k; > 1
and ko > 0. Set

Vi = {u, €V : wylk € Py, (K) VK € T2}, (54)
M = {un € M : pple € Pyy(e) Ye € T}

It is trivial to check that (48) and (49) hold for every choice of {TS*}, {T,'}, ki
and ko. In particular (DEK), which is now a sort of Poincaré inequality, only
requires that My, C M contains at least a [, such that < f@,,1 >#0.

Note that to have (DIS) one must ask rather strict compatibility conditions
on {72}, {T'}, k1 and ko, see [2]. Therefore, for a general choice, solvability
of (13) might fail. Nevertheless, as we have seen, convergence of the eigenvalues
is assured under weaker assumptions.

4 Problems of the type

In this section, together with (1)-(4), we assume that, for every given g € =’
and f = 0, problem (6) has a unique solution (¢, x) and that there exists a
constant C' (independent of g) such that

¥]le +[Ixll= < Cllgll=- (55)

14



It is easy to see that this implies (IS) but not (EK) (see Example 4 of the
Introduction). Moreover we assume that we are given a Hilbert space Hz (that
we shall identify with its dual space HL) such that

SCHzCZ (56)

with continuous and dense embeddings. For simplicity, we assume that for every
¢ € £, we have ||¢||g= < ||€]lz (with constant equal to 1).
We consider the eigenvalue problem

find (X, x) in R x Z, with x # 0, such that
there exists ¢ € ® satisfying

57
{ a(,9) +b(p,x) =0 Voed (57)

which in the formalism of Section 2 can be written
Al=x = —X- (58)

As we shall see, problems of the type < 2 )are more closely related to the

abstract theory of [14] than problems of the previous type ( g )

From now on we assume that the operator Tz is compact from Hz into =.
We introduce two finite dimensional subspaces ®; and Zj, of ® and Z, re-
spectively. Then the approximation of (57) reads

find (\n, xp) in R x 2, with xp, # 0, such that
there exists 15, € ®), satisfying

59
{ a(n, on) +b(on, xn) =0  Vop € @y (59)
b(Vn,&n) = =Au(Xn, €n)a= VEén € En,
that is
MTExn = —Xn- (60)

We are now looking for necessary and sufficient conditions that ensure the
uniform convergence of TEh to Tz in £L(Hz,E), which implies the convergence of
eigenvalues and eigenvectors (see (23)).

To start with, we look for sufficient conditions.

We introduce some notation. Let % and Z% be the subspaces of & and
= respectively, containing all the solutions ¢ € ® and x € =, respectively, of
problem (6) when f = 0; that is, with the formalism of Section 2,

@9{ = C:f) oSo CE(HE)
E[}-I = Cé oSo CE(HE) = T:*(HE)

(61)

It will also be useful to define the space ®2, as the image of C} o S o Cz
(from E’ to ®).
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As before, the spaces ®%, 2% and ®%, will be endowed with their natural
norms (see for instance (47)).

Definition 3 We say that the weak approximability of 2%, with respect to
a(-,-) is verified if there exists ws(h), tending to zero as h goes to zero, such
that for every x € & and for every oy, € K,

b(n, x) < wa(h)llxllze, llnlla- (62)

Notice that (62) is indeed an approximation property, as we already pointed out
for its counterpart (48).

Definition 4 We say that the strong approximability of =Y is verified if there
exists ws(h), tending to zero as h goes to zero, such that for every x € 2% there
exists x' € 2y, such that

X = x"ll= < ws(M)lIxll=s, - (63)
Notice that (62) and (63) are (much) weaker forms of assumption H7 of [14].

