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Abstract. In continuum mechanics problems, we have to work in most cases with sym-
metric tensors, symmetry expressing the conservation of angular momentum. Discretization
of symmetric tensors is however difficult and a classical solution is to employ some form of
reduced symmetry. We present two ways of introducing elements with reduced symmetry.
The first one is based on Stokes problems, and in the two-dimensional case allows to recover
practically all interesting elements on the market. This however is (definitely) not true in
three dimensions. On the other hand the second approach (based on a very nice property of
several interpolation operators) works for three-dimensional problems as well, and allows,
in particular, to prove the convergence of the Arnold-Falk-Winther element with simple and
standard arguments, without the use of the Berstein-Gelfand-Gelfand resolution.

1. Introduction

Mixed methods are an appealing technique for the numerical solution of elasticity prob-
lems. They ensure the equilibrium condition, a basic property in solid mechanics, and they
make the constitutive law more explicit. The stress tensor becomes the main variable but the
symmetry of this tensor, however, makes the construction of suitable elements much more
complicated than what can be done in the thermal problems where families of elements such
as the RTk and BDMk are now classical.

The idea of using stress tensors having only a reduced symmetry goes back to Fraeijs de
Veubeke [10], but the introduction and the analysis of specific elements having symmetry
only in average was done first in [1], while an even weaker form of symmetry (namely,
orthogonality to piecewise linear continuous functions) was proposed and studied in [2].
Since then their use underwent alternate periods of popularity and oblivion. See e.g. [7],
[13], [15, 16], [12] and many others. See also [8], [5] and the references therein.

Recently, a general construction of elements with reduced symmetry was presented in [4]
and [3]. Their construction relies on a very elegant but quite abstract procedure, requiring
rather sophisticated instruments. We present here a new proof of their result and related
ones, using much more elementary and classical techniques. It is clear to us that the con-
struction in [4] still has the merit of having inspired the choice of these elements (and having
provided the first proof of their convergence). Nevertheless we believe that our much simpler
construction might be interesting for many readers.

The plan of the paper is as follows. In Section 2 we recall the mixed formulation of linear
elasticity problems and the general setting for their approximation. In Section 3 we recall
first the non-symmetric formulation, in which the variational problem is posed in a space of
non-symmetric tensors, and the symmetry is then imposed by means of a suitable Lagrange
multiplier. The well-posedness of such formulation is well known, but it is proved here
with a different approach, based on the solution of suitable auxiliary Stokes problems. The
discrete counterpart of this approach is then used to construct families of reduced-symmetry
elements, first in two dimensions and then in three dimensions, that include in particular
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most known two-dimensional elements in the literature. An alternative approach for proving
stability and error bounds for elements with reduced symmetry is introduced Section 4.
This approach is not based on Stokes auxiliary problems, but rather on a new interesting
property that is verified by several common interpolation operators: the idea is that when
you construct the interpolant of a symmetric tensor in a finite element space made of (a
priori) non-symmetric tensors, the interpolant tensor might (and often does) inherit part of
the symmetry of the interpolated tensor. This could produce an interpolant having much
better symmetry properties than the ones explicitly required during the interpolation process.
This new and nice feature is then used to prove the convergence of the Arnold-Falk-Winther
family in the three-dimensional case.

2. Linear Elasticity problems; stress methods

2.1. Continuous formulation of stress methods. We consider in this paper a mixed

approach to linear elasticity problems, that is we use as main variable a symmetric stress
tensor, chosen in a suitable space. We therefore define,

(2.1) H(div; Ω) := {τ ∈ (L2(Ω))n×n| such that divτ ∈ (L2(Ω))n}

(2.2) H(div; Ω)S := {τ ∈ H(div; Ω)| such that τi,j = τj,i ∀ i j = 1, .., n}

(2.3) Σ = H(div; Ω), ΣS = H(div; Ω)S, U = (L2(Ω))n,

We recall the definition of the trace of a tensor

(2.4) tr(τ) :=

n
∑

i=1

τ
ii

and of the deviatoric

(2.5) τD := τ −
1

n
tr(τ)I,

where I is the identity tensor. Note that tr(I) so that in (2.5) we have tr(τD) = 0. Note as
well that (2.5) can equally be written as

(2.6) tr(τ)I = n (τ − τD),

which, applied to the case of a tensor τ = grad v (for some v), gives

(2.7) (div v) I ≡ tr(grad v) I = n (grad v − grad vD),

At this point we can set

a(σ, τ) :=

∫

Ω

[ 1

2µ
σD : τD +

1

n(nλ+ 2µ)
tr(σ)tr(τ )

]

dx,(2.8)

b(τ , v) :=

∫

Ω

div(τ) · v dx.(2.9)
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and we can write our simple linear elasticity problem as: find (σ, u) ∈ ΣS × U such that

(2.10)

{

a(σ, τ) + b(τ , u) = 0, ∀τ ∈ ΣS,

b(σ, v) + (f, v) = 0, ∀v ∈ U

Remark. The first equation represents the constitutive law and the second one the equilib-
rium condition. It must be clear that although we consider a linear model, the results can be
transposed to more realistic non linear models.

We thus have to consider the standard conditions for existence and uniqueness of the
solution to this problem. It is very easy to check that

(2.11) inf
v∈U

sup
τ∈ΣS

b(τ , v)

‖τ‖1‖v‖0

≥ c > 0

and that

(2.12) a(τ , τ) ≥
1

n(nλ+ 2µ)
‖τ‖2

0, ∀τ ∈ Σ.

