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Abstract

We extend the basic idea of Serendipity Virtual Elements from the previous case
(by the same authors) of nodal (piecewise smooth and continuous) elements, to a
more general framework. Then we apply the general strategy to the case of H(div)
and H(curl) conforming Virtual Element Methods, in two and three dimensions.

Keywords. Polytopal decompositions, Mixed formulations, Serendipity reduction.

1 Introduction

Virtual Element Methods (VEM) were introduced a few years ago ([7], [8], [21], [1]) as
a new interpretation of Mimetic Finite Differences (MFD) (see [38], [13] and the refer-
ences therein) that allowed, in a suitable sense, a generalization of classical Finite Element
Methods (FEM) to polygonal and polyhedral decompositions. More recently, they under-
went rapid developments, with extension to various problems (see [12], [10], [14], [3],
[16], [15], [35], [39]).

Contrary to MFD, (and similarly to FEM) Virtual Elements are a Galerkin method,
using the variational formulation of the continuous problems in suitable finite dimensional
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Italy and IMATI del CNR, Via Ferrata 5/A, I-27100 Pavia, Italy, e-mail: marini@imati.cnr.it

Alessandro Russo: Dipartimento di Matematica e Applicazioni, Università di Milano–Bicocca, Via
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spaces. Contrary to Finite Elements (and similarly to MFD) they can be used on very
general decompositions, both in 2 and 3 dimensions, and are very robust with respect to
element distortions, hanging nodes, and so on. Similarly to other methods for polytopes
(see e.g. [6], [17] [37], [33], [42], [43], [44], [45]) they use finite dimensional spaces that,
within each element, contain functions that are not polynomials.

Unlike these previous methods, however, with VEM these functions need not to be
computed (not even in a rough way) inside the elements, but some of their properties
(averages, polynomial projections, and the like) are computed exactly starting from the
data, and this allows (at least in problems with constant coefficients) the construction of
schemes that satisfy the Patch Test exactly.

We also point out the interesting connections of Virtual elements with several other
important classes of methods based on a split approximation of the same variables (at the
boundary and in the interior), such as the many variants of the quite successful Hybridiz-
able Discontinuous Galerkin (HDG) (see e.g. [25], [24]) or the newer interesting Hybrid
High Order methods (see e.g. [27], [28]). These connections deserve to be further inves-
tigated, and in particular the question of which approach would be preferable for each
class of problems seems, to us, of paramount important for future studies.

The H(div) and H(curl) conforming variants of Virtual Elements were introduced in
[20] and successively extended in [9]. Their natural Mixed Finite Element counterparts
are the classical Raviart-Thomas (RT) or Brezzi-Douglas-Marini (BDM) elements for the
H(div)-conforming case and the equally classical Nédélec elements of first and second
kind (N1 and N2, respectively), for the H(curl)-conforming case. Compared to them,
Mixed Virtual Elements exhibit a much better robustness with respect to the element
geometry, but often a bigger number of degrees of freedom (see also, for instance, [18]
for definitions and properties of above Finite Element spaces, and Figures 1 to 4 here in
the next sections for a comparison with VEMs). This justifies the effort to eliminate some
internal degrees of freedom and, for H(curl)-conforming polyhedrons, also some of the
degrees of freedom internal to faces. We are doing this here, following a Serendipity-like
strategy, in the stream of what has been done, for instance, in [4], [11].

Here we slightly generalise the H(div) and H(curl) conforming spaces presented in
[9], and identify different degrees of freedom, more suited to introduce their Serendipity
variants. We point out that in [9] we concentrated on spaces and degrees of freedom that
allow, on each d-dimensional polytope E (for d = 2 or 3), the computation of the L2-
projection operator on the space (Pk(E))d of vector valued polynomials of degree ≤ k,
while here we consider also the possibility of having a so-called B-compatible operator
(also known as Fortin-type interpolator), that, as is well known, is crucial in proving the
inf-sup-condition in a number of different circumstances.

In particular, we consider several types of vector-valued spaces, with different degrees
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for the boundary, for the divergence, and for the curl, that include the polytopal analogues
of RT and N1 spaces, as well as the analogues of BDM or N2 elements and the analogues
of the Brezzi-Douglas-Fortin-Marini (BDFM) elements, together with many other possi-
bilities, as it was briefly indicated at the end of [9].

Here too we limit ourselves to the description of the local spaces, on a generic polygon
or polyhedronE. The definition of the global spaces (on a decomposition made by several
polytopes, respecting the H(div) or the H(curl) conformity) is then immediate. The ap-
plication of these elements to the approximation of PDE problems in mixed formulation
(partly trivial, partly non trivial) will be discussed somewhere else, with error estimates
and various additional properties.

Regarding, for several types of problems, the interest of polytopal decompositions
with other numerical approaches, we refer for instance to [2], [19], [30], [29], [34], [36],
[41], [13] and to the references therein.