Definition 5 An operator I, from ® (or from a subspace of it) into @y, is
called a Fortin operator with respect to the bilinear form b and the subspace
Zn C Z if it verifies, for all ¢ in its domain,

b(e — Inp,&n) =0 V&, € Ep. (64)

The following assumptions for a Fortin operator will be useful.
-There exists a constant Cry, independent of h such that:

||Hh||£(<l>05,,<1>) < Ch. (65)

-There exists wg(h), tending to zero as h goes to zero, such that for every
¢ € ®Y it holds
lle — Ineplla < we(h)|lelleo - (66)

Notice that (66) is strongly related to assumption H5 of [14]. However, being
interested in convergence, we have to assume that wg(h) goes to 0, while [14]
only assumes it to be bounded and puts it in the right-hand side of a priori
estimates. On the other hand, as we shall see, (66) is actually necessary for
having convergence of eigenvalues. This was not pointed out in [14] for the
very good reason that, first, their interest was in a priori bounds (and not on
necessity) and, second, they were dealing with direct problems (and not with
eigenvalues). In particular (66) is not necessary for having pointwise convergence
of T! to T= where (DEK) and (DIS) are sufficient. Notice that (as it is also
pointed out in Proposition 1 of [14]) (IS) and (DIS) imply (65), but, as we
shall see later in this paper, (EK), (DEK), (IS) and (DIS) (all together) imply
pointwise convergence but not (66).
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Theorem 3 Let us assume that there exists a Fortin operator (see (64)) 1, :
®Y, — &), satisfying (65) and (66). Assume moreover that the strong approx-
imability of 2% is verified (see (63)) as well as the weak approximability of 2%,
with respect to a(see (62)). Then the sequence TL converges to Tz uniformly
from Hz into Z, that is there exists wr(h), tending to zero as h goes to zero,
such that

IT=g — TLgllz <wr(B)llgllm=, for all g € Hz. (67)

Proof. We remark first that, as it is well-known, (7) and (64)- (65) imply (DIS)
(see [15] or [9]). Thanks to Proposition 4, T2 is then well defined.

Let g € Hz and let (¢, x) € ®% xEY, be the solution of (6) with f = 0. Recall
that y = T=g. Let xj := T2g and let v, be such that (1n,xs) is a solution
of (13) (such ¢, might be not unique). In order to prove the uniform convergence
of T2 to T= we have to find a priori estimates for the error ||x —xu||z. Let § € =’

be such that < §,x —xn >=||x — x»|lz and ||§||z: = 1. Take @ := C} 0SoC=g,
hence [|@][g0, < |gllzr =1 (see (47)). Then we have
X = xnll= =< g:x —xn >=b(@x = xn)
= b(® — Oad, x = xa) + bIIn@, X — Xn) (68)

= b(@ — @, x — x") — a(y — ¢, M)
Let us estimate separately the two terms in the right-hand side:

b(p — Hh@aXN_ x') < M§||S5 - Hh<ﬁ||1<1>||X —x'|l=
SMb(||<P~||<I>+||Hh~<P||<I>)||X—X ||=; (69)
a(t) — n, Up@) < |[p@llallt) — Yulla-

Using (65) we obtain the following estimate for II, @
In@lle < Cullplleg, < Cn. (70)
Putting together (68), (69) and (70) and using (63) we obtain

X = xnllz < My(1+ Cu)llx — x|z + Crllv) — o (71)
< My(1+ C)ws (h)[|x[lzo, + Cullt — ¥nlla-

To conclude the proof it remains to estimate ||) — ¢p||,. Thanks to the
triangular inequality and to (66) we bound only ||II5%) — || using also (62)
and (64). Notice that II,¢ — ¢, belongs to IK},.

Oay — Yull2 = a(llpy) — ¥, Mpp — ¥p) + a(yp — ¥p, Oat) — Yp)
< ||Y = pap| ol Tntp — Yulla = O(IInt) — Yu, X — Xn)
= || = Op9)|[al Ty — ¥n|la — b(ITptY) — g, x) (72)

< 1004 = wnlla (11 = Talla +wa(Mlxll=s, )
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which, due to (66), gives
[ =vnlla < 2[|¢ =Tap|la +wa(R)]Ixlzg, < 2we(R)[[¥]lag, +wa(P)lIxllze, (73)
and (67) holds with wr(h) = My(1 + Cr)ws (k) + 2Cnws (k) + Criwa(h). O

Remark 2 In Theorem 3 we have proved the uniform convergence of T}
to T= in L(Hz, Z). However in Section 2 we have seen that the convergence of
the spectrum is equivalent to the uniform convergence of T to Tz in £(Hz).
Indeed the latter holds under the weaker assumption that there exists a Fortin
operator satisfying only (66) as we shall see in the following theorem. O

Theorem 4 Let us assume that there exists a Fortin operator (see (64)) I, :
®Y, — ), satisfying (66). Assume moreover that both the strong approxima-
bility of 2% (see (63)) and the weak approximability of 2% with respect to a
(see (62)) are verified. Then the sequence TR converges uniformly to T= in Hs.

Proof. We observe that (7) and (64) imply the weak discrete inf-sup condition
(DIS;). Thanks to Proposition 4, T2 is then well defined.

Let g € Hz and let (¢, x) € ®% x Z% be the solution of (6) with f = 0.
Recall that y = Teg. Let x5 := TZg and let v, be such that (v, xn) is a
solution of (13) with right-hand side (0, g) (such v might be not unique). We
estimate ||x — xa||z=. Using a duality argument, let (1, X) € ® x = be defined
by (1/;, X) := S(0,x — xn). Due to the definition (61), ¥ belongs to 39, with the

following estimate ||’¢~J||¢% < |lx = xnll= (see (47)).

X =Xl = (X = Xas X = X0) = b(¥, X — xn)
= b(¢ — e, x) + b(Ipth, X — Xn) _
= —a(Y,y — 1Y) — a(¥ — tn, )
<|[¥llall¥ = Dptlla + |[¥ = YallalTrt|la
< W llaws (MY ]ao, + 2/[¢ = Ynllall¥]lag,
< (we(M[¥]la + 2[|¢ = ¥rlla) lIx = xallH=,

having assumed wg(h) < 1. Hence

X = xnllr= < ws(B)|[Y]la + 2[|Y — Ynlla-

The rest of the proof follows the same lines as the one of Theorem 3, using (62)
and (66) (see (72) and (73)). 0O

The remaining part of this section is devoted to see what one can deduce
from the uniform convergence of T2 to Tk.

Theorem 5 Assume that the sequence T2 is bounded in L(Z',Z). Then there
exists a Fortin operator (see (64)) Iy, : ®%, — &, such that

Y = Ttblla < Cll¥llas, - (74)
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Proof. Let 1 belong to ®%,. Then by definition ¢y = C} o S o Czg for some
g € E'. There is only one g in this condition, and therefore, by definition,
[[¥lleo, = |lgll=r (see (47)). Let x € = be such that (¢,x) = S(0,9). Let
xn = TEg; notice that, by assumption, ||xs|lz < Cl|g||z'- By Propositions 5
and 4, there exists at least one ¢y, such that (¢p, xrn) € ®n%xE}, is a corresponding
discrete solution of (13). If such ¢y, is unique, we define I := ¢,. Otherwise
we still define II5) as the v, having minimum norm in ®. By construction we
have (64) and

Il =< g, xn >< lgll= || Tz gll= < Cllgllz: = ClI¥ll5s, (75)
Let us bound || — TIp9||a:
[ — Tl

a(yp — py, ¢ — 1)
= a(Y,¢ — Upep) — a(llpeh, v — Mpeh) (76)
_b(w - thja X) - a(dj - thjy thj)

The first term in the right-hand side can be handled as follows:

b(dj - thjy X) = b(ﬂ’ - thja X — Xh)
=< g,X — Xn > —b(nth, X — xn) (77)
=< g,Xx — Xn > +a( — M, o).

Inserting (77) in (76), we obtain

1Y =Tl == <g,x = xn > —2a(y — e, IMpe))
< lgll=1x = xall= + 2]/ = Tptp[[a] [TTat)] ] (78)
< lgll= (Ixll= + lIxall=) + 2ll¢ = Tat)]|a]Mpe)]|a
then the boundedness of T2 and (75) imply (74). O

Theorem 6 Assume that the sequence T converges to T= uniformly from Hz
to 2, then for all x € 2% there is x! € 2y, such that (63) holds true.

Proof. Let x belong to 2%, then x = T=g for a suitable g in Hz. Let xj := Tig
be the corresponding discrete solution, then we define x! := y;, and the inequal-
ity (63) is an easy consequence of the uniform convergence of Tg to T=g in 2. [J

Theorem 7 Let us assume that the sequence TE is bounded in L(Z',Z) and
converges uniformly to T= in L(Hg,Z). In addition we assume that the following
bound holds for the solutions of (13) with f =0

[¥nlle < Cllgll= (79)

Then there exists a Fortin operator 11, : ®%, — ®,, satisfying (65) and (66).
Moreover we have (DIS) (see (15)), and the weak approzimability of =% with
respect to a (see (62)) holds.
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Proof. From Proposition 5 we have that Cg o S o Cz is also well defined and
(DIS) holds. Let us check (65). For ¢ € ®%,, there exists g € ' and x € =
such that (¢, x) = S(0,g). We set II1) := C} 0 Sy 0C=zg. As we have seen, (64)
holds trivially, and now (65) also holds in virtue of (79), with Cry := C.

Now let us check (66). Let 1 belong to ®%;; by definition ¢ = C}0SoCzg for
some g € Hz. As in the proof of Theorem 5, g is unique, and ||¢||g0 = ||g]|m=-
Let x := T=g; clearly x € 2%. Let x5, := T2g. By construction (Ilx1, xn)
solves (13) with the right-hand side (0, g). Moreover by the same computations
as above, we arrive (see the first line in (78)) at

[ — Mpp]|2 = = < g,x — xn > —2a(ep — Mpeh, ).
From this we have

[ —Iaoll2 = — < g,x —xn > —2b(ITe), x — Xn)

(llgllzr + 2M|[TRtlle) [IX — Xnll=

1+ 2MO)llgl|=wr(P)]|gllm= (80)
1+ 2M,C)wr(h)||gl17

L+ 2M,Chwr(h)][9][3

HAANININ

where we used (79) and the uniform convergence of T to Tz in L(Hz,=)
(see (67)). The bound (80) gives (66) with wg(h) = ((1 + 2M,C)wyr(h))/2.

Now let us check (62). If x € 2%, then x = Txg for a suitable g in Hz, let
1 be such that (1, %) = S(0,g). Next we set xp := T2g and ¢y, := II1). Then
we get for every ¢y, € IK},

b(on,x) = b(en, X = Xn) (81)
= a(Hlﬂ/} - 1/’;‘1011) < Ma”Hhi/’ - 1/}||a||‘10h||a

and (66) (already proved) ends the proof, since |[¢||g0 = [|gl|r= = lIX]lzo , by
definition. O

Example 3. Let us consider the mixed formulation of second order linear
elliptic problems. Recall that ® = ¥ = H(div; Q) and = = V = L*(Q). As usual
we identify L2(2) with its dual space, so that in our notation we have & = Hz =
E' = L*(Q). It is easy to see (using e.g. [17]) that if Q is, for instance, a convex
polygon, then =% is H2(Q) N H}(Q) and ®Y, = @2, = V(9Y,) C (H' ()%

Let ¥;, and V}, be finite dimensional subspaces of ¥ and V respectively. We
consider, first, classical approximations of H (div; 2); for instance we can choose
as Xp, the spaces of the elements (RT) introduced in [24], or the elements (BDM)
and (BDFM) introduced in [11, 10], respectively. For a unified presentation we
refer to [9]. Correspondingly Vj, will be the space div X¥j. For convenience of
the reader we recall for instance the definition of BDM spaces. For k integer
> 1 we set

th = {UhEV: Uh|KEPk_1(K) VKEE}, (82)
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where, as usual, {7} is a regular sequence of triangulations of 2. A Fortin
operator satisfying (65) for all these choices of finite element spaces can be con-
structed using suitable degrees of freedom. Moreover it is well-known that (66)
holds true, see e.g. [9], pag. 132.

Since Vj, = div ¥}, then IK;, C IK, hence (DEK) and (62) trivially hold. It
remains only to verify the strong approximability of 2%, that is

o = v'llo < ws(h)l[v]ly  for all v € H'(Q), (83)

which also holds thanks to standard approximation properties of piecewise poly-
nomial spaces.

For various reasons, see for instance [4, 26], one might want to approximate
35, by continuous functions, using therefore finite element spaces that are not es-
pecially fit for mixed formulations. In constructing these new spaces, one might
believe that (DEK) and (DIS) should be sufficient in order to well approximate
eigenvalues and eigenvectors, once V, satisfies the strong approzimability in =9,
assumption. However, while conditions (62), (64) and (65) can be deduced from
(DEK) and (DIS) the bound (66) does not, as it is shown by the following choice
of the so-called P; —div(P;) element on a criss—cross mesh. Let us assume that
is a square, which is divided into 2NV x 2N subsquares, each of them partitioned
into four triangles K by its diagonals. Then we set

Sp ={r, € (C%W)*: 1,lx € (P1(K))? VK € Th},

Vi = div(Sh) C {on: vnlx € Po(K) VK € Th). (84)

In a recent paper [5], we proved that the pair (X5, V}) defined in (84) satisfies
(DEK) and (DIS) but the sequence T does not converge uniformly to Tx in
L?(Q). This fact produces in the numerical computations spurious eigenvalues
which converge to points belonging to the resolvent set of Tx.

Hence (66), which we have seen to be necessary, has to be checked inde-
pendently of (DEK) and (DIS). On the other hand, (DEK) is not necessary,
and we can obtain convergence of eigenvalues with finite element spaces that
fail to satisfy it. For instance, on a quasi-uniform triangulation, one might take
Yn = X3 (see (82)) and V,, = V2. Notice that the pair (£3,V}?), as we have
seen, works. Now, however, having chosen a smaller V}, we obtain a bigger
IK}, (not anymore contained in IK). This will not jeopardize property (66) (the
I1, operator working for the pair (£3,V;?) will also work for the pair (¥3,V}?))
but (62) is now at risk. However, by inverse inequality (see e.g. [12])

b(zy,v) = b(zy,v —v") < Ollzpllillo = v'llo < Ch7Hzylla b[l0ll2,  (85)

for 7, € IK, and v’ = L%-projection of v onto V2. Notice that this argument
will work for any pair (X%, V") provided k > r > 1 (in other words, (£2,V}})
will not work).

Example 4. Biharmonic problem. In this case we have ® = Z = H'(Q) and
E =V = H}(Q). We take Hz = L?(Q2). We always assume that { is a convex
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polygon. In that case we obtain ®%, = {z € H'(Q) : Jv € HZ(Q?) with z =
Av} ={z € H'(Q) : (2,u) =0 Vu € L*(Q) with Ay = 0} and, with obvious
notation, 22, = H3(Q) N HZ (). For any given polygon, ®%, and =% will be
slightly more regular, according to the maximum angle (see e.g. [17]).

For every given regular sequence {7} of triangulations of Q and for every
integer k > 2 we can take as in [16, 20, 13]:

Z,]: = {ZhEZ: Zh|K€Pk(K) VKE%} (86)
th = {UhEV: Uh|K€Pk(K) VKE%}

Notice that V}¥ = ZF N H} (). We can now define II,w in Zj, as the solution
oft (VIIyw,Vzy) = (Vw, Vzy) for all 2, € ZF. Clearly (64), (65), (66) hold.
Similarly (63) holds by taking x! (here u!) as the usual interpolant. On the other
hand, to check (62) we have to assume quasi-uniformity of the decomposition
and then proceed as in (85): for z;, € IK, and v € H3(Q) N HZ(Q)

(Vzp, Vo) = (Vzp, Vo — Vol ) < Ch™Y|zp]|a CR2||v]]3-

This shows the utility of the requirement k& > 2. However, a more sophisticated
proof, following the arguments of Scholz [25], shows that (62) also holds for
k=1
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