We thus have an inf-sup condition and coercivity so that our problem is well posed. However,
trouble arises when we have to deal with a very large λ (nearly incompressible materials).
In fact it is clear that the coercivity constant which appears in (2.12) goes to zero like 1/λ
when λ→ +∞ so that the stability properties of problem (2.10) seem to deteriorate for large
values of λ. Actually, the situation is not as bad as it seems, because, as is well known, we
do not need coercivity to hold for every τ ∈ Σ (or Σh) but only for τ ∈ KerB (respectively,
KerBh for discrete problems). In particular, the continuous formulation (2.10) does not
break down when λ → ∞, because of the following proposition, whose proof can be found
in [2] or in [8] [5]

Proposition 1. There exists a constant C > 0 such that, for every τ ∈ Σ satisfying

(2.13)

∫

Ω

tr(τ ) dx = 0,

we have

(2.14) ‖τ‖0 ≤ C(‖τD‖0 + ||divτ ||0).

�

If we work in the subspace

(2.15) Σ̃ =
{

τ | τ ∈ Σ,

∫

Ω

tr(τ ) dx = 0
}

,

we know that the set

(2.16) KerB =
{

τ | τ ∈ Σ̃ such that b(τ , v) = 0, ∀v ∈ U
}

is precisely made of tensors satisfying (2.13) and

(2.17) divτ = 0

Hence, from Proposition 1 we have

(2.18) a(τ , τ) ≥
1

2µ
‖τD‖2

0 ≥ C(µ) ‖τ‖2
0 = C(µ)||τ ||2H(div;Ω)s

, ∀τ ∈ KerB.

The stability constant of our problem is therefore independent of λ.
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Remark. It must be noted that condition (2.13) refers to the fact that with Dirichlet boundary
conditions, in incompressible problems, pressure is defined only up to an additive constant.
The condition can then be applied a posteriori. It disappears whenever Neumann boundary
conditions are imposed on a part of the boundary. From the mathematical point of view we
can also remark that taking τ = I in the first equation of (2.10) we immediately have that

the solution σ belongs to Σ̃.
To avoid unnecessary complications, we shall often use, in what follows, the spaces Σ and

ΣS instead of Σ̃ and Σ̃S .

2.2. Numerical approximations of stress formulations. If we now choose some finite-
dimensional subspaces ΣSh of ΣS and Uh of U , we must be careful to have the discrete
analogues of (2.11) and (2.18) verified. However we have to face a delicate point. In order to
prove an inequality of type (2.18) we needed, in Proposition 1, to have divτ = 0. Hence our
life would be a lot easier if we had the “inclusion of the kernels property”: KerBh ⊂ KerB.
In other words, we would like our spaces ΣSh and Uh to satisfy the following property:

(2.19)
KerBh = {τ

h
∈ ΣSh , b(τh

, vh) = 0, ∀vh ∈ Uh}

⊂ KerB = {τ ∈ Σ|S, divτ = 0}.

At the same time, the inf-sup condition (2.11) is related to the existence of an operator
Πh : ΣS → ΣSh such that

b(τ − Πhτ , vh) = 0, ∀vh ∈ Uh,(2.20)

‖Πhτ‖Σ ≤ c ‖τ‖Σ, ∀τ ∈ Σ.(2.21)

There are in the literature many examples of discrete spaces satisfying (2.19), (2.20), and
(2.21) for the approximation of spaces of type H(div; Ω) and L2(Ω) when dealing with mixed
formulations. The most popular are surely the Raviart Thomas elements [14] and the Brezzi-
Douglas-Marini [6], but many others are available: see e.g. [8], [5]. It seems, at the first
sight, that we could just use a pair of vectors in H(div; Ω) to approximate Σ, but we should
not forget the symmetry of the tensors in ΣS. The problem of finding subspaces of ΣS and U
satisfying (2.19), (2.20), and (2.21) is actually very difficult. One of the (nowadays) classical
remedies is to give up the symmetry of τ and enforce it back in a weaker form by some
Lagrange multiplier. This is what we are going to do in the next section.

3. Relaxed symmetry

3.1. Continuous formulation of the relaxed symmetry approach. The idea of relax-
ing symmetry was, to our knowledge, first used by [11] and his school; it was then used by
[1] and then by [2]. Other recent results can be found in [7], [13] and [15, 16].

Remark. It is worth recalling that the symmetry of the stress tensor is in fact a simplified
way of expressing a conservation law, namely the conservation of angular momentum. This
should make it easier to understand why symmetry is difficult to enforce. Conservation laws
are not easily imposed exactly.

In fact the point of using spaces like H(div; Ω) and its discrete counterparts is to get a
strong form for conservation of momentum. For the moment, let us try to define a variational
formulation suitable for our purpose. Given a tensor τ ∈ Σ, we define its skew-symmetric
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part as,

(3.1) as(τ) :=
1

2

{

τ − τ t
}

.

We now define a space of skew-symmetric tensors,

(3.2) X = {γ ∈ L2(Ω)n×n such that as (γ) = γ, }.

and we introduce a new bilinear form:

(3.3) c(τ , γ) :=

∫

Ω

as(τ) : γ dx ≡

∫

Ω

as(γ) : τ dx.

We can see that, in general, an approximation of (2.10) with relaxed symmetry require-
ments corresponds to a conforming approximation of the following continuous problem: find
(σ, u, ω) ∈ Σ̃ × U ×X such that

(3.4)











a(σ, τ ) + b(τ , u) + c(τ , ω) = 0, ∀τ ∈ Σ̃,

b(σ, v) = (f, v), ∀v ∈ U,

c(σ, γ) = 0, ∀γ ∈ X.

We now have to prove an existence result for this problem. With respect to the general
theory, what we need is an inf-sup condition of the form,

(3.5) inf
v∈U, γ∈X

sup
τ∈Σ

b(τ , v) + c(τ , γ)

‖τ‖Σ

(

‖v‖U + ‖γ‖X

) ≥ C > 0

where, here and in all the sequel, C denotes a generic constant that is independent of h.
The above condition is indeed satisfied, as we can see in the following proposition.

Proposition 2. There exists a constant C such that for any v ∈ U and γ ∈ X, there exists

τ ∈ Σ such that

(3.6) b(τ , v) + c(τ , γ) = ‖v‖2
U + ‖γ‖2

X

and

(3.7) ‖τ‖Σ ≤ C (‖v‖U + ‖γ‖X)

Proof. We first give the proof for the two-dimensional case and afterwards for the three-
dimensional one. We give it in detail because the technique will be relevant for the construc-
tion of the discrete approximations. The construction of τ will be done in two steps. The

first one is to build a tensor τ 1 ∈ Σ such that,

(3.8)

{

b(τ 1, w) = (v, w), ∀w ∈ U,
‖τ 1‖Σ ≤ C ‖v‖U .

This is easily done, even with a symmetric τ 1. One could, for instance, solve a classical
elasticity problem and take the associated stress field. The second step is to correct this
tensor by a divergence-free tensor τ 2 such that as(τ 2) = γ − as(τ 1). In the two-dimensional

case this divergence free tensor is obtained by taking the i− th row (i = 1, 2) made by the
curl of the i− th component of a vector Ψ ≡ (ψ1, ψ2), that is,
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(3.9) τ 2 =

(

−∂2ψ1 ∂1ψ1

−∂2ψ2 ∂1ψ2

)

.

One sees immediately that the condition as(τ 2) = γ − as(τ 1) is equivalent to

(3.10) S2(∂1ψ1 + ∂1ψ2) = S2(div Ψ) = as(τ 2) = γ − as(τ 1)

where for every scalar q the skew-symmetric tensor S2(q) is defined by

(3.11) S2(q) =

(

0 q
−q 0

)

.

To satisfy equation (3.10) with the required continuity condition, it is then sufficient to
solve a Stokes problem for Ψ.
In the three-dimensional case, the situation is slightly more complex. The first step (3.8)
holds unchanged, but the divergence-free tensor τ 2 will now be the curl of another tensor of
the form

(3.12) Ψ =





ψ11 ψ12 ψ13

ψ21 ψ22 ψ23

ψ31 ψ32 ψ33



 .

This means that we will look for a τ 2 of the form:

(3.13) τ 2 =





∂2ψ13 − ∂3ψ12 ∂3ψ11 − ∂1ψ13 ∂1ψ12 − ∂2ψ11

∂2ψ23 − ∂3ψ22 ∂3ψ21 − ∂1ψ23 ∂1ψ22 − ∂2ψ21

∂2ψ33 − ∂3ψ32 ∂3ψ31 − ∂1ψ33 ∂1ψ32 − ∂2ψ31



 ,

whose skew-symmetric part as(τ 2) is individuated by the vector

(3.14)





s1

s2

s3



 =





τ 2
32 − τ 2

23

τ 2
13 − τ 2

31

τ 2
21 − τ 2

12



 =





∂1(−ψ22 − ψ33) + ∂2ψ21 + ∂3ψ31

∂1ψ12 + ∂2(−ψ33 − ψ11) + ∂3ψ32

∂1ψ13 + ∂2ψ23 + ∂3(−ψ11 − ψ22)





The construction of τ 2 such that as(τ 2) = γ − as(τ 1) is thus equivalent to solving three

Stokes problems,

(3.15)

{

−∆φ(k) + grad p(k) = 0

div φ(k) = sk
,

for k = 1, 2, 3. Once φ(1), φ(2) and φ(3) have been found, we can construct Ψ such that

(3.16) ψ22 + ψ33 = −φ(1)
1 , ψ21 = φ

(1)
2 , ψ31 = φ

(1)
3 .

(3.17) ψ12 = φ
(2)
1 , ψ33 + ψ11 = −φ(2)

2 , ψ32 = φ
(2)
3 ,

(3.18) ψ13 = φ
(3)
1 , ψ23 = φ

(3)
2 , ψ11 + ψ22 = −φ(3)

3 ,

Denoting by Φ the tensor having φ(1), φ(2), and φ(3) as columns, it is immediate to see that

(3.19) Φ = Ψ − tr(Ψ)I,
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giving easily

(3.20) Ψ = Φ −
tr(Φ)

2
I.

We may write the algebraic relation (3.20) as

(3.21) Ψ = AΦ

It is also immediate to verify that the above construction, which relies on the solution of
well posed Stokes problems, satisfies the required continuity conditions as well. �

Remark. The above construction is not the most general in the three-dimensional case. It
is not necessary to get Ψ with all the regularity implied by our procedure. This will have
as a consequence that some approximations cannot be generated with the discrete equivalent
procedure.

3.2. Numerical approximation of relaxed-symmetry formulations. We can now start
considering the approximation of the variational formulation (3.4). We want to choose

subspaces Σh, Uh, Xh of Σ, U,X and to solve the problem: find (σ
h
, uh, ωh

) ∈ Σ̃h × Uh ×Xh

such that

(3.22)















a(σ
h
, τ

h
) + b(τ

h
, uh) + c(τ

h
, ω

h
) = 0, ∀τ

h
∈ Σ̃h,

b(σ
h
, vh) = (f, vh), ∀vh ∈ Uh,

c(σ
h
, γ

h
) = 0, ∀γ

h
∈ Xh.

Here again, we shall rely on the general theory. We shall try to build approximations
satisfying the “inclusion of kernels property”(2.19). To do so, we can use some of the finite
element discretizations of H(div,Ω) available in the literature. Assuming that we made a
choice that takes care of that, we still must check the discrete inf-sup condition:

(3.23) inf
v

h
∈Uh, γ

h

∈Xh

sup
τ

h
∈Σh

b(τ
h
, vh) + c(τ

h
, γ

h
)

‖τ
h
‖Σ (‖vh‖U + ‖γ

h
‖X)

≥ C > 0.

It is well known (see e.g. [9] or [8]) that this can be done by building an interpolation
operator Πh : Σ → Σh satisfying,

(3.24)
b(τ − Πhτ , vh) + c(τ − Πhτ , γ

h
) = 0, ∀vh ∈ Uh, ∀γ

h
∈ Xh,

‖Πhτ‖Σ ≤ C‖τ‖Σ.

To do this we shall try to proceed in the same way that we used to prove the continuous
inf-sup condition: we shall first build τ 1

h
so that its divergence satisfies the first requirement

(3.25)
b(τ − τ 1

h
, vh) = 0, ∀vh ∈ Uh,

‖τ 1
h
‖Σ ≤ C‖τ‖Σ,

and then we correct this tensor by a divergence-free tensor τ 2
h

to obtain the required asym-
metry,

(3.26)
c(τ − τ 2

h
, γ

h
) = c(τ 1

h
, γ

h
), ∀γ

h
∈ Xh

‖τ 2
h
‖Σ ≤ C‖τ − τ 1

h
‖Σ.
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Referring to the continuous case, we can try to build τ 2
h

by solving (discrete) Stokes problems

(one in two dimensions and three in three dimensions) returning a tensor Ψ
h

and then by

taking τ 2
h

= curl(Ψ
h
). It follows that one possible key to our constructions will be stable

elements for the Stokes problems, together with the inclusion of the kernels property, that
we now have to require in Σh (rather than ΣSh as in (2.19)):

(3.27) KerBh ≡ {τ
h
∈ Σh , b(τh

, vh) = 0, ∀vh ∈ Uh} ⊂ KerB ≡ {τ ∈ Σ, divτ = 0}.

But the approach through Stokes problems is less effective for the three-dimensional case,
and we shall present an alternative one in Section 4.

Before considering specific constructions, let us state the error estimate that one can expect
for the discrete problem (3.22).

Theorem 1. Let us suppose that the spaces Σh × Uh ×Xh are such that

• Σh × Uh satisfies (3.27)
• Σh × Uh ×Xh satisfies (3.23).

Then (3.22) has a unique solution. Moreover, if (σ, u, ω) ∈ Σ × U × X is the solution of
(3.4) and (σ

h
, uh, ωh

) ∈ Σh × Uh ×Xh is the solution of (3.22), then we have

(3.28)

‖σ
h
− σ‖0 + ‖uh − u‖0 + ‖ω

h
− ω‖0

≤ C
(

inf
τ∈Σh

‖τ
h
− σ‖0 + inf

v
h
∈Uh

‖vh − u‖0 + inf
φ

h

∈Xh

‖φ
h
− ω‖0

)

The proof is an easy consequence of the general theory on mixed formulation (see e.g.[5]).
�

One can see from (3.28) that it is important to balance the quality of the approximation for
the three components of the solution. In particular, symmetry must be imposed at least to
the same precision as the approximation properties for the other variables

Remark. It is clear that the inclusion of kernels (3.27) is not necessary, but it makes the
theory easier.

Remark. It is easy to see that if the space Σh contains (as we implicitly assume) the constant

identity tensor I, then solving the problem in Σ̃h ×Uh ×Xh or in Σh ×Uh ×Xh gives exactly
the same result.

Remark. In a few cases, we shall be able to build explicitly a basis for the space ΣSh of
discrete symmetric tensors. We shall then be able to consider the problem

(3.29)

{

a(σ
h
, τ

h
) + b(τ

h
, uh) = 0, ∀τ

h
∈ ΣSh,

b(σ
h
, vh) = (f, vh), ∀vh ∈ Uh

�

3.3. A first family of relaxed symmetry elements in two dimensions. We start by
considering the two-dimensional case. Let us suppose that we can choose a pair Σh × Uh

such that (3.27) is satisfied, and moreover the “first part”of the inf-sup condition holds that
is

(3.30) inf
v

h
∈Uh

sup
τ1

h
∈Σh

b(τ 1
h
, vh)

‖τ 1
h
‖Σ‖vh‖U

≥ C > 0.
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This is equivalent to be able to build, for any τ , a tensor τ 1
h

such that,

(3.31)
b(τ − τ 1

h
, vh) = 0 ∀vh ∈ Uh,

‖τ 1
h
‖Σ ≤ C‖τ‖Σ.

To get the full inf-sup condition, we must control symmetry. Let us suppose that we have a
stable approximation Vh ×Qh for the Stokes problem such that

(3.32) curl(Vh) ⊂ Σh.

We then solve for (ψ
h
, ph) ∈ Vh ×Qh

(3.33)







∫

Ω
2µ ε(ψ

h
) : ε(φ

h
) dx+

∫

Ω
ph div φ

h
dx = (f, φ

h
), ∀φ

h
∈ Vh,

∫

Ω
qh div ψ

h
dx =

∫

Ω
(τ − τ

1h
) : S2(qh) dx ∀qh ∈ Qh.

If we now compute σ2
h

= σ1
h
− curlψ

h
, we do not invalidate (3.30) and we have:

(3.34)
c(τ − τ 2

h
, γ

h
) = c(τ 1

h
, γ

h
) ∀γ

h
∈ Xh,

‖τ 2
h
‖Σ ≤ C‖τ − τ 1

h
‖Σ.

Considering (3.30) and (3.34), it is then natural to take Xh := S2(Qh) where S2(q) is always
defined in (3.11) hence we easily obtain the required inf-sup condition (3.23) for the triplet
(Σh, Uh, Xh) . With respect to our elasticity problem, we work then with a reduced symmetry
property, “symmetry weighted by qh”. We summarize the result in the following proposition

Proposition 3. For n = 2, for any couple of spaces Σh × Uh satisfying conditions (3.27)
and (2.11), and any couple Vh ×Qh stable for the Stokes problem and satisfying (3.32), the
triplet

(3.35) Σh × Uh ×Xh with Xh = S2(Qh)

satisfies the conditions of Theorem 1.

This analysis through a Stokes problem was first introduced in [12]. There are several
examples in the literature of approximations that could be inserted in the above theory.
These include the PEERS element of Arnold-Brezzi-Douglas [2], or its variant by Brezzi-
Douglas-Marini [7]. These include as well the Amara-Thomas element [1] and other possible
elements that could be developed along these lines.

3.4. Relaxed symmetry, the three-dimensional case. Building stable elements with
relaxed symmetry is somewhat more tricky for the three-dimensional case. The basic idea is
again to start from elements satisfying the first part (3.30) of the inf-sup condition and then
to correct for symmetry. We can still use the same trick as in the two-dimensional case and
rely, following the continuous case, on solving three Stokes problems. In more details, we
start from a pair Σh × Uh (in three dimensions this time) such that (3.27) is satisfied, and
moreover the “first part”of the inf-sup condition holds: that is

(3.36) inf
v

h
∈Uh

sup
τ1

h
∈Σh

b(τ 1
h
, vh)

‖τ 1
h
‖Σ‖vh‖U

≥ C > 0.
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We recall once more that this is equivalent to be able to build, for any τ , a tensor τ 1
h

such
that,

(3.37)
b(τ − τ 1

h
, vh) = 0 ∀vh ∈ Uh,

‖τ 1
h
‖Σ ≤ C‖τ‖Σ.

To get the full inf-sup condition, we have again to work on the symmetry condition. Let
us suppose that we have a stable approximation Vh × Qh for the Stokes problem in three
dimensions. For any triplet of vectors φ(1), φ(2), and φ(3), we denote by Φ(φ(1), φ(2), φ(3)) the
tensor having them as columns, and we denote by [Vh|Vh|Vh] the tensor space containing all
possible tensors built in his way. Our requirement (in place of the two-dimensional (3.32))
is now that

(3.38) curl(A([Vh|Vh|Vh])) ⊂ Σh.

where A is still defined as in (3.21). If this is satisfied, we can then proceed as we did for
the continuous case. We do not repeat the procedure here. We just point out that, instead
of S2(Qh), in three dimensions we define, for every vector q, the tensor S3(q) given by

(3.39) S3(q) =





0 q3 −q2
−q3 0 q1
q2 −q1 0



 ,

with (q1, q2, q3) ∈ Qh

We summarize the result for the three-dimensional case.

Proposition 4. For n = 3, for any couple of spaces Σh × Uh satisfying conditions (3.27)
and (3.36), and any couple Vh ×Qh stable for the Stokes problem and satisfying (3.38), the
triplet

(3.40) Σh × Uh ×Xh with Xh = S3(Qh)

satisfies the conditions of Theorem 1.

Remark. We already noted that using a Stokes problem was not the most general way of
obtaining the continuous inf-sup condition. In the same way, the above result will enable us
to obtain some useful constructions of relaxed symmetry tensors. However, it does not yield
all constructions.

Example 1. As examples of applications of the above strategy we could consider the three-
dimensional version of the PEERS element. We define Σh as the space of tensors (in 3
dimensions) where each line is an element of the lowest order Raviart-Thomas space on
tetrahedra. Using for Uh a space of piecewise constant vectors, it is immediate that we have
(3.27) and (3.36). For the Stokes problem we use the three-dimensional MINI element:

(3.41)
Vh = (L1

1)
3 ⊕ (B4)

3

Qh = L
1
1

where B4 is the space generated by the elementwise quartic bubbles b4, obtained as the product
of the equations of the four faces. We can then augment the space Σh by adding, in each
element, curl(A([Vh|Vh|Vh]). This will leave (3.27) and (3.36) still holding true, and (3.38)
will now hold as well (we hammered it into the method). All the assumptions of Proposition
4 will then be satisfied.
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Example 2. Consider, for each face f of each tetrahedron K, the cubic function bf3 that
vanishes identically on the three other faces and has value 1 at the barycenter of f . Then
consider the vector valued function bf3n

f where nf is the unit normal vector to f . Let fi-
nally Bfaces be the space generated by all these vector valued functions all over the domain,
and consider a Stokes element where Vh = (L1

1)
3

⊕

Bfaces and Qh is made by piecewise
constant functions. We consider now Σh as the tensor space obtained using a lowest-order
Raviart-Thomas element per line (as above), augmented with curl(A(Bfaces)), and Uh made
by piecewise constant vectors. Then all the assumptions of Proposition 4 will be satisfied.
The space of tensors thus obained is unfortunately not easy to make explicit.

Example 3. The three-dimensional equivalent of the Amara–Thomas element.

As in the two-dimensional case, it is easy to obtain a suitable construction based on the
Crouzeix–Raviart element for the Stokes problem. This construction yields a very rich space
of tensors which is not likely to be of practical use and that we shall not try to make explicit
here.

Example 4. A simple second order element We define Σh as the space of tensors (in 3
dimensions) where each line is an element of the Raviart-Thomas RT1 space on tetrahedra.
We can then use Uh = L

0
1, the space of discontinuous piecewise linear vectors; it is immediate

that we have (3.27) and (3.36). For the Stokes problem we consider the Taylor–Hood element
in which velocity is approximated by a space of quadratic elements (L1

2)
3 and where pressure

is continuous piecewise linear (L1
1). This immediately yields a second order elasticity element

in which we have

(3.42)
Σh = (RT1)

3,
Uh = (L0

1)
3,

Xh = S3((L1
1)

3).

Symmetry is enforced as in the PEERS element but we now have second order accuracy. This
construction is obviously a member of an infinite family, using higher order Raviart–Thomas
elements and corresponding generalized Taylor–Hood elements.

4. An alternative approach

In order to explain the following variant of the above strategy, it is convenient to recall
the definition of the permutation tensor (or pseudo-tensor) in two and three dimensions: for
n = 2 the double tensor P is given by

(4.1) P :=

(

0 1
−1 0

)

while for n = 3 the triple tensor P is given by

(4.2) Pijk =











1 if {i, j, k} = {1, 2, 3} or {3, 1, 2} or {2, 3, 1}

−1 if {i, j, k} = {3, 2, 1} or {1, 3, 2} or {2, 1, 3}

0 otherwise.

Note that we could have summarized (4.1) and (4.2) in one formula (as in most textbooks on
tensors), using the concept of even and odd permutations. We chose the above presentation
for the sake of clarity, considering that the cases n = 2 and n = 3 will be the only ones of
interest for us.
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We point out that, in two dimensions, a tensor τ is symmetric if and only if the scalar
τ : P verifies

(4.3) as(τ) ≡ S2(τ : P) = 0.

Similarly, in three dimensions, a tensor τ is symmetric if and only if the vector τ : P satisfies

(4.4) as(τ) ≡ S3(τ : P) = 0.

Then we denote

(4.5) x ∧ y

the external product of two vectors. In two dimensions, this is a scalar given by

(4.6) x ∧ y := (P · y) · x = (Pijyj)xi

and in three dimensions it is a vector given by

(4.7) x ∧ y := (P · y) · x that is (x ∧ y)i = (Pijkyk)xj

where in (4.6) and (4.7) (and in all the rest of the paper) the Einstein convention of sum-
mation of repeated indices is employed.

In a similar way we can define the wedge product of a double tensor τ with a vector v as

(4.8) (τ ∧ v)r := Pijvjτir and (τ ∧ v)ir := Pijkvkτjr

in two and three dimensions, respectively. We recall now a useful property of tensor calculus.
We denote by x ≡ (x1, x2)

T or x ≡ (x1, x2, x3)
T (respectively in two or three dimensions) the

vector containing the independent variables. Let τ be given in H(div; Ω). In two dimensions
we have

(4.9) div(τ ∧ x) = (divτ) ∧ x+ P : τ

as it can be easily seen by

(4.10) (Pijxjτir)/r = Pijδjrτir + Pijxj(τir)/r = P : τ + (divτ) ∧ x.

Similarly, in three dimensions we have

(4.11) div(τ ∧ x) = (divτ) ∧ x+ P : τ

as it can be easily seen by

(4.12) (Pijkxkτjr)/r = Pijkδkrτjr + Pijkxk(τir)/r = P : τ + (divτ ) ∧ x.

In particular we have

(4.13) div(τ ∧ x) = τ : P whenever div τ = 0

with its obvious analogue in dimension n = 2.
Multiplying (4.13) times a vector p ∈ (H1(K))n, we get

(4.14)

∫

K

div(τ ∧ x) · p dx =

∫

K

τ : P · pdx whenever div τ = 0

that integrated by parts reads

(4.15)

∫

K

τ : P ·p dx =

∫

∂K

p · (τ ∧x) ·nK dx−

∫

K

(τ ∧x) : ∇ (p) dx whenever div τ = 0
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where nK is the outward unit normal vector to ∂K. In two dimensions, instead, (4.15)
obviously becomes

(4.16)

∫

K

τ : P p dx =

∫

∂K

(τ ∧ x) · nK p dx−

∫

K

(τ ∧ x) · ∇p dx whenever div τ = 0

Remark. Using the following identities

(4.17)

∫

K

(τ ∧ x) : ∇ (p) dx = −

∫

K

τ : (x ∧ ∇p) dx

(4.18)

∫

∂K

p · (τ ∧ x) · nK dx =

∫

∂K

(x ∧ p) · τ · nK ds

we can write (4.15) in the form

(4.19)

∫

K

τ : P ·p dx =

∫

∂K

(x∧p) · τ ·nK ds+

∫

K

τ : (x∧∇p ) dx whenever div τ = 0

which will be more suitable to define degrees of freedom for a tensor τ .

The idea, now, is to use (4.19) or (4.16) with τ = σ − Πhσ. Indeed, this is what we shall
do in the sequel. We will deal first with the three-dimensional case, and then we will briefly
present the corresponding two-dimensional results.

4.1. The three-dimensional case.

Theorem 2. Assume that n = 3, and assume, for simplicity, that Ω is a convex polyhedron.
Assume that Σh × Uh are such that

(4.20) div(Σh) ⊆ Uh.

We now introduce a space Wh of vector functions so that Xh = S3(Wh) defines the reduced
symmetry. We now suppose that there exists a mapping Πh from (H1(Ω))n×n

S into Σh satis-
fying:

(4.21) ‖Πhτ‖H(div;Ω) ≤ C ‖τ‖(H1(Ω))n×n

S

with the following properties:

(4.22)

∫

K

(τ − Πhτ) : (∇ vh + x ∧∇wh) dx = 0 ∀ vh ∈ Uh, ∀wh ∈Wh,

(4.23)

∫

∂K

(τ − Πhτ) · nK · (vh + x ∧ wh) ds = 0 ∀ vh ∈ Uh, ∀wh ∈Wh.

Then the triplet

(4.24) Σh × Uh ×Xh with Xh = S3(Wh)

satisfies the conditions of Theorem 1.

Proof. The inclusion of kernels (3.27) follows easily from (4.20). From the convexity assump-
tion, we easily have that for every uh ∈ Uh ⊆ (L2(Ω))n we can find a τ = τ (uh) ∈ (H1(Ω))n×n

S

such that

(4.25) divτ = uh and ‖τ‖(H1(Ω))n×n

S

≤ C‖vh‖(L2(Ω))n .



14 DANIELE BOFFI, FRANCO BREZZI, AND MICHEL FORTIN

Then using (4.20), (4.22) and (4.23) with wh = 0 we easily have that

(4.26) divΠhτ = uh and ‖Πhτ‖H(div;Ω) ≤ C‖vh‖(L2(Ω))n .

Hence the pair of spaces (Σh, Uh) satisfy condition (3.25), just by taking τ 1
h

:= Πhτ . In

particular from (4.22) and (4.23) we have that div(τ − Πhτ) = 0, so that we can apply
formula (4.19). At this point, using (3.3) and (4.24), then (4.4), and finally (4.22), and
employing (4.23) in (4.19), gives
(4.27)

c(τ−Πhτ , γ
h
) ≡

∫

K

as(τ−Πhτ)·S
3(vh) dx =

∫

K

(τ−Πhτ) : P·vh dx = 0 ∀γ
h
∈ Xh ≡ S3(Uh).

Hence, the τ 1 that we built in order to satisfy (3.25) will also satisfy (3.24), and therefore
(3.23) holds true. �

Remark. It is clear that the convexity assumption is unnecessarily strong. Indeed, as is
well known, a little bit of regularity more than H(div; Ω) will be sufficient, in applications,
to build Πh. See e.g. [8] or [5].

Remark. The choice of the space Wh is arbitrary even though we shall use below Wh = Uh.
We could also take for Wh a space of continuous functions. In this case condition (4.23)
reduces to

(4.28)

∫

∂K

(τ − Πhτ) · nK · (vh) ds = 0 ∀ vh.

so that reduced symmetry then relies only on internal degrees of freedom.

Theorem 2 opens a new way of getting reduced symmetry. In particular we can recover, with
a simpler proof, the elements with reduced symmetry of Arnold–Falk–Winther [4].

Example 5. The Arnold–Falk–Winther family. Let us consider for k ≥ 1 the following
approximation

(4.29)
Σh = (BDMk)

3

Uh = (L0
k−1)

3

Xh = S3((L0
k−1)

3)

We have thus now Uh = Wh. It is well known that for BDMk vectors we can use, as d.o.f.
for each tetrahedron K,

•
∫

f
τ · nf

K pk ds for every face f and every polynomial pk of degree k

• For k ≥ 2,
∫

K
τ ·φ

k−2
for every element φ

k−2
of the first Nédéléc family Nk−2, defined

as

(4.30) Nk := {φ
k

= P k + x ∧ P k}

It is easy to check that, taking (Σh, Uh, Xh) as in (4.29), the above properties imply that
the assumptions of Theorem 2 are verified.

Remark. The first member of the the Arnold–Falk–Winther family is

(4.31)
Σh = (BDM1)

3

Uh = (L0
0)

3

Xh = S3((L0
0)

3)
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To specify the tensor τ
h

we need 9 d.o.f. on each face. This is obviously not optimal in

regard of (4.22) and (4.23) where only 6 conditions are generated by vh and wh in Uh = (L0
0)

3.
It is indeed stated in [4] that is possible to reduce the number of degrees of freedom on each

face from nine to 6. This is not as good as in the two-dimensional case where the tangential
part can be taken constant. The proper choice of space, using the right number of degrees of
freedom will be a consequence of the following general result.

Let f be a face of some tetrahedron of a mesh. Let Pk(f) and P̂k(f) denote respectively
the set of polynomials and homogeneous polynomials of degree k on f . Let n be the normal
to the face and denote τnn and τnT = τn − τnnn the normal and tangential part of the vector
τn. We also denote x⊥T := x ∧ n. With an abuse of language, we shall consider τnT and
x⊥T as two-dimensional vectors, and more generally we will identify, whenever convenient, all
vectors tangential to the face f with their two-dimensional projection on f .

Theorem 3. In order to satisfy (4.23), we need on each face f

(4.32) τnn ∈ Pk(f)

and for the tangential part

(4.33) τnT ∈ Nk−1(f) := P k−1(f) + x⊥T P̂ k−1(f)

Proof. Let Uh = (L0
k−1)

3 and consider the space Uh + x ∧ Uh . It is easy to see that in order
to generate this space, it is sufficient to consider functions of the form

(4.34) p+ x ∧ q̂

where p ∈ P k−1 is a general vector valued polynomial of degree k − 1 but q̂ ∈ P̂ k−1 is a
vector valued homogeneous polynomial of degree k − 1. Now we want to evaluate on a face
f of some tetrahedron

(4.35) (p+ (x ∧ q̂
h
)) · τ · n

To do so, we use on the face a set of orthogonal co-ordinates defined by the normal n and
two tangential vectors, s and t. We then write,

(4.36)

x = xnn+ xss+ xtt
p = pnn+ pss+ ptt
q̂ = q̂nn + q̂ss+ q̂tt
τ · n = τnnn+ τnss+ τntt

An elementary computation then yields

(4.37) (p+(x∧ q̂)) ·τ ·n = (pn−xtq̂s +xsq̂t)τnn +(ps−xnq̂t +xtq̂n)τns +(pt +xnq̂s−xsq̂n)τnt

Now we see that τnn is multiplied by a full polynomial of degree k and we need it to be of
the same order. For the tangential terms, we recall that xn is constant on the face so that
the terms xnq̂t and xnq̂s can be absorbed by ps and pt respectively. That leaves us with
something of the form

(4.38)

(

τns

τnt

)

·

(

ps + xtq̂n
pt − xsq̂n

)

which shows that the tangential part of τn needs only to be in Nk−1(f) which is a space
smaller than P k(f). �
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Remark. A simple count shows that the number of degrees of freedom on each face is then

(k + 1)(k + 2)/2 + k(k + 1) + k

while for the whole (BDMk)
3, we would have

3(k + 1)(k + 2)/2

For k = 1 we have 6 instead of 9 and for k = 2, 14 instead of 18.

4.2. The two-dimensional case. For the sake of completeness, we now show the two-
dimensional results that can be obtained by the corresponding version of Theorem 2.

The only (minor) difficulty in going from the three-dimensional to the two-dimensional
case is to make explicit the special form of some formulas. To start with, we denote from
now on by x⊥ := (x2,−x1) the orthogonal of x. The starting point is now (4.16). A simple
computation shows that instead of (4.17) we now have:

(4.39)

∫

K

(τ ∧ x) · ∇p dx =

∫

K

τ : (x⊥ ⊗∇p) dx,

where we used the notation

(4.40) x⊥ ⊗∇p :=

(

x2∂p/∂x1 x2∂p/∂x2

−x1∂p/∂x1 −x1∂p/∂x2

)

.

On the boundary, instead of (4.18) we have

(4.41)

∫

∂K

p (τ ∧ x) · nK dx =

∫

∂K

p x⊥ · τ · nK ds.

Theorem 4. Assume that n = 2, and assume, for simplicity, that Ω is a convex polygon.
Assume that Σh × Uh are such that

(4.42) div(Σh) ⊆ Uh

and moreover that there exists a mapping Πh from (H1(Ω))n×n
S into Σh satisfying:

(4.43) ‖Πhτ‖H(div;Ω) ≤ C ‖τ‖(H1(Ω))n×n

S

.

We now choose a space of scalar functions Wh such that Xh = S2(Wh) defines a reduced
symmetry. If the following properties are satisfied:

(4.44)

∫

K

(τ − Πhτ ) : (∇ vh + x⊥ ⊗∇wh) dx = 0 ∀ vh ∈ Uh, ∀wh ∈Wh

(4.45)

∫

∂K

(τ − Πhτ ) · nK · (vh + x⊥wh) ds = 0 ∀ vh ∈ Uh, ∀wh ∈Wh,

then the triplet

(4.46) Σh × Uh ×Xh with Xh = S2(Wh)

satisfies the conditions of Theorem 1.

The proof is the same as for Theorem 4.



REDUCED SYMMETRY ELEMENTS IN LINEAR ELASTICITY 17

Example 6. We can take

(4.47)
Σh = (BDMk)

2

Uh = (L0
k−1)

2

Qh = L
0
k−1.

As in the three-dimensional case, we can introduce on an edge e a local basis with normal and
tangential vectors n and t. On every edge e we denote as previously P̂k−1(e) the homogeneous
polynomials of degree k−1 on e. Taking into account that xn is constant on e and forgetting
redundant conditions, we get from (4.45):

(4.48)

∫

e

(τ − Πhτ )nn xt q̂ ds = 0 ∀q̂ ∈ P̂k−1(e)

and

(4.49)

∫

e

(τ − Πhτ ) · n · q ds = 0 ∀q ∈ (Pk−1(e))
2.

We thus see that the normal component must be one degree higher than the tangential com-
ponent.

Remark. In the two-dimensional case, the case k=1 of Example 5 was introduced in [12].
The proof is based on the stability of the P2 − P0 element for the Stokes problem. In the
three-dimensional case, the P2 − P0 element is not a stable element for the Stokes problem
which justifies our alternative construction. The reduced case was also considered and it was
shown that it was sufficient to have, on each edge e, τnn ∈ P1(e) for the normal component
but only τnt ∈ P0(e) for the tangential component.

5. Conclusion

We have been able to obtain by elementary methods many constructions of tensors with
relaxed symmetry for mixed elasticity problems. Some of them have a large number of
degrees of freedom which makes them difficult to use. However it seems that the price of
symmetry is high, especially if inclusion of kernels, which implies strong conservation of
momentum, is required.
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