An outline of the paper is as follows. In the next section we will recall a few basic
definitions and some properties of polynomial spaces that will be useful in the sequel.
In Section 3 we present a rather general framework that we are going to use in order to
construct Serendipity-like variants of local finite dimensional spaces. We note however
that the approach goes beyond the particular case of Virtual Element Spaces, and could
have an interest of its own in other situations. In Section 4 we recall first the definition of
our H(div)-conforming 2-dimensional elements, which slightly generalize the previous
[20] and [9] cases, and we show some comparisons with RT, BDM, and BDFM Finite Ele-
ments). At the end of this Section we also recall the definition of B-compatible interpola-
tors, that are very useful for proving inf-sup conditions. We devote the next Section 5 to the
construction of Serendipity 2-dimensional face elements, following the general guidelines
of Section 3. Here, being the first application of our general framework, the construction
is given with much more details than what will be done in the other cases. Section 6 deals
with edge 2-dimensional spaces (H(rot)-conforming) and their Serendipity variants. This
Section is very short, since the edge-2d case can be obtained from the face-2d case with
a simple rotation of π/2. Section 7 deals with the H(div)-conforming 3-dimensional ele-
ments: the first part, with definitions and basic properties of the spaces, based essentially
on [9], is simple and short, while the second part (dealing with the Serendipity variants) is
technically more complex. Section 8 deals with H(curl)-conforming VEMs, and is pos-
sibly the most innovative. The presentation of [9] is generalized and revised, and then we
introduce the Serendipity variants, that here, in addition to internal degrees of freedom,
allow a reduction of the face degrees of freedom (that could not be dealt with simply by
static condensation). Of the four cases (face and edge in 2 and 3 dimensions), the face 3d
case is the most complex, but is a useful step towards the 3d edge case, that in our opinion
is the most innovative and interesting one.



4 L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo

2 Generalities on polynomial spaces

To denote the independent variables, both in R2 and in R3 we will use either x ≡ (x1, x2)

(resp. x ≡ (x1, x2, x3) in 3 dimensions) or (x, y) (resp. (x, y, z)) whenever this is more
convenient.

In two dimensions, for a scalar function v we define

rot v :=

(
∂v

∂y
,−∂v

∂x

)
, (2.1)

and for a vector v = (v1, v2) we define the formal adjoint of rot as

rotv :=
∂v2
∂x
− ∂v1

∂y
. (2.2)

Always in two dimensions, we recall that for every c ∈ R2 we have

c = grad(c · x) as well as c = rot(c · x⊥) (2.3)

where for a vector u = (u1, u2) in R2 its orthogonal u⊥ is defined as

u⊥ := (u2,−u1). (2.4)

Similarly, in three dimensions for every c ∈ R3 we have

c = grad(c · x) as well as c =
1

2
curl(c ∧ x). (2.5)

Given a polyhedron E, and a smooth-enough vector v in E, for every face f with
normal nf , we can define the tangential part of the vector v on f as

vτf := v − (v · nf )nf . (2.6)

We observe that vτf could be obtained from v ∧ nf by a suitable rotation of π/2, so that

vτf = 0 iff v ∧ nf = 0. (2.7)

With (almost) obvious notation, for every face f we could also consider the two-dimensional
operators in the tangential variables gradf , divf , rotf , rotf , ∆f , etc.

2.1 Decompositions of polynomial vector spaces

On a generic domain O (in d dimensions, with d = 1, 2, or 3), and for k integer ≥ 0 we
will denote by Pk,d(O) (or simply by Pk,d or even Pk when no confusion can occur) the
space of polynomials of degree ≤ k on O. With a common notation, we will also use
P−1 ≡ {0}. Following [9] we will denote by πk,2 the dimension of the space Pk,2 (that is,
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(k + 1)(k + 2)/2), and by πk,3 the dimension of Pk,3 (that is, (k + 1)(k + 2)(k + 3)/6).
Moreover, for k ≥ 1, we set

P0
k(O) := {p ∈ Pk(O) such that

∫
O
p dO = 0}, (2.8)

(Pk)ddiv := {p ∈ (Pk)d such that divp = 0}. (2.9)

The following decompositions of polynomial vector spaces are well known, and they will
be useful in what follows.

In two dimensions we have

(Pk)2 = grad(Pk+1)⊕ x⊥Pk−1, (2.10)

(Pk)2 = rot(Pk+1)⊕ xPk−1. (2.11)

Remark 2.1. A useful consequence of (2.10) is the well known property (valid for all
s ≥ 0):

∀ ps ∈ Ps ∃ a unique qs ∈ Ps such that rot(x⊥qs) = ps. (2.12)

The property follows easily from (2.10) with k = s+ 1 by observing that rot((Ps+1)
2) =

Ps. In proving (2.12) (and the similar properties that follow) we could have used a more
constructive argument, but this is simpler. We also notice that an elegant use of the prop-
erties of differential operators applied to homogeneous polynomials can be found in [23].
We just point out that, as one can easily check, for a homogeneous polynomial ps of
degree s we have

rot(x⊥ps) = (s+ 2) ps. (2.13)

Clearly, from (2.11) we have instead

∀ ps ∈ Ps ∃ a unique qs ∈ Ps such that div(x qs) = ps, (2.14)

with identical arguments.

In three dimensions the analogues of (2.10)-(2.11) are

(Pk)3 = curl((Pk+1)
3)⊕ xPk−1, (2.15)

(Pk)3 = grad(Pk+1)⊕ x ∧ (Pk−1)3. (2.16)

Remark 2.2. In computing the dimension of the space x∧ (Pk−1)3 that appears in (2.16),
it has to be noted that x ∧ (xPs) ≡ 0 for all s, so that the dimension of x ∧ (Pk−1)3 is
equal to that of (Pk−1)3 minus the dimension of Pk−2. And, indeed, one can check that
3πk,3 = [πk+1,3−1]+[3πk−1,3−πk−2,3]. In its turn, taking into account that the dimension
of curl((Pk+1)

3) is equal to the dimension of (Pk+1)
3 minus that of grad(Pk+2), we can

check the dimensions in (2.15) through 3πk,3 = [3πk+1,3 − {πk+2,3 − 1}] + πk−1,3. One
should just avoid mistakes in the math.
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Remark 2.3. As done in Remark 2.1, useful consequences of (2.15) and (2.16) are the
equally well known properties (valid for all s ≥ 0):

∀ ps ∈ Ps ∃ qs ∈ (Ps)3 such that div(x qs) = ps, (2.17)

and

∀ps ∈ (Ps)3 with divps = 0 ∃ qs ∈ (Ps)3 with divqs = 0 such that (2.18)

curl(x ∧ qs) = ps.

2.2 Polynomial Spaces

In the Mixed Finite Elements practice one typically encounters vector valued polynomial
spaces of a special type. We recall some of them. For k ≥ 0, in 2 or 3 dimensions, we
have

RTk := (Pk)d ⊕ xPhomk (2.19)

(where, here and in the sequel, the superscript hom stands for homogeneous) and, for
k ≥ 1,

BDMk := (Pk)d. (2.20)

It is simple but useful to note that in any case

{v ∈ RTk} and {divv = 0} imply {v ∈ (Pk)d}. (2.21)

These two types of elements are tailored for the construction of H(div)-conforming
mixed finite elements on simplexes. Typically the normal components (on edges in 2d,
and on faces in 3d) are used as boundary degrees of freedom, so that their continuity,
from one element to another, will ensure the H(div) conformity of the global space.
The difference between the two families is that, for a given accuracy Pk of the normal
components at the boundary, we have div(BDMk) = Pk−1 and div(RTk) = Pk, so that
the RT elements are recommended when you need a better accuracy in H(div), while the
BDM elements are cheaper for the same accuracy in L2. They are both quite popular and
widely used.

The H(rot) (in 2d) or H(curl) (in 3d) counterparts of these elements are the Nédélec
elements of first type (N1) and of second type (N2). In two dimensions, the two types are
just the RT and (respectively) BDM elements, up to a rotation of π/2:

N1k := (Pk)2 ⊕ x⊥ Phomk (2.22)

N2k := (Pk)2. (2.23)
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The differences (between RT and BDM, on one side, and N1-N2 on the other side) are
much more relevant in 3d. Indeed, in 3d we have

N1k := (Pk)3 ⊕ x ∧ (Phomk )3 (2.24)

N2k := (Pk)3. (2.25)

Here the tangential components at the boundary have to be prescribed to ensure the
H(rot)-conformity.

This is done by assigning the tangential component on each edge, and then completing
the set of degrees of freedom, per face, with the internal ones.

The above spaces are very well suited for applications to simplicial elements. When
applied, in 2d, on squares (and their affine or isoparametric images) their definition changes.
For instance, on rectangles the spaces RT become

RT qk := Qk+1,k ×Qk,k+1 (2.26)

where for integers r and s we used the common notation:

Qr,s = {polinomials of degree ≤ r in x1 and of degree ≤ s in x2} (2.27)

while
BDM q

k := (Pk)2 ⊕ span{rot(xk+1y)} ⊕ span{rot(xyk+1)}. (2.28)

In 3d, for cubes we have

RT qk := Qk+1,k,k ×Qk,k+1,k ×Qk,k,k+1 (2.29)

with obvious extension of the notation (2.27). The definition of BDM on cubes is more
complicated (see e.g. [5], [18]).

We also point out that the non affine images of these spaces on boxes (squares or
cubes) exhibit several forms of severe approximation deficits.

3 General strategy towards Serendipity Spaces

We position ourselves at the current element level of a decomposition, and we consider a
very general type of local spaces. Then, as usual, the local spaces will be put together to
construct the global Virtual Element spaces defined on the whole computational domain.

Let then E be a polytope, in two or three dimensions, and let V be a finite dimensional
space made of smooth enough functions. Let N be the dimension of V; we assