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Abstract In this paper we construct Discontinuous Galerkin approximations of the Stokes1

problem where the velocity field is H(div,�)-conforming. This implies that the velocity2

solution is divergence-free in the whole domain. This property can be exploited to design a3

simple and effective preconditioner for the final linear system.4

Keywords Discontinuous Galerkin · Stokes equation · Auxiliary space5

1 Introduction6

In this paper we present a preconditioning strategy for a family of discontinuous Galerkin7

discretizations of the Stokes problem in a domain � ⊂ R
d , d = 2, 3:8

{
−div(2νε(u)) + ∇ p = f in �

div u = 0 in �
(1.1)9
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where, with the usual notation, u is the velocity field, p the pressure, ν the viscosity of the10

fluid, and ε(u) ∈ [L2(�)]d×d
sym is the symmetric (linearized) strain rate tensor defined by11

ε(u) = 1
2 (∇u + (∇u)T ).12

The methods considered here were introduced in [40] for the Stokes problem and in [21]13

for the Navier-Stokes equations when pure Dirichlet boundary conditions are prescribed.14

In both works, the authors showed that the approximate velocity field is exactly divergence-15

free, namely it is H(div;�)-conforming and divergence-free almost everywhere. These same16

methods were also used in [25].17

Numerical methods that preserve divergence free condition exactly are important from18

both practical and theoretical points of view. First of all, it means that the numerical method19

conserves the mass everywhere, namely, for any D ⊂ � we have20

∫

∂ D

u · n = 0.21

As an example of its theoretical importance, the exact divergence free condition plays a22

crucial view for the stability of the mathematical models (see [30]) and their numerical23

discretizations (see [28]) for complex fluids.24

The focus of this paper is to develop new solvers for the resulting algebraic systems for25

this type of discretization by exploring the divergence-free property. In general, the numerical26

discretization of the Stokes problem produces algebraic linear systems of equations of the27

saddle-point type. Solving such algebraic linear systems has been the subject of considerable28

attention from various communities and many different approaches can be used to solve them29

efficiently (see [22] and references cited therein). One popular approach is to use a block30

diagonal preconditioner with two blocks: one containing the inverse or a preconditioner of31

the stiffness matrix of a vector Poisson discretization, and one containing the inverse of a32

lumped mass matrix for the pressure. This preconditioner when used in conjunction with33

MINRES (MINimal RESidual) leads to a solver which is uniformly convergent with respect34

to the mesh size.35

While the existing solvers such as this diagonal preconditioner can also be used for these36

DG methods, in this paper, we would like to explore an alternative approach by taking the37

advantage of the divergence-free property. Our new approach reduces the solution of the38

Stokes systems (which is indefinite) to the solution of several Poisson equations (which are39

symmetric positive definite) by using auxiliary space preconditioning techniques, which we40

hope would open new doors for the design of algebraic solvers for PDE systems that involve41

subsystems that are related to the Stokes operator.42

In [21,40] the classical Stokes operator is considered for the special case of purely homo-43

geneous Dirichlet boundary conditions (no-slip Dirichlet’s condition). While this special case44

is theoretically important, it does not model well most of the cases that occur in the engi-45

neering applications (for instance, it is not realistic in applications in immiscible two-phase46

flows, aeronautics, in weather forecasts or in hemodynamics). For the pure homogenous47

no-slip Dirichlet boundary conditions, we have the following identity48

∫

�

ε(u) : ε(v) =
∫

�

∇u : ∇v.49

when u and v vanish on the boundary of �. This identity can be used when deriving the50

variational formulation, thus leading to simplifications of the analysis in the details related51

to the Korn’s inequality on the discrete level.52
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To extend the results in [21,40] to this different boundary condition we provide detailed53

analysis showing that the resulting DG-H(div;�)-conforming methods are stable and con-54

verge with optimal order. Furthermore, a key feature of the DG-H(div;�)-conforming55

schemes of providing a divergence-free velocity approximation is satisfied as in [21,40],56

by the appropriate choice of the discretization spaces. This property is fully exploited in57

designing and constructing efficient preconditioners and we reduce the solution of the Stokes58

problem to the solution of a “second-order” problem in the space curl H1
0 (�).59

We propose then a preconditioner for the solution of the corresponding problem in60

curl H1
0 (�). This is done by means of the fictitious space [33,34] (or auxiliary space [35,41])61

framework. The proposed preconditioner amounts to the solution of one vector and two scalar62

Laplacians. The solution of such systems can then be efficiently computed with classical63

approaches, for instance the Geometric Multigrid (GMG) or Algebraic Multigrid (AMG)64

methods.65

Throughout the paper, we use the standard notation for Sobolev spaces [1]. For a bounded66

domain D ⊂ R
d , we denote by Hm(D) the L2-Sobolev space of order m ≥ 0 and by ‖ ·‖m,D67

and | · |m,D the usual Sobolev norm and seminorm, respectively. For m = 0, we write L2(D)68

instead of H0(D). For a general summability index p, we also denote by W m,p(D) the69

usual L p-Sobolev spaces of order m ≥ 0 with norm ‖ · ‖m,p,D and seminorm | · |m,p,D . By70

convention, we use boldface type for the vector-valued analogues: Hm(D) = [Hm(D)]d ,71

likewise, we use boldface italics for the symmetric-tensor-valued analogues: Hm(D) :=72

[Hm(D)]d×d
sym . Hm(D)/R denotes the quotient space consisting of equivalence classes of73

elements of Hm(D) that differ by a constant; for m = 0 the quotient space is denoted by74

L2(D)/R. We indicate by L2
0(D) the space of the L2(D) functions with zero average over D75

(which is obviously isomorphic to L2(D)/R). We use (· , ·)D to denote the inner product in76

the spaces L2(D), L2(D), and L2(D).77

2 Continuous Problem78

In this section, we discuss the well posedness of the Stokes problem which is of interest.79

We remark that the results in the paper are valid in two and three dimensions, although to80

make the presentation more transparent we focus on the two dimensional case, discussing81

only briefly the main changes (if any) needed to carry over the results to three dimensions.82

We begin by restating (for reader’s convenience) the equations already given in (1.1)83

with a bit more detail regarding the boundary conditions. For a simply connected polyhedral84

domain � ⊂ R
d , d = 2, 3 with boundary Ŵ = ∂�, we consider the Stokes equations for a85

viscous incompressible fluid:86

{
−div(2νε(u)) + ∇ p = f in �

div u = 0 in �
(2.1)87

On the boundary Ŵ we impose kinematic boundary condition88

u · n = 0 on Ŵ, (2.2)89

together with the natural condition on the tangential component of the normal stresses90

((2 ν ε(u) − pI)n) · t = 0 on Ŵ, (2.3)91

where I is the identity tensor. Note that as n · t ≡ 0 then (2.3) is reduced to92

(ε(u)n) · t = 0 on Ŵ. (2.4)93
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When the space94

H1
0,n(�) = {v ∈ H1(�) : v · n = 0 on Ŵ } (2.5)95

is introduced, the variational formulation of the Stokes problem reads: Find (u, p) ∈96

H1
0,n(�) × L2(�)/R as the solution of:97

{
a(u, v) + b(v, p) = ( f , v) ∀ v ∈ H1

0,n(�)

b(u, q) = 0 ∀ q ∈ L2(�)/R

(2.6)98

where for all u ∈ H1
0,n(�), v ∈ H1

0,n(�) and q ∈ L2(�)/R the (bi)linear forms are defined99

by100

a(u, v) := 2ν

∫

�

ε(u) : ε(v) dx, b(v, q) := −
∫

�

q div v dx, ( f , v) :=
∫

�

f · v dx .101

For the classical mathematical treatment of the Stokes problem (where the Laplace operator102

is used instead of the divergence of the stress tensor ε(u)) existence and uniqueness of103

the solution (u, p) are very well known and have been reported with different boundary104

conditions in many places (see for instance [23,24,27,38]). The Stokes problem considered105

here (2.1), (2.2), (2.3) has been derived and used in different applications [26,39,42].106

For the Stokes problem with the slip boundary conditions (2.2), (2.3), existence, unique-107

ness and interior regularity was first established in [37] (for even the more general linearized108

Navier-Stokes). The study of well-posedness and regularity up to the boundary for the solu-109

tions of this problem has received substantial attention only in very recent years. For example,110

analysis can be found in [3,10] for weak and strong solutions in the H1(�) × L2(�) and111

W 1,p(�) × L p(�), 1 < p < ∞. In these works it is assumed that the boundary of � is at112

least of class C1,1(�) and the more general boundary condition of Navier slip-type is studied.113

In [4], the authors provide the analysis in the W 1,p(�)× L p(�), 1 < p < ∞ for less regular114

domains.115

Here, for the sake of completeness, we provide a very brief outline of the proof of well-116

posedness of the problem, in the case � is a polygonal or polyhedral domain (which is the117

relevant case for the numerical approximation we have in mind). By introducing the operator118

D0 = −div : H1
0,n(�) −→ L2

0(�), it can be shown [14,38] that D0 is surjective, i.e., Range119

(D0) = L2
0(�). Therefore, the operator D0 has a continuous lifting which implies that the120

continuous inf-sup condition is satisfied. Hence, from the classical theory follows that to121

guarantee the well-posedness of the Stokes problem (2.1), (2.2), it is enough to show that the122

bilinear form a(·, ·) is coercive; ie., there exists γ0 > 0 such that123

a(v, v) ≥ γ0|v|21,� ∀ v ∈ H1
0,n(�). (2.7)124

Once continuity is established, existence, uniqueness and a-priori estimates follow in a stan-125

dard way. The proof of (2.7) requires a Korn inequality, that in general imposes some restric-126

tions on the domain (see Remark 2.3). For the case considered in this work the needed result127

is contained in next Lemma:128

Lemma 2.1 Let � ⊂ R
d , d = 2, 3 be a polygonal or polyhedral domain. Then, there exists129

a constant CK n > 0 (depending on the domain through its diameter and shape) such that130

|v|21,� ≤ CK n‖ε(v)‖2
0,�, ∀ v ∈ H1

0,n(�). (2.8)131

To prove the above Lemma, we first need the following auxiliary result132
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Lemma 2.2 For every polygonal or polyhedral domain � there exists a positive constant133

κ(�) such that134

κ(�)‖η‖2
0,� ≤ ‖η · n‖2

0,∂� ∀η ∈ RM(�) (2.9)135

where RM(�) is the space of rigid motions on � defined by136

RM(�) =
{

a + bx : a ∈ R
d b ∈ so(d)

}
137

with so(d) denoting the set of skew-symmetric d × d matrices, d = 2, 3.138

Proof To ease the presentation we provide the proof only in two dimensions. The extension139

to three dimensions involve only notational changes and therefeore it is ommitted. To show140

the lemma we observe that a polygon contains always at least two edges not belonging to the141

same straight line. A rigid movement whose normal component vanishes identically on those142

two edges is easily seen to be identically zero. This implies that for c ≡ (c1, c2, c3) ∈ R
3 on143

the (compact) manyfold144

∫

�

|(c1 − c3x2, c2 + c3x1)|2 dx = 1145

the function146

c →
∫

∂�

|(c1 − c3x2, c2 + c3x1) · n|2 ds (2.10)147

(which is obviously continuous) is never equal to zero. Hence it has a positive minimum, that148

equals the required κ(�). ⊓⊔149

As a direct consequence of last Lemma, we can now provide the proof of the desired Korn150

inequality given in Lemma 2.1.151

Proof (Proof of Lemma 2.1.)152

For every v ∈ H1
0,n(�) we consider first its L2 projection vR on the space RM(�) of153

rigid motions and the projection v⊥ := v − vR on the orthogonal subspace. As v · n = 0 on154

∂� we obviously have155

vR · n = −v⊥ · n. (2.11)156

Moreover, as v⊥ is orthogonal to rigid motions we have157

|v⊥|21,� ≤ CK ‖ε(v)⊥‖2
0,� (2.12)158

for some constant CK (note that the rigid motions include the constants, so that Poincaré159

inequality also holds for v⊥). On the other hand, since RM(�) is finite dimensional we have160

obviously161

|vR |21,� ≤ CP‖vR‖2
0,� (2.13)162

that using (2.9) gives163

|vR |21,� ≤ CP

κ(�)
‖vR · n‖2

0,∂� (2.14)164
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and using also (2.11) and (2.12)165

1

2
|v|21,� ≤ |vR |21,� + |v⊥|21,� ≤ CP

κ(�)
‖vR · n‖2

0,∂� + |v⊥|21,�

= CP

κ(�)
‖v⊥ · n‖2

0,∂� + |v⊥|21,� ≤ CT CP

κ(�)
|v⊥|21,�

≤ CT CP CK

κ(�)
‖ε(v⊥)‖2

0,� = CT CP CK

κ(�)
‖ε(v)‖2

0,�

(2.15)166

where the constant CT depends on the trace inequality on �. Defining now CK n = 2CT CP CK

κ(�)
167

we conclude the proof. ⊓⊔168

Remark 2.3 The proof of Lemma 2.1 relies on the assumption that the domain is polygonal169

or polyhedral. For more general smooth bounded domains, the Korn inequality (2.8) is still170

true, as long as the domain is assumed to be not rotationally symmetric. Otherwise a Korn171

inequality can be established by restricting the solution space (see [[29], Appendix] for further172

details).173

3 Abstract Setting and Basic Notations174

Let Th be a shape-regular family of partitions of � into triangles T in d = 2 or tetrahedra in175

d = 3. We denote by hT the diameter of T , and we set h = maxT ∈Th
hT . We also assume176

that the decomposition Th is conforming in the sense that it does not contain any hanging177

nodes.178

We denote by Eh the set of all edges/faces and by Eo
h and E∂

h the collection of all interior179

and boundary edges, respectively.180

For s ≥ 1, we define181

H s(Th) =
{
φ ∈ L2(�) , such that φ

∣∣
T

∈ H s(T ), ∀ T ∈ Th

}
,182

and their vector Hs(Th) and tensor Hs(Th) analogues, respectively. For scalar, vector-valued,183

and tensor functions, we use (· , ·)Th
to denote the L2(Th)-inner product and 〈· , ·〉Eh

to denote184

the L2(Eh)-inner product elementwise.185

The vector functions are represented column-wise. We recall the definitions of the fol-186

lowing operators acting on vectors v ∈ H1(�) and on scalar functions φ ∈ H1(�) as187

div v =
d∑

i=1

∂vi

∂xi

curl v = ∂v2

∂x1
− ∂v1

∂x2
curl φ = ∇⊥φ :=

[
∂φ

∂x2
,− ∂φ

∂x1

]T

(d = 2)

curl v = ∇ × v =
[

∂v3

∂x2
− ∂v2

∂x3
,

∂v1

∂x3
− ∂v3

∂x1
,

∂v2

∂x1
− ∂v1

∂x2

]T

(d = 3)

188
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and, we recall the definitions of the spaces to be used herein:189

H(div;�) := {v ∈ L2(�) : div v ∈ L2(�) }, d = 2, 3,

H(curl;�) := {v ∈ L2(�) : curl v ∈ L2(�) } d = 2,

H(curl;�) := {v ∈ L2(�) : curl v ∈ L2(�) } d = 3 .

H0,n(div;�) := {v ∈ H(div;�) : v · n = 0 on Ŵ },
H0,t (curl;�) := {v ∈ H(curl;�) : v × n = 0 on Ŵ },
H0,n(div0;�) := {v ∈ H0,n(div;�) : div v = 0 in � }.

190

The above spaces are Hilbert spaces with the norms191

‖v‖2
H(div,�) := ‖v‖2

0,� + ‖div v‖2
0,� ∀ v ∈ H(div;�) ,192

‖v‖2
H(curl,�) := ‖v‖2

0,� + ‖curl v‖2
0,� ∀ v ∈ H(curl;�).193

‖v‖2
H(curl,�) := ‖v‖2

0,� + ‖curl v‖2
0,� ∀ v ∈ H(curl;�) .194

195

Remark 3.1 It is worth noting that if we restrict our analysis to vectors u and v in H1(�) ∩196

H0,n(div0;�) then problem (2.6) becomes: Find u ∈ H1(�)∩ H0,n(div0;�) as the solution197

of:198

a(u, v) = ( f , v) ∀ v ∈ H1(�) ∩ H0,n(div0;�). (3.1)199

As is usual in the DG approach, we now define some trace operators. Let e ∈ Eo
h be an200

internal edge/face of Th shared by two elements T 1 and T 2, and let n1 (n2) denote the unit201

normal on e pointing outwards from T 1 (T 2). For a scalar function ϕ ∈ H1(Th), a vector202

field τ ∈ H1(Th), or a tensor field τ ∈ H1(Th) we define the average operator in the usual203

way (see for instance [5]), that is, on internal edges/faces204

{ϕ} = 1

2
(ϕ1 + ϕ2), {v} = 1

2
(v1 + v2), {τ } = 1

2
(τ 1 + τ 2).205

However, on a boundary edge/face, we take {ϕ}, {v}, and {τ } as the trace of ϕ, v, and206

τ ,respectively, on that edge.207

For a scalar function ϕ ∈ H1(Th), the jump operator is defined as208

[[ϕ ]] = ϕ1n1 + ϕ2n2 on e ∈ Eo
h , and [[ϕ ]] = ϕn on e ∈ E∂

h209

(where obviously n is the outward unit normal), so that the jump of a scalar function is a210

vector in the normal direction.211

For a vector field v ∈ H1(Th), following, for example, [8], the jump is the symmetric212

matrix-valued function given on e by213

[[v]] = v1 ⊙ n1 + v2 ⊙ n2 on e ∈ Eo
h , and [[v]] = v ⊙ n on e ∈ E∂

h ,214

where v⊙n = (vnT +nvT )/2 is the symmetric part of the tensor product of v and n. Hence,215

the jump of a vector-valued function is a symmetric tensor.216

If we denote by nT the outward unit normal to ∂T , it is easy to check that217

∑

T ∈Th

∫

∂T

v · nT q ds =
∑

e∈Eh

∫

e

{v} · [[ q ]] ds ∀ v ∈ H1(Th) , ∀ q ∈ H1(Th). (3.2)218

123

Journal: 10915 Article No.: 9758 TYPESET DISK LE CP Disp.:2013/7/25 Pages: 31 Layout: Small

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

J Sci Comput

Also for τ ∈ H1(�) and for all v ∈ H1(Th), we have219

∑

T ∈Th

∫

∂T

(τnT ) · v ds =
∑

e∈Eh

∫

e

{τ } : [[v]] ds. (3.3)220

3.1 Discrete Spaces: General Framework221

We present three choices for each of the finite element spaces V h and Qh to approximate222

velocity and pressure, respectively. For each choice, we also need an additional space Nh223

(resp. N h in d = 3) made of piecewise polynomial scalars and of piecewise polynomial224

vectors in three dimensions, to be used as a sort of potentials or vector potentials. We will225

explain the reason for doing this and the way in which to do this later on. Note, too, that we will226

use this space more heavily in the construction of our preconditioner. The different choices227

for the spaces V h, Qh , and Nh or N h rely on different choices of the local polynomial spaces228

R(T ), S(T ), and M(T ) or M(T ), respectively, made for each element T . Specifically, we229

have230

V h : = {v ∈ H(div;�) : v|T ∈ R(T ) ∀ T ∈ Th, v · n = 0 on Ŵ} , (3.4)231

Qh :=
{
q ∈ L2(�)/R : q|T ∈ S(T ) ∀ T ∈ Th

}
, (3.5)232

and233

Nh :=
{
ϕ ∈ H1

0 (�) : ϕ|T ∈ M(T ) ∀ T ∈ Th

}
for d = 2, and (3.6)234

N h := {v ∈ H(curl;�) : v|T ∈ M(T ) ∀ T ∈ Th v × n = 0 on Ŵ} for d = 3. (3.7)235

The three spaces V h, Qh , and Nh (or N h) will always be related by this exact sequences:236

0 −→ Nh
curl−→ V h

div−→ Qh −→ 0. (3.8)237

in two dimensions, and238

0 −→ N h
curl−→ V h

div−→ Qh (3.9)239

in three dimensions. It is also necessary for each operator in (3.8) and (3.9) to have a con-240

tinuous right inverse whose norm is uniformly bounded in h. For instance, it is necessary241

that242

∃ β > 0 s.t. ∀h,∀ q ∈ Qh ∃ v ∈ V h with: div v = q and ‖v‖0,� ≤ 1

β
‖q‖0,�. (3.10)243

Obviously, for the curl operator (in 2 and 3 dimensions) these bounded right inverses will244

be defined only on V h ∩ H0,n(div0,�).245

Remark 3.2 In all our examples, the pair (V h, Qh) is among the classical (and very old)246

finite element spaces specially tailored for the approximation of the Poisson equation in247

mixed form. In particular, properties (3.8) and (3.10) always hold.248

3.2 Examples249

We now present three examples of finite element spaces that can be used in the above frame-250

work. For each example, we specify the corresponding polynomial spaces used on each251

element and describe the corresponding sets of degrees of freedom. We restrict our analy-252

sis to the case of triangles or tetrahedra; more general cases can also be considered when253

corresponding changes are made (see [19]).254
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Let us first fix the notation concerning the spaces of polynomials. For m ≥ 0, we denote255

by P
m(T ) the space of polynomials defined on T of degree of at most m; the corresponding256

vector space is denoted by Pm(T ) = (Pm(T ))2. A polynomial of degree m ≥ 3 that vanishes257

throughout ∂T (hence it belongs to H1
0 (T )) is called a bubble (or an H-bubble) of degree m258

over T . The space of bubbles of degree m over T is denoted by H Bm(T ). and its vector-valued259

analogue by H Bm(T ). We denote by P
m
hom(T ) the space of homogeneous polynomials of260

degree m, and we denote by x⊥ the vector (−x2, x1).261

For m ≥ 2,262

P
+
m(T ) := P

m(T ) + H Bm+1(T ) P+
m(T ) := Pm(T ) + H Bm+1(T ). (3.11)263

and, for m ≥ 1, we set264

BDMm(T ) := Pm(T ), RTm(T ) := Pm(T ) ⊕ x P
m
hom(T ). (3.12)265

Moreover we set, for d = 2 and m ≥ 0266

TRm(T ) := Pm(T ) ⊕ x⊥
P

m
hom(T ). (3.13)267

and for d = 3 and m ≥ 0 (see [31])268

NDm(T ) := Pm(T ) ⊕ x ∧ Pm
hom(T ). (3.14)269

We also consider some generalized bubbles: a vector-valued polynomial of degree m ≥ 2270

that belongs to H0,n(div, T ) (hence whose normal component vanishes throughout ∂T )271

is called a D-bubble of degree m over T . The space of D-bubbles of degree m over T is272

denoted by DBm(T ). Similarly a vector valued polynomial of degree m ≥ d that belongs to273

H0,t (curl, T ) (hence whose tangential components vanish all over ∂T ) is called a C-bubble274

of degree m over T . The space of C-bubbles of degree m over T will be denoted by C Bm(T ).275

All the spaces used herein are well known and widely used. They are usually referred to as276

Brezzi-Douglas-Marini, Raviart-Thomas, and Rotated Raviart-Thomas spaces, respectively.277

The first example follows.278

1. Raviart-Thomas For k ≥ 1, we take in each T, S(T ) = P
k(T ), and R(T ) := RTk(T ).279

The degrees of freedom in RTk(T ) are280

∫

e

u · ne q ds ∀ e ∈ ∂T, ∀ q ∈ P
k(e),

∫

T

u · p dx ∀ p ∈ P
k−1(T ).

(3.15)281

As Qh is made of discontinuous piecewise polynomials, here and in the following exam-282

ples the degrees of freedom in S(T ) can be taken in an almost arbitrary way. The cor-283

responding pair of spaces (V h, Qh) gives the classical Raviart-Thomas finite element284

approximation for second-order elliptic equations in mixed form, as introduced in [36].285

It is well known and easy to check that the pair (V h, Qh) satisfies286

div(V h) = Qh (3.16)287

and that the property (3.10) is verified. We then take M(T ) := P
k+1(T ) and M(T ) :=288

NDk(T ) and note that289

curl(Nh) ⊆ V h curl(
o

N h) ⊆ V h (3.17)290

123

Journal: 10915 Article No.: 9758 TYPESET DISK LE CP Disp.:2013/7/25 Pages: 31 Layout: Small

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f
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and that the operator curl (for d = 2 and d = 3) has a continuous right inverse uniformly291

bounded from V h ∩ H0,n(div0,�) to Nh and
o

N h respectively; that is,292

∃ C > 0 such that ∀h, ∀vh ∈ V h ∩ H0,n(div0,�) ∃ϕ ∈ Nh, such that293

curl ϕ = vh and ‖ϕ‖1,� ≤ C ‖vh‖0,�. (3.18)294

2. Brezzi-Douglas-Marini: For k ≥ 1, we take S(T ) = P
k−1(T ), and R(T ) = BDMk(T ).295

The degrees of freedom for BDMk(T ) are (see [9]):296

∫

e

u · ne q ds ∀e ∈ ∂T, ∀ q ∈ P
k(e);

∫

T

u · v dx ∀ v ∈ TRk−2(T ) k ≥ 2 and d = 2,

∫

T

u · v dx ∀ v ∈ NDk−2(T ) k ≥ 2 and d = 3.

(3.19)297

The resulting finite element pair (V h, Qh) is also commonly used for the approximation298

of second-order elliptic equations in mixed form introduced in [15] for d = 2 and in299

[17,32] for d = 3. Also in this case it has been established that the pair (V h, Qh) verifies300

the properties of (3.16) and (3.10). We then take M(T ) := P
k+1(T ), and M(T ) :=301

NDk+1(T ) and note that (3.17) and (3.18) are also satisfied.302

3. Brezzi-Douglas-Fortin-Marini: For k ≥ 1, we take S(T ) = P
k(T ) and R(T ) =303

BDFMk+1(T ), which can be written as BDFMk+1 = BDMk(T ) + DBk+1(T ). The304

degrees of freedom for BDFMk+1(T ), though similar to the previous ones, are given305

here:306

∫

e

u · ne q ds ∀e ∈ ∂T, ∀ q ∈ P
k(e);

∫

T

u · v dx ∀ v ∈ TRk−1(T ) d = 2,

∫

T

u · v dx ∀ v ∈ NDk−1(T ) d = 3.

(3.20)307

The resulting finite element pair (V h, Qh) gives the triangular analogue of the element308

BDFMk introduced in [18] for the approximation of second-order elliptic equations in309

mixed form. It is easy to check that the pair (V h, Qh) verifies (3.16) and (3.10). We then310

take M(T ) := P
+
k+1(T ) and M(T ) := NDk(T ) + C Bk+1(T ) ∩ NDk+1(T ) and note311

that (3.17) and (3.18) hold.312

The three choices above are quite similar to each other, and the best choice among them313

generally depends on the problem and the way in which the discrete solution is to be used.314

We also use basic approximation properties: for instance, we recall that a constant C exists315

such that for all T ∈ Th and for all v, e.s. in Hs(T ), an interpolant v I ∈ R(T ) exists such316

that317

‖v − v I ‖0,T + hT |v I |1,T ≤ Chs
T |v|s,T , s ≤ k + 1. (3.21)318
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4 The Discontinuous Galerkin H(div; �)-Conforming Method319

To introduce our DG-approximation, we start by defining, for any u, v ∈ H2(Th) and any320

p, q ∈ L2(�)/R, the bilinear forms321

Ah(u, v) = 2ν

[
(ε(u) : ε(v))Th

− 〈{ε(u)} : [[ v ]]〉Eo
h

− 〈[[ u ]] : {ε(v)}〉Eo
h

]

− 2ν

[
〈ε(u)n, (v · n)n〉

E
∂
h

+ 〈(u · n)n, ε(v)n〉
E

∂
h

]

+ 2ν



∑

e∈E
o
h

αh−1
e

∫

e

[[ u ]] : [[ v ]] ds +
∑

e∈E
∂
h

αh−1
e

∫

e

(u · n)(v · n) ds




Bh(v, q) = −(q, div v)Th
∀ v ∈ H2(Th),∀ q ∈ L2(�)/R

(4.1)322

where as usual α is the penalty parameter that we assume to be positive and large enough.323

It is easy to check that the solution (u, p) of (2.6) verifies:324

{
Ah(u, v) + Bh(v, p) = ( f , v) ∀ v ∈ H2(Th)

Bh(u, q) = 0 ∀ q ∈ L2(�)/R.
(4.2)325

For a general DG approximation, we now replace the spaces H2(Th) and L2(�)/R with326

the discrete ones X h and Qh , respectively. Following [21], we choose for (X h, Qh) one327

of the pairs (V h, Qh) of the previous examples in order to get a global divergence-free328

approximation.329

More generally, we can choose a pair (V h, Qh) in order to find a third space Nh in such330

a way that (3.8), (3.16), (3.10), (3.17), and (3.18) are satisfied. This set of assumptions will331

come out several times in the sequel and, therefore, it is helpful to give it a special name.332

Definition 4.1 In the above setting, we say that the three spaces (V h, Qh, Nh) (resp.333

(V h, Qh, N h)) satisfy Assumption H0 if (3.8) (resp. (3.9)), (3.16), (3.10), (3.17) and (3.18)334

are satisfied.335

We note that, according to the definition of V h , the normal component of any v ∈ V h is336

continuous on the internal edges and vanishes on the boundary edges. Therefore, by splitting337

a vector v ∈ V h into its tangential and normal components vn and vt338

vn := (v · n)n, vt := (v · t)t ≡ v − vn, (4.3)339

we have340

∀ e ∈ Eh

∫

e

[[ vn ]] : τ ds = 0 ∀ τ ∈ H1(Th), (4.4)341

implying that342

∀ e ∈ Eh

∫

e

[[ v ]] : τ ds =
∫

e

[[ vt ]] : τ ds ∀ τ ∈ H1(Th). (4.5)343

The resulting approximation to (2.6), therefore, becomes: Find (uh, ph) in V h ×Qh such344

that345

{
ah(uh, v) + b(v, ph) = ( f , v) ∀ v ∈ V h

b(uh, q) = 0 ∀ q ∈ Qh,
(4.6)346
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where347

ah(u, v) := 2ν

[
(ε(u) : ε(v))Th

− 〈{ε(u)} : [[ vt ]]〉Eo
h

− 〈[[ ut ]] : {ε(v)}〉Eo
h

]

+ 2να
∑

e∈E
o
h

h−1
e

∫

e

[[ ut ]] : [[ vt ]] ds ∀ u, v ∈ V h,

b(v, q) := −(q, div v)� ∀ v ∈ V h, ∀q ∈ Qh .

(4.7)348

Consistency The consistency of the formulation (4.6) can be checked by means of the349

usual DG-machinery. In this case, it is sufficient to compare (4.1) and (4.7) and to observe350

that if (u, p) is the solution of (2.6), then351

Ah(u, vh) ≡ ah(u, vh), Bh(vh, p) ≡ b(vh, p), ∀vh ∈ V h ⊆ H0,n(div;�),352

Further, it is evident that, Bh(u, qh) ≡ b(u, qh) for all qh ∈ Qh . Hence, as (u, p) verifies353

(4.2), it also verifies (4.6); that is,354

{
ah(u, v) + b(v, p) = ( f , v) ∀ v ∈ V h

b(u, q) = 0 ∀ q ∈ Qh .
(4.8)355

Thus, consistency is proved.356

To prove the existence and uniqueness of the solution of (4.6) and to obtain the optimal357

error bounds, we need to define suitable norms. We define the following semi-norms358

|v|21,h =
∑

T ∈Th

‖∇v‖2
0,T , |[[ v ]]|2∗ :=

∑

e∈E
o
h

h−1
e ‖[[ v ]]‖2

0,e, ∀ v ∈ H1(Th),359

and norms360

‖v‖2
DG : = 2ν |v|21,h + 2ν |[[ vt ]]|2∗ v ∈ H1(Th),

|||v|||2 : = ‖v‖2
DG +

∑

T ∈Th

2ν h2
T |ε(v)|21,T v ∈ H2(Th). (4.9)361

We also remark that the seminorms defined in (4.9) are actually norms with the additional362

requirement that v ∈ H0,n(div;�). We also observe that when restricted to discrete functions363

v ∈ V h , the ‖ · ‖DG -norm and the ||| · ||| are equivalent (using inverse inequality). Continuity364

can easily be shown for both bilinear forms:365

|ah(u, v)| ≤ |||u||| |||v||| ∀ u, v ∈ H2(Th),

|b(v, q)| ≤ ‖v‖1,h‖q‖0,� ∀ v ∈ H1(Th), q ∈ L2(�)/R .
366

Following [19], the existence and uniqueness of the approximate solution and optimal error367

bounds are guaranteed if the following two conditions are satisfied:368

(H1): coercivity: ∃ γ > 0 independent of the mesh size h such that369

ah(v, v) ≥ γ ‖v‖2
DG ∀ v ∈ V h . (4.10)370

(H2): inf-sup condition: ∃ β > 0 independent of the mesh size h such that371

sup
v∈V h

(div v, qh)�

‖v‖DG

≥ β‖qh‖0,� ∀ qh ∈ Qh . (4.11)372
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Condition (H2) is a consequence of the inf-sup condition that holds for the continuous problem373

(2.6):374

∃ β > 0 s.t. ∀h, ∀qh ∈ Qh ∃ v ∈ H1(�) : div v = qh and ‖v‖1,� ≤ 1

β
‖qh‖0,�.375

It is well known that for all the families considered here an interpolation operator v → v I ∈376

V h exists that verifies (3.21) (in particular for s = 1), and377

div v I = div v (= qh).378

By observing that [[ v ]] = 0 on the internal edges as v ∈ H1(�), and by using the Agmon379

trace inequality [2] and (3.21) (for s = 1), we have380

|[[ v I ]]|2∗ :=
∑

e∈E
o
h

h−1
e ‖[[ v I

t ]]‖2
0,e =

∑

e∈E
o
h

h−1
e ‖[[ (v I − v)t ]]‖2

0,e ≤ C |v|21,�. (4.12)381

Hence, again using (3.21), we deduce that382

‖v I ‖DG ≤ C |v|1,�.383

Thus (4.11) is proved.384

In order to prove (4.10) we need to extend (2.8) from Lemma 2.1 to spaces of discontinuous385

vectors. We have therefore the following result. Also see Appendix for further comments on386

the validity of the result in three dimensions.387

Lemma 4.2 Let V h be a piecewise polynomial subspace of H0,n(div;�). Then, ∃ CK > 0388

independent of h such that389

|v|21,h ≤ CK


‖ε(v)‖2

0,Th
+
∑

e∈E
o
h

h−1
e ‖[[ vt ]]‖2

0,e


 , ∀ v ∈ V h . (4.13)390

Proof To show (4.13), a direct application of [13, Inequality (1.14)] to v ∈ V h gives391

|v|21,h ≤CK




‖ε(v)‖2
0,Th

+
∑

e∈E
o
h

h−1
e ‖[[ vt ]]‖2

0,e+ sup
η∈L2(�)

‖η‖0,�=1,
∫
�

η=0



∫

�

v · ηdx




2




, (4.14)392

We now show that the last term in (4.14) can be bounded by the first two. We claim that393

sup
η∈L2(�)

‖η‖0,�=1,
∫
�

η=0



∫

�

v · ηdx




2

≤ C
(
‖ε(v)‖2

0,Th
+
∑

e∈E
o
h

h−1
e ‖[[ vt ]]‖2

0,e

)
. (4.15)394

There are surely many ways of checking (4.15). Here, we propose one. For v ∈ V h and395

η ∈ L2(�) with
∫
�

η dx = 0, we set396

I(v, η) :=
∫

�

v · η dx,397

123

Journal: 10915 Article No.: 9758 TYPESET DISK LE CP Disp.:2013/7/25 Pages: 31 Layout: Small

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

J Sci Comput

and we want to prove that398

I(v, η) ≤ C
(
‖ε(v)‖2

0,Th
+
∑

e∈E
o
h

h−1
e ‖[[ vt ]]‖2

0,e

)1/2
‖η‖0,� (4.16)399

that will easily give (4.15) taking the supremum with respect to η with ‖η‖0,� = 1. To prove400

(4.16) for every η ∈ L2(�) with
∫
�

η dx = 0, we consider the following auxiliary elasticity401

problem: Find χ ∈ H1
0,n such that:402

(ε(χ), ε(v))0,� = (η, v)0,� ∀v ∈ H1
0,n . (4.17)403

Thanks to (2.8) problem (4.17) has a unique solution, and we set404

τ := ε(χ). (4.18)405

We note that as natural boundary condition for (4.17) we easily have406

(τ )nt ≡ (ε(χ) · n) · t = 0 on Ŵ, (4.19)407

where t is any tangent unit vector to Ŵ.408

Due to well-known results on the regularity of the solutions of PDE systems on polygons,409

the solution τ of (4.17), (4.18) (which, a priori, on a totally general domain would only be in410

(L2(�))2×2
sym ) satisfies the following a priori estimate: there exists a p > 2 (depending on the411

geometry of �) and a constant C p such that for all η ∈ L2(�) the corresponding τ satisfies412

‖τ‖
(L p(�))2×2

sym
+ ‖divτ‖0,� ≤ C p‖η‖0,�. (4.20)413

The proof of the following proposition (actually, in two or three dimensions) is given in414

Appendix. ⊓⊔415

Proposition 4.3 Let T be a triangle with minimum angle θ > 0, and let e be an edge of T .416

Then for every p > 2 and for every integer kmax , a constant C p,θ,kmax exists such that417

∫

e

v · (τ · n) ds ≤ C p,θ,kmax h
−1/2
T ‖v‖0,e (hT ‖divτ‖0,T + h

p−2
p

T ‖τ‖0,p,T ) (4.21)418

for every τ ∈ (L p(�))2×2
sym with divergence in L2(T ) and for every v ∈ Pkmax (e).419

Then we have420

I(v, η) =
∫

�

v · η dx = −
∫

�

v · (b f divτ ) dx

= (ε(v) : τ )Th
− 〈[[ vt ]] : {τ }〉Eo

h

(4.22)421

having taken into account that at the interelement boundaries the normal component of v is422

continuous and on Ŵ both the normal component of v and (τ )nt are zero.423

At this point, we can apply (4.21) to each e of the last term in (4.22). We apply the424

usual Cauchy-Schwarz inequality on the first term and we use instead the generalized Hölder425

inequality (with q = 1/2 and r = 2p/(p − 2), so that 1
p

+ 1
q

+ 1
r

= 1) on the second one.426
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Then we obtain427

∑

e∈E
o
h

∫

e

[[ vt ]] : {τ } ds ≤
∑

T ∈Th

∑

e∈∂T

C p,θ,kmax

(
h

−1/2
T ‖v‖0,e hT ‖b f divτ‖0,T428

+h
−1/2
T ‖v‖0,e‖ h

p−2
p

T ‖τ‖0,p,T

)
429

≤ C |[[ vt ]]|∗ h ‖divτ‖0,�430

+C
( ∑

e∈E
o
h

h−1
e |[[ vt ]]|20,e

)1/2( ∑

e∈E
o
h

‖τ‖p

0,p,T (e)

)1/p( ∑

e∈E
o
h

h

p−2
p

r

e

)1/r

431

≤ Ch |[[ vt ]]|∗ ‖divτ‖0,� + C |[[ vt ]]|∗ ‖τ‖0,p,� µ(�)1/r (4.23)432

where for each e ∈ Eo
h with e = ∂T + ∩ ∂T −, the set T (e) refers to T (e) := T + ∪ T −. In433

the second line, µ(�) denotes the measure of the domain �, whereas the constant C still434

depends on p, kmax and on the maximum angle in the decomposition Th .435

From (4.22), (4.23), and the bound (4.20) we then obtain436

|I(v, η)| ≤ C
(
‖ε(v)‖0,Th

+ |[[ vt ]]|∗
)
‖η‖0,� (4.24)437

which gives (4.16). Thus the proof of the lemma is complete. ⊓⊔438

Remark 4.4 The fact that in inequality (4.13) only the jumps over the interior edges e ∈ Eo
h439

(but not on the boundary edges) are included, prevents a direct and straightforward application440

of the results from [12]. The proof presented here is surely too elaborate, and we believe that441

a simpler proof is possible. However some of the machinery used here is likely to be of use442

elsewhere. Therefore, we decided that it would be worthwhile to present the proof we have443

obtained to date.444

The stability of ah(·, ·) in the ‖ · ‖DG -norm can now be easily checked with the usual DG445

machinery. We have446

∣∣∣∣∣∣

∫

e

{ε(v)} : [[ vt ]] ds

∣∣∣∣∣∣
≤ h1/2‖{ε(v)}‖0,e‖h−1/2[[ vt ]]‖0,e,447

which when we proceed as in [5] (or as in (4.23) with p = 2) yields448

∣∣∣∣∣∣

∑

e∈E
o
h

∫

e

{ε(v)} : [[ vt ]] ds

∣∣∣∣∣∣
≤ C |v|1,h |[[ vt ]]|∗. (4.25)449

Using (4.25) in (4.7), we then have450

ah(v, v) ≥ 2ν‖ε(v)‖2
0,Th

+ 2ν α‖[[ vt ]]|2∗ − 4νC |v|1,Th
|[[ vt ]]|∗.451

Now using the Korn inequality (4.13) and the usual arithmetic-geometric mean inequality,452

we easily have a big enough α :453

ah(v, v) ≥ γ ‖v‖2
DG ∀ v ∈ V h .454

We close this section with the following theorem.455
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Theorem 4.5 Let (V h, Qh) be as in one of our three examples. Then problem (4.6) has a456

unique solution (uh, ph) ∈ V h × Qh that verifies457

div uh = 0 in �. (4.26)458

Moreover, there exists a positive constant C, independent of h, such that for every vh ∈ V h459

with div vh = 0 and for every qh ∈ Qh the following estimate holds:460

‖u − uh‖DG ≤ C ‖u − vh‖DG ,461

‖p − ph‖0,� ≤ C (‖p − qh‖0,� + ‖u − vh‖DG), (4.27)462

with (u, p) solution of (2.6).463

Proof The existence and uniqueness of the solution of (4.6) follow from (4.10), (4.11). The464

divergence-free property (4.26) is implied by (3.16), which holds for all our choices of spaces.465

Let vh ∈ V h also be divergence-free; then we obviously have that b(vh − uh, q) = 0 for466

every q ∈ L2(�)/R. In particular, b(vh − uh, p − ph) = 0. Hence, from the coercivity467

(4.10), consistency (4.8), and continuity of ah(·, ·) we deduce immediately468

γ ‖vh − uh‖2
DG ≤ ah(vh − uh, vh − uh)469

= ah(vh − u, vh − uh) ≤ ‖vh − u‖DG‖vh − uh‖DG .470

On the same basis we deduce that the first estimate in (4.27) follows by triangle inequality.471

For every wh ∈ V h , using the consistency and continuity of ah(·, ·), we have472

b(wh, qh − ph) = b(wh, qh − p) + b(wh, p − ph) = b(wh, qh − p) − ah(u − uh,wh)473

≤ (‖qh − p‖0,� + ‖u − uh‖DG)‖wh‖DG . (4.28)474

By dividing (4.28) by ‖wh‖DG and then using the inf-sup condition (4.11), we immediately475

deduce that476

β‖qh − ph‖0,� ≤ ‖qh − p‖0,� + ‖u − uh‖DG ,477

and that the second estimate in (4.27) follows again by triangle inequality. ⊓⊔478

Remark 4.6 In the assumptions of Theorem4.5, we could obviously consider any trio of finite479

element spaces satisfying H0. However, for choices like RT0, not considered in our three480

examples, the estimate (4.27) could be meaningless, as the term ‖u − vh‖DG does not, in481

general, go to zero with h. Still, this choice could be profitably used, in some cases, as a482

preconditioner, as it does satisfy H0, H1, and H2.483

5 Discrete Helmholtz Decompositions484

In this section we provide results related to the discrete Helmholtz decomposition, introduced485

in Sect. 3 that plays a key role in the design of the preconditioner. We wish to note that486

Discrete Helmholtz or Hodge decompositions have been shown and used in several contexts487

for similar spaces but with other boundary conditions (typically, homogeneous Dirichlet)488

in [6,7,16,20]. A nice and short proof in the language of Finite Element Exterior Calculus489

can be also found in ([9], p. 72). Here, together with the proof of the decomposition with490

our boundary conditions, we provide an estimate in the DG-norm for the components in491

the splitting, that will be essential in the analysis of the solver, and that, to the best of our492

knowledge, has not been obtained or used in any previous work.493

123

Journal: 10915 Article No.: 9758 TYPESET DISK LE CP Disp.:2013/7/25 Pages: 31 Layout: Small

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f
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So far, we have assumed that the computational domain � is a polygon (or polyhedron).494

From now on, for the sake of simplicity, we are going to work under the stronger assumption495

that � is a convex polygon or polyhedron. As is well known, this allows the use of better496

regularity results, and in particular the H2-regularity for elliptic second-order operators.497

Following [19] we define the discrete gradient operator Gh : Qh −→ V h as498

(Ghqh, vh)0,� := −(qh, div vh)0,� ∀ vh ∈ V h . (5.1)499

Lemma 5.1 Assume that together the three spaces (V h, Qh, Nh) (resp. (V h, Qh, N h)) sat-500

isfy assumption H0 (given in Definition 4.1). Then, in d = 2, for any vh ∈ V h a unique501

qh ∈ Qh and a unique ϕh ∈ Nh exist such that502

vh = Ghqh + curl ϕh, (5.2)503

that is,504

V h = Gh(Qh) ⊕ curl Nh .505

If d = 3, there exists a ψ ∈ N h such that506

vh = Ghqh + curl ψh, (5.3)507

and therefore508

V h = Gh(Qh) ⊕ curl N h .509

Moreover, in both cases there exists a constant C independent of h such that the following510

estimate holds:511

‖Ghqh‖DG ≤ C‖div vh‖0,�. (5.4)512

We present the proof in two dimensions; see however Remark 5.2 after this proof, where513

the differences for the case d = 3 are discussed.514

Proof For vh ∈ V h , consider the auxiliary problem:515

− q = div vh in �,
∂q

∂n
= 0 on ∂�, and

∫

�

q dx = 0. (5.5)516

Owing to the boundary conditions in V h , we have that div vh has zero mean value in �.517

Hence, problem (5.5) has a unique solution, that satisfies518

‖q‖2,� ≤ Creg‖div vh‖0,�. (5.6)519

We write (5.5) in mixed form:520

σ = −∇q in �, div σ = div vh in �, σ · n = 0 on ∂�.521

and we consider directly the approximation of the mixed formulation: Find (σ h, qh) ∈522

V h × Qh such that :523

{
(σ h, τ )0,� − (qh, div τ )0,� = 0 ∀ τ ∈ V h,

(div σ h, sh)0.� = (div vh, sh)0,� ∀ sh ∈ Qh .
(5.7)524

Problem (5.7) obviously has a unique solution, which moreover satisfies525

‖σ − σ h‖0,� ≤ C h |σ |1,� ≤ CCreg h ‖div vh‖0,�, (5.8)526
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J Sci Comput

given that (5.6) was used in the last step. As both vh and σ h are in V h (and as (3.16) holds),527

the second equation in (5.7) directly implies that528

div (σ h − vh) = 0.529

Hence, the exact sequence (3.8) implies that530

a unique ϕh ∈ Nh exists such that σ h − vh = curl ϕh . (5.9)531

Next, by using the first equation in (5.7) and then applying definition (5.1), we deduce that532

(σ h, τ )0,� = (qh, div τ )0,� = −(Ghqh, τ )0,� ∀ τ ∈ V h,533

which implies σ h = −Ghqh , that joined to (5.9) gives (5.2).534

In order to prove (5.4), we recall that535

‖Ghqh‖2
DG = ‖σ h‖2

DG = ‖∇σ h‖2
0,Th

+ |[[ (σ h)t ]]|2∗. (5.10)536

For the first term, by adding and subtracting the interpolant σ I of σ and then using inverse537

inequality and (3.21), we have:538

‖∇σ h‖0,Th
≤ ‖∇(σ h − σ I )‖0,Th

+ ‖∇σ I ‖0,Th
539

≤ Cinvh−1‖σ h − σ I ‖0,Th
+ C‖∇σ‖0,Th

. (5.11)540

From triangle inequality, (5.8), and standard approximation properties (see (3.21)), we have541

‖∇σ h‖0,Th
≤ C ‖div vh‖0,�. (5.12)542

The jump term in (5.10) is estimated similarly. First, we remark that σ = −∇q with q ∈543

H2(�) so that [[ σ ]] = 0 on each e ∈ Eo
h , and therefore544

|[[ (σ h)t ]]|2∗ = |[[ (σ h)t − σ t ]]|2∗.545

Then, using Agmon trace inequalities (5.8) and the boundedness of σ h and σ , we have546

|[[ (σ h)t − σ t ]]|2∗ =
∑

e∈E
o
h

h−1
e ‖[[ (σ h)t − σ t ]]‖2

0,e547

≤ Ct h
−2‖σ h − σ‖2

0,Th
+ Ct‖∇(σ h − σ )‖2

0,Th
548

≤ CCreg‖div vh‖2
0,�.549

Thus the proof is complete. ⊓⊔550

Remark 5.2 For d = 3, instead of (5.9), the exact sequence (3.9) property implies551

∃ ψh ∈ N h such that σ h − vh = curl ψh .552

The vector potential ψh would be uniquely determined by adding the condition div ψ = 0.553

In fact, on a simply connected domain, div ψ = 0 and curl ψ = 0 together with ψ ∈554

H0,t (curl,�) imply ψ = 0. However, in general, the solution of div ψ = 0 and curl ψ = vh555

together with ψ ∈ H0,t (curl,�) (which is uniquely determined) does not belong to N h .556

A possibility to select a vector potential ψh in a unique way could be to compute it as the557

approximation to the following continuous problem: Find (ψ, θ) in H0,t (curl;�)× H1
0 (�)558

such that559

(curl ψ, curl φ)Th
+ (∇θ,φ)Th

= (vh,φ)Th
∀ φ ∈ H0,t (curl;�),

(ψ,∇s)Th
= 0 ∀ s ∈ H1

0 (�).
560
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Setting561

o

Wh :=
{
w ∈ H1

0 (�) : w|T ∈ P
k+1(T ) ∀ T ∈ Th

}
,562

the discrete problem reads: Find (ψh, θh) ∈ N h×
o

Wh such that563

(curl ψh, curl φh)Th
+ (∇θh,φh)Th

= (vh,φh)Th
∀ φh ∈ N h,

(ψh,∇wh)Th
= 0 ∀ wh ∈

o

Wh .
(5.13)564

Problem (5.13) has a unique solution satisfying curl ψh = vh (from the first equation), and565

divψh = 0 (from the second equation).566

6 Preconditioner: Fictitious Space Lemma and Auxiliary Space Framework567

6.1 Preconditioner for the Semi-Definite System568

Assume V is a Hilbert space equipped with the norm ‖·‖V and that A : V �→ V ′ is a bounded569

linear operator. We define the bilinear form570

(u, v)A = 〈Au, v〉.571

We say A is symmetric if the bilinear form (u, v)A is symmetric. We say that A is semi-572

positive definite if573

(v, v)A ≥ 0, ∀v ∈ V574

and α > 0 exists such that575

(v, v)A ≥ α‖v‖2
V/N (A), ∀v ∈ V/N (A).576

And we say that A is SPD (Symmetric Positve Definite) if it is symmetric and α > 0 exists577

such that578

(v, v)A ≥ α‖v‖2
V , ∀v ∈ V .579

One useful property of symmetric semi-positive definite operators is that580

Av = 0 iff 〈Av, v〉 = 0. (6.1)581

A preconditioner for A is another symmetric semi-positive definite operator B : V ′ �→ V .582

Again, we consider the bilinear form583

( f, g)B = 〈 f, Bg〉.584

The operator B A : V �→ V satisfies585

(B Au, v)A = 〈Av, B Au〉 = (Au, Av)B .586

Lemma 6.1 If A : V �→ V ′ and B : V ′ �→ V are both symmetric semi-positive definite587

such that B is positive definite on R(A), then588

(1) B : R(A) �→ R(B A) is an isomorphism (with the inverse satisfying trivially that589

B−1(B Av) = Av).590

(2) The bilinear form (·, ·)B−1 defines an inner product on R(B A).591
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(3) The bilinear form (·, ·)A defines an inner product on R(B A).592

(4) B A is symmetric positive definite on R(B A) with either of the above two inner products.593

Proof All these results are pretty obvious, and their proofs are similar. Let us give the proof594

for 3 as an example.595

We only need to verify that (·, ·)A is positive definite on R(B A). If v ∈ R(B A) is such596

that (v, v)A = 0, then, by (6.1), we have Av = 0. We write v = B Aw for some w ∈ V ,597

then AB Aw = 0 and hence (Aw, Aw)B = 0. As B is positive definite on R(A), we have598

Aw = 0. Thus, v = AB Aw = 0, as desired. ⊓⊔599

For the system Au = f , we can apply the preconditioner B and the preconditioned600

conjugate gradient (PCG) method with respect to the inner product (·, ·)B−1 with the following601

convergence estimate:602

‖u − uk‖A ≤ 2

(√
κ(B A) − 1√
κ(B A) + 1

)k

‖u − u0‖A.603

The condition number can then be estimated by κ(B A) ≤ c1/c0, either where604

c0(v, v)B−1 ≤ (B Av, v)B−1 ≤ c1(v, v)B−1 , ∀v ∈ R(B A),605

or equivalently where606

c0(w,w)B ≤ (Bw, Bw)A ≤ c1(w,w)B , ∀w ∈ R(A),607

or where608

c−1
1 (v, v)A ≤ (B−1v, v) ≤ c−1

0 (v, v)A ∀v ∈ R(B A).609

6.2 Fictitious Space Lemma and Generalizations610

Let us present and prove a refined version of the Fictitious Space Lemma originally proposed611

by Nepomnyaschikh [34] (see also [41]).612

Lemma 6.2 Let Ṽ and V be two Hilbert spaces, and let � : Ṽ �→ V be a surjective map.613

Let B̃ : Ṽ ′ �→ Ṽ be a symmetric and positive definite operator. Then B := �B̃�′ is also614

symmetric and positive definite (here �′ : V ′ �→ Ṽ ′ is such that 〈�′g, ṽ〉 = 〈g,�ṽ〉, for all615

g ∈ V ′ and ṽ ∈ Ṽ ). Furthermore,616

〈B−1v, v〉 = inf
�ṽ=v

〈B̃−1ṽ, ṽ〉.617

Proof It is obvious that B is symmetric and positive semi-definite. Note that if v ∈ V ′ is618

such that 〈Bv, v〉 = 0, then 〈B̃�′v,�′v〉 = 〈Bv, v〉 = 0. This means that �′v = 0 as B̃ is619

SPD. Hence, v = 0 as �′ is injective. This proves that B is positive definite.620

For any ṽ ∈ Ṽ , let v = �ṽ and ṽ∗ = B̃�′ B−1v. As we obviously have �ṽ∗ = v, we can621

write ṽ = ṽ∗ + w̃ with �w̃ = 0. Thus,622

inf
�ṽ=v

〈B̃−1ṽ, ṽ〉 = inf
�w̃=0

〈B̃−1(ṽ∗ + w̃), ṽ∗ + w̃〉623

= 〈B̃−1ṽ∗, ṽ∗〉 + inf
�w̃=0

(
〈B̃−1w̃, w̃〉 + 2〈B̃−1ṽ∗, w̃〉

)
624

From the definition of ṽ∗ we have625

〈B̃−1ṽ∗, ṽ∗〉 = 〈B−1v,�ṽ∗〉 = 〈B−1v, v〉,626
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and also627

〈B̃−1ṽ∗, w̃〉 = 〈B̃−1 B̃�′ B−1v, w̃〉 = 〈�′ B−1v, w̃〉 = 〈B−1v,�w̃〉 = 0.628

The last two identities lead to the desired result. ⊓⊔629

Theorem 6.3 Assume that Ã : Ṽ �→ Ṽ ′ and A : V �→ V ′ are symmetric semi-definite630

operators. We assume that � : Ṽ �→ V is surjective and that �(N ( Ã)) = N (A). Then for631

any SPD operator B̃ : Ṽ ′ �→ Ṽ , we have, for B = �B̃�′,632

κ(B A) ≤ κ(�)κ(B̃ Ã).633

Here κ(�) is the smallest ratio c1/c0 that satisfies634

c−1
1 〈Av, v〉 ≤ inf

�ṽ=v
〈 Ãṽ, ṽ〉 ≤ c−1

0 〈Av, v〉, ∀v ∈ R(B A). (6.2)635

Proof Denote κ(B̃ Ã) = b1/b0 with b1 and b0 satisfying636

b−1
1 (ṽ, ṽ)

Ã
≤ (B̃−1ṽ, ṽ) ≤ b−1

0 (ṽ, ṽ)
Ã
, ∀ṽ ∈ R(B̃ Ã).637

By (6.2), we obtain638

b−1
1 c−1

1 ‖v‖2
A ≤ inf

�ṽ=v,ṽ∈R(B̃ Ã)

(B̃−1ṽ, ṽ) ≤ b−1
0 c−1

0 ‖v‖2
A, ∀v ∈ R(B A).639

By the assumption that �(N ( Ã)) = N (A), we can prove that �′(R(A)) ⊂ R( Ã) and640

{ṽ|�ṽ = v ∈ R(B A)} = {ṽ|�ṽ = v ∈ R(B A), ṽ ∈ R(B̃ Ã)}.641

By Lemma 6.2,642

inf
�ṽ=v,ṽ∈R(B̃ Ã)

(B̃−1ṽ, ṽ) = inf
�ṽ=v

(B̃−1ṽ, ṽ) = (B−1v, v), ∀v ∈ R(B A).643

Therefore,644

b−1
1 c−1

1 ‖v‖2
A ≤ (B−1v, v) ≤ b−1

0 c−1
0 ‖v‖2

A ∀v ∈ R(B A).645

⊓⊔646

Theorem 6.4 Assume that the following two conditions are satisfied for �. First,647

‖�ṽ‖A ≤ c1‖ṽ‖
Ã
, ∀ṽ ∈ Ṽ .648

Second, for any v ∈ V there exists ṽ ∈ Ṽ such that �ṽ = v and649

‖ṽ‖
Ã

≤ c0‖v‖A.650

Then κ(�) ≤ c1/c0 and, under the assumptions of Theorem 6.3,651

κ(B A) ≤
(

c1

c0

)2

κ(B̃ Ã).652

Remark 6.5 In view of the application of the above results to our two dimensional case (as653

we shall see in the next subsection), it would have been enough to restrict ourselves to the654

symmetric positive definite case (instead of the semi-definite case treated in the last two655

subsections). However we preferred to have them in the present more general setting, as in656

this form they are likely to be useful in many other circumstances (starting, as natural, from657

the extension of the present theory to the three-dimensional case).658
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6.3 Application to Our Problem659

In this section we design a simple preconditioner for the linear system resulting from the660

approximation of the Stokes problem (2.6) defined in (4.6), (4.7). Note that the bilinear form661

ah(·, ·) defined in (4.7) provides a discretization of the vector Laplacian problem662

−div(2νε(u)) = f in �, u · n = 0, (ε(u) · n) · t = 0 on Ŵ.663

We denote by Ah the operator associated with ah(·, ·). As the solution uh ∈ V h of (4.6) is664

divergence-free, the discrete Helmholtz decomposition (5.2) implies that665

a unique ψh ∈ Nh exists such that uh = curl ψh .666

At this point, it is convenient to introduce the space V̊ h as667

V̊ h := V h ∩ H0(div0;�). (6.3)668

We note that as the sequence (3.8) is exact, we have669

V̊ h ≡ curl Nh, (6.4)670

and that the mapping is one-to-one. Therefore, restricting the bilinear form ah(·, ·) to V̊ h ,671

in the spirit of Remark 3.1, corresponds here to restricting the trial and test space to V̊ h ≡672

curl(Nh). The discrete problem (4.6) then reduces to the following problem: Find ψh ∈ V̊ h673

such that674

ah(ψh, ϕh) = ( f , ϕh) ∀ ϕh ∈ V̊ h (6.5)675

Defining the operator Ah : V̊ h �→ V̊
′
h by 〈Ahψh, ϕh〉 = ah(ψh, ϕh), ψh, ϕh ∈ V̊ h , we can676

write (6.5) as677

Ahψh = fh .678

We now use the original space V h as the auxiliary space for V̊ h . Define Ãh : V h �→ V ′
h by679

〈 Ãhuh, vh〉 = ah(uh, vh), uh, vh ∈ V h . We note that Ãh is a discrete Laplacian. We assume680

that B̃h is an optimal preconditioner for Ãh .681

We now define the operator682

�h : V h −→ V̊ h ≡ curl(Nh) (6.6)683

according to (5.2), namely684

�hvh = curl ϕh .685

Note that �h is a surjective operator and that �h acts as the identity on the subspace V̊ h .686

The auxiliary space preconditioner for Ah is then defined by687

Bh = �h B̃h�∗
h . (6.7)688

Lemma 6.6 Assume that the spaces(V h, Qh, Nh) satisfy assumption H0. Then Bh given by689

(6.7) is an optimal preconditioner for Ah as long as B̃h is an optimal preconditioner for Ãh .690

Proof Following the auxiliary space techniques (Theorem 6.4), we need to check that the691

following two properties are satisfied:692

(A1): Local Stability: there exists a positive constant C1 independent of h such that693

‖�hvh‖DG ≤ C1‖vh‖DG ∀ vh ∈ V h (6.8)694
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(A2): Stable decomposition: there exists a positive constant C2 independent of h such695

that for any wh ∈ V̊ h there exists vh ∈ V h such that �hvh = wh and696

‖vh‖DG ≤ C2‖wh‖DG . (6.9)697

To prove (6.8) from the Helmholtz decomposition (5.2) and the definition (6.6) of �h , we698

have699

vh = Ghqh + curl ϕh = Ghqh + �hvh . (6.10)700

Using estimate (5.4) from Lemma 5.1 and the clear fact that div vh is the trace of εvh , we701

have702

‖Ghqh‖DG ≤ C‖div vh‖0,� ≤ C‖ε(v)‖0,Th
≤ C‖vh‖DG . (6.11)703

Hence, (6.8) follows from (6.10) and (6.11):704

‖�hvh‖DG = ‖vh − Ghqh‖DG ≤ ‖vh‖DG + ‖Ghqh‖DG ≤ C‖vh‖DG .705

Finally, the inequality (6.9) holds with C2 = 1 by taking vh = wh . ⊓⊔706

7 Numerical Experiments707

7.1 Setup708

The tests presented in this section use discretization by the lowest order, namely, BDM1709

elements paired with piece-wise constant space for the pressure. They verify the a priori710

estimates given in Theorem 4.5 and confirm the uniform bound on the condition number of711

the preconditioned system for the velocity.712

As previously set up, the discrete problem under consideration is given by Eq. (4.6) with713

bilinear forms ah(·, ·) and b(·, ·) defined in (4.7). In the numerical tests presented here, we714

take ν = 1/2 and the penalty parameter α = 6 in (4.7). We present two sets of tests with715

A corresponding to the Stokes equation discretized on a sequence of successively refined716

unstructured meshes as shown in Figs. 1 and 2. On the square the coarsest mesh (level of717

refinement J = 0) has 160 elements and 97 vertices with 448 BDM degrees of freedom.718

The finer triangulations of the square domain are obtained via 1, . . . , 5 regular refinements719

(every element divided in 4) and the finest one is with 163,840 elements, 82,433 vertices and720

490,496 BDM degrees of freedom. Similarly for the L-shaped domain we start with a coarsest721

grid (J = 0) with 64 vertices and 97 elements. For the L-shaped domain the finest grid (for722

J = 5) has 99,328 elements, 50,129 vertices and 297,056 BDM1 degrees of freedom. In723

the computations, we approximate the velocity component uh of the solution of the Stokes724

equation by solving several simpler equations (such as scalar Laplace equations). After we725

obtain the velocity, the pressure then is found via a postprocessing step at low computational726

cost. Further, for this sequence of grids the BDM1 interpolant of a function v on the k − th727

grid is denoted by v Ik . Accordingly the piece-wise constant, L2-orthogonal projection of p728

is denoted by p Ik . We also use the notation (uk, pk) for the solution of (4.6) on the k − th729

grid, k = 0, . . . , 5.730

7.2 Discretization Error731

We now present several tests related to the error estimates given in the previous sections. We732

computed and tabulated approximations of the order of convergence of the discrete solution733
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(a) (b)

Fig. 1 Meshes used in the tests for the unit square domain � = (0, 1) × (0, 1). a Coarsest mesh. b Mesh for
level of refinement J = 3

(a) (b)

Fig. 2 Meshes used in the tests for the L-shaped domain � = ((0, 1)× (0, 1)) \ ([ 1
2 , 1)×[ 1

2 , 1)). a Coarsest
mesh. b Mesh for level of refinement J = 3

in different norms. These approximations are denoted by γ0 ≈ β0, γDG ≈ βDG , γp ≈ βp ,734

and γ∗ ≈ β∗. The actual orders of convergence β0, βDG , βp , and β∗ are735

‖u − uh‖0,� ≈ C(u)hβ0 , ‖u − uh‖DG ≈ C(u)hβDG ,

‖p − ph‖0,� ≈ C(u, p)hβp , |[[ uh ]]|∗ ≈ C(u)hβ∗ .
736

Here, as in (4.12), we denote737

|[[ v ]]|2∗ =
∑

e∈E
o
h

h−1
e

∫

e

[[ ut ]]2 ds.738

Note that β∗ is the order with which the jumps in the approximate solution (not in the error)739

go to zero.740

123

Journal: 10915 Article No.: 9758 TYPESET DISK LE CP Disp.:2013/7/25 Pages: 31 Layout: Small

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

J Sci Comput

Table 1 Approximate order of convergence for the difference (uI − uh) and (p I − ph) and the jumps
|[[ uh ]]|∗ for the square and L-shaped domains

Square domain L-shaped domain

k 1 2 3 4 5 k 1 2 3 4 5

γ0 1.75 1.87 1.94 1.98 1.99 γ0 1.69 1.79 1.90 1.96 1.98

γDG 0.98 1.0 1.00 1.00 1.00 γDG 0.97 1.01 1.01 1.00 1.00

γp 0.94 0.95 0.97 0.99 0.99 γp 0.93 0.92 0.95 0.97 0.99

γ∗ 0.77 0.89 0.95 0.98 0.99 γ∗ 0.73 0.85 0.93 0.97 0.99

Here, u and p are given in (7.1) and (7.2)

We present two sets of experiments to illustrate the results given in Theorem 4.5. First,741

we consider the exact given solution and calculate the right–hand side and the boundary742

conditions from this solution. We set743

φ = xy(1 − x)(2x − 1)(y − 1)(2y − 1), u = curlφ. (7.1)744

Clearly, the function φ vanishes on the boundary of both the domains under consideration745

and we take u defined in (7.1) as exact solution for the velocity for both the square and the746

L-shaped domains. For the pressure we choose as exact solutions functions with zero mean747

value and select p different for the square and the L-shaped domain, namely748

p = x2 − 3y2 + 8
3 xy, (square domain),

p = x2 − 3y2 + 24
7 xy, (L-shaped domain).

(7.2)749

The right hand side f is calculated by plugging (u, p) defined in (7.1), (7.2) in (2.1). Table 1750

shows tabulation of the order of convergence of (uh, ph) to (uI , p I ) for both the square751

domain and the L-shaped domain. The values approximating the order of convergence dis-752

played in Table 1 are753

γ = log2

‖uI
k−1 − uk−1‖
‖uI

k − uk‖
, γ∗ = log2

|[[ uk ]]|∗
|[[ uk−1 ]]|∗

,754

γp = log2

‖p I
k−1 − pk−1‖0,�

‖p I
k − pk‖0,�

, k = 1, . . . , 5.755

Here ‖ · ‖ stands for any of the DG or L2 norms. The quantity γ is the corresponding756

γ0 or γDG . From the results in this table, we can conclude that in the ‖ · ‖DG norm the757

dominating error is the interpolation error, and as the next example shows, in general, the758

order of convergence in ‖ · ‖DG is 1.759

The second test is for a fixed right hand side f = 2(1, x). We calculate approxima-760

tions to the order of convergence of the numerical solutions on successively refined grids as761

follows:762

γ = log2
‖uk − uk−1‖
‖uk+1 − uk‖

, γ∗ = log2
|[[ uk ]]|∗ − |[[ uk−1 ]]|∗
|[[ uk+1 ]]|∗ − |[[ uk ]]|∗

,763

γp = log2
‖pk − pk−1‖0,�

‖pk+1 − pk‖0,�

, k = 1, . . . , 4.764

Again, ‖ · ‖ denotes any of the (semi)-norms of interest and γ approximates the correspond-765

ing order of convergence. Table 2 shows the tabulated values of γ0, γDG , γp , and γ∗. It is766
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Table 2 Approximate order of convergence of the error for square and L-shaped domains and right–hand
side f = 2(1, x)

Square domain L-shaped domain

k 1 2 3 4 5 k 1 2 3 4 5

γ0 1.70 1.85 1.93 1.97 1.98 γ0 1.65 1.79 1.86 1.74 1.24

γDG 0.86 0.95 0.98 0.99 1.00 γDG 0.84 0.92 0.92 0.86 0.74

γp 0.94 0.94 0.97 0.98 0.99 γp 0.91 0.89 0.88 0.82 0.70

γ∗ 0.70 0.86 0.94 0.97 0.99 γ∗ 0.63 0.81 0.89 0.89 0.83

clear from these values that the order of approximation for the velocity and the pressure is767

optimal for the square domain, whereas for the L-shaped domain the convergence is not of768

optimal order, due to the singularity of the solution near the reentrant corner. The numerical769

experiments and also the approximations for the orders of convergence presented in Tables 1770

and 2 are computed using the FEniCS package http://fenicsproject.org.771

7.3 Uniform Preconditioning772

The tests presented in this subsection illustrate the efficient solution of the system (7.3)773

below by Preconditioned Conjugate Gradient (PCG) with the preconditioner given in (7.4).774

We introduce the matrices representing the bilinear forms defined in (4.6), (4.7), and also775

the mass matrix for the BDM1 space. We denote by M the mass matrix on V h and by Ã the776

stiffness matrix associated with ah(·, ·) on V h in (4.6), (4.7). We note that A, without the777

divergence–free constraint, is spectrally equivalent to two scalar Laplacians.778

It is known that the null space of b(·, ·) in (4.6) is made of vector fields that are curls of779

continuous, piecewise quadratic functions vanishing on the boundary. We denote by Pcurl the780

matrix representation of these curls in the BDM space. Namely,781

curl(basis functions in Nh) = (basis functions in V h)Pcurl.782

It is easy to see that783

Aq = PT
curlMPcurl.784

where Aq is the discretization of the Laplacian on Nh with homogeneous Dirichlet boundary785

conditions.786

The problem of finding the solution of (6.5) then amounts to solving the following alge-787

braic system of equations788

PT
curlÃPcurlU = PT

curlF. (7.3)789

Here the superscript T means that the adjoint is taken with respect to the ℓ2-inner product,790

U is the vector containing the velocity degrees of freedom, and F is the vector representing791

the right–hand side ( f , v) of the problem (4.6).792

The matrix representation B of the preconditioner B described in the previous section has793

the following form:794

B = A−1
q PT

curlMÃ−1MPcurlA
−1
q (7.4)795

In the numerical experiments below we have used the preconditioned conjugate gradient796

provided by MATLAB with the above preconditioner. We note that one may further make797

123

Journal: 10915 Article No.: 9758 TYPESET DISK LE CP Disp.:2013/7/25 Pages: 31 Layout: Small

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

J Sci Comput

Table 3 Preconditioning results for square domain (top) and L-shaped domain (bottom)

J 0 1 2 3 4 5

Square domain

ni t 4 4 4 5 5 4

ρ 0.016 0.023 0.031 0.034 0.033 0.031

L-shaped domain

ni t 5 5 5 5 5 5

ρ 0.044 0.061 0.061 0.058 0.055 0.053

The PCG iterations are terminated when the relative residual is smaller than 10−6

the algorithm more efficient by incorporating approximations B̃ (for Ã−1) and Bq (for A−1
q )798

in (7.4). In our tests the inverses needed to compute the action of the preconditoner, namely799

A−1
q and Ã−1, are calculated by the MATLAB’s backslash “\” operator (which in turn calls800

the direct solver from UMFPACK http://www.cise.ufl.edu/research/sparse/umfpack/). The801

tests presented here exactly match the theory for the auxiliary space preconditioner given802

in Sect. 6.3.803

In summary, the action of the preconditioner requires the solution of systems correspond-804

ing to 4 scalar Laplacians. It is also worth noting that suitable multigrid packages for per-805

forming these tasks are available today.806

The convergence rate results are summarized in Table 3. The legend for the symbols used807

in the table is as follows: ni t is the number of PCG iterations; ρ is the average reduction808

per one such iteration defined as ρ =
[ ||rnit

||ℓ2

||r0||ℓ2

]1/ni t ; J is the refinement level, for which809

h ≈ 2−J h0, where h0 is the characteristic mesh size on the coarsest grid. From the results in810

Table 3, we can conclude that the preconditioner is uniform with respect to the mesh size. It811

is also evident that this method is in fact quite efficient in terms of the number of iterations812

and the reduction factor.813

Let us point out that when the preconditioner is implemented in 3D the action of �h814

requires an implementation of the action of L2-orthogonal (or orthogonal in equivalent inner815

product) projection on the divergence free subspace V̊ h . This is done by solving an auxiliary816

mixed FE discretization of the Laplacian, as discussed in Sect. 5 and in practice it can be817

accomplished by considering a projection orthogonal in the inner product provided by the818

lumped mass matrix for BDM. In such case the solution to the auxiliary mixed FE problem819

corresponds to a solution of a system with an M-matrix and classical AMG methods [11]820

AMG yield optimal solvers for such problems. The application of the preconditioner in the821

3D case requires the (approximate) solution of 5 scalar Laplacians.822

Such extensions to 3D and also efficient approximations to Ã−1 and A−1
q in (7.4) are823

subject of current research and implementation and are to be included in a future release of824

the Fast Auxiliary Preconditioning Package http://fasp.sf.net.825
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8 Appendix: Proof of Proposition 4.3834

We now state and prove a result, Proposition 8.1 given below, used in Sect. 4 to show Korn835

inequality (cf. Lemma 4.2). After giving its proof, we comment briefly on how the result can836

be applied to show the corresponding Korn inequality (4.13) (cf. Lemma 4.2) for d = 3.837

Proposition 8.1 Let T be a triangle (or a tetrahedron for d = 3) with minimum angle θ > 0,838

and let e be an edge (resp. face) of T . Then for every p > 2 and for every integer kmax there839

exists a constant C p,θ,kmax such that840

∫

e

v · (τ · n) ds ≤ C p,θ,kmax h
−1/2
T ‖v‖0,e

(
hT ‖divτ‖0,T + h

d(p−2)
2p

T ‖τ‖0,p,T

)
(8.1)841

for every τ ∈ (L p(�))d×d
sym having divergence in L2 and for every v ∈ Pkmax (T ).842

Proof First we go to the reference element T̂ :843

∣∣∣
∫

e

v · (τ · n) ds ≤ Cθ |e|
∣∣∣
∫

ê

v̂ · (τ̂ · n̂) dŝ

∣∣∣ ≤ Cθ hd−1
e

∣∣∣
∫

ê

v̂ · (τ̂ · n̂) dŝ

∣∣∣ (8.2)844

where v̂ and τ̂ are the usual covariant and contra-variant images of v and τ , respectively. And,845

here and throughout his proof, the constants Cθ and Cθ,kmax may assume different values at846

different occurrences. Note that v̂ will still be a vector-valued polynomial of degree ≤ kmax847

and the space H(div, T ) is effectively mapped into H(div, T̂ ) by means of the contra-variant848

mapping. Then for every component v̂ of v̂, we construct the auxiliary function ϕv as follows.849

First we define ϕv on ∂ T̂ by setting it as equal to v̂ on ê and zero on the rest of ∂ T̂ . Then850

we define ϕv in the interior using the harmonic extension. It is clear that ϕv will belong to851

W 1,p′
(T̂ ) (remember that p > 2 so that its conjugate index p′ will be smaller than 2). Using852

the fact that v̂ is a polynomial of degree ≤ kmax , it is not difficult to see that853

‖ϕv‖W 1,p′
(T̂ )

≤ Ĉθ,kmax ‖v̂‖0,ê. (8.3)854

Integration by parts then gives855

∫

ê

v̂ · (τ̂ · n̂) dŝ =
∫

∂ T̂

ϕv · (τ̂ · n̂) dŝ

=
∫

T̂

∇ϕv : τ̂ dx̂ −
∫

T̂

ϕv · divτ̂ dx̂

≤ |ϕv|W 1,p′
(T̂ )

‖τ̂‖
(L p(T̂ ))d×d

sym
+ ‖ϕv‖0,T̂

‖divτ̂‖0,T̂

≤ Ĉ
(
‖v̂‖0,ê ‖τ̂‖

(L p(T̂ ))d×d
sym

+ ‖ϕv‖0,ê‖divτ̂‖0,T̂

)

≤ Ĉ ‖v̂‖0,ê

(
‖τ̂‖

(L p(T̂ ))d×d
sym

+ ‖divτ̂‖0,T̂

)
.

(8.4)856

Then we recall the inverse transformations (from T̂ to T ):857

‖v̂‖0,ê ≤ Cθ h
− d−1

2
e ‖v‖0,e, ‖τ̂‖

(L p(T̂ ))d×d
sym

≤ Cθ h
− d

p

T ‖τ‖
(L p(T ))d×d

sym
,858

‖divτ̂‖0,T̂
≤ Cθ h

2−d
2

T ‖divτ‖0,T .859
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Inserting this into (8.4) and then in (8.2) we have then860

∫

e

v · (τ · n) ds ≤ C p,θ,kmax hd−1
e h

− d−1
2

e ‖v‖0,e

(
h

− d
p

T ‖τ‖
(L p(T ))d×d

sym
+ h

2−d
2

T ‖divτ‖0,T

)
.861

Now we note that862

−1

2
+ d(p − 2)

2p
= d − 1 − d − 1

2
− d

p
,863

and that864

−1

2
+ 1 = d − 1 − d − 1

2
+ 2 − d

2
,865

and the proof then follows immediately. ⊓⊔866

With this result in hand, we can show the Korn inequality (4.13) given in Lemma 4.2 for867

d = 3. It is necessary to modify the proof in only two places: the definition of the space of868

rigid motions on �, RM(�), and the application of Proposition 4.21. The space RM(�) is869

now defined by:870

RM(�) =
{

a + bx : a ∈ R
d b ∈ so(d)

}
871

with so(d) denoting the space of the skew-symmetric d × d matrices.872

To prove (4.16) (and so conclude the proof of (4.13)), estimate (4.23) is replaced by873

estimate (8.5) below, which is obtained as follows: first, by applying (8.1) (instead of (4.21))874

from Proposition 8.1 to each e in the last term in (4.22) and then by using the generalized875

Hölder inequality with the same exponents as for d = 2 (with q = 1/2 and r = 2p/(p − 2),876

so that 1
p

+ 1
q

+ 1
r

= 1)877

∑

e∈E
o
h

∫

e

[[ vt ]] : {τ } ≤ C p,θ,kmax

∑

T ∈Th

∑

e∈∂T

h
−1/2
T ‖[[ vt ]]‖0,e hT ‖divτ‖0,T878

+C p,θ,kmax

∑

T ∈Th

∑

e∈∂T

h
−1/2
T ‖[[ vt ]]‖0,e‖ h

d(p−2)
2p

T ‖τ‖0,p,T879

≤ Ch |[[ vt ]]|∗ ‖divτ‖0,� (8.5)880

+C
( ∑

e∈E
o
h

h−1
e |[[ vt ]]|20,e

)1/2( ∑

e∈E
o
h

‖τ‖p

0,p,T (e)

)1/p( ∑

e∈E
o
h

h

d(p−2)
2p

r

e

)1/r

881

≤ C |[[ vt ]]|∗ h ‖divτ‖0,� + C |[[ vt ]]|∗ ‖τ‖0,p,� µ(�)1/r
882

Here, as in estimate (4.23), µ(�) denotes the measure of the domain �, and the constant C883

still depends on p, kmax , and on the maximum angle in the decomposition Th . The rest of884

the proof of Lemma 4.2 proceeds as for d = 2.885
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37. Solonnikov, V.A., Ščadilov, V.E.: A certain boundary value problem for the stationary system of Navier-964

Stokes equations. Trudy Mat. Inst. Steklov., 125, 196–210, 235, (1973). Boundary value problems of965

mathematical, physics, 8966

38. Temam, R.: Navier-Stokes Equations, volume 2 of Studies in Mathematics and its Applications. North-967

Holland Publishing Co., Amsterdam, revised edition, (1979). Theory and numerical analysis, With an968

appendix by F. Thomasset969

39. Temam, R., Miranville, A.: Mathematical Modeling in Continuum Mechanics. Cambridge University970

Press, Cambridge (2001)971

40. Wang, J., Ye, X.: New finite element methods in computational fluid dynamics by H (div) elements. SIAM972

J. Numer. Anal. 45(3), 1269–1286 (2007). (electronic)973

41. Xu, J.: The auxiliary space method and optimal multigrid preconditioning techniques for unstructured974

grids. Computing, 56(3):215–235, 1996. International GAMM-Workshop on Multi-level Methods (Meis-975

dorf, 1994)976

42. Yoo, J., Joseph, D.D., Beavers, G.S.: Boundary conditions at a naturally impermeable wall. J. Fluid Mech.977

30, 197–207 (1967)978

123

Journal: 10915 Article No.: 9758 TYPESET DISK LE CP Disp.:2013/7/25 Pages: 31 Layout: Small

A
u

th
o

r
 P

r
o

o
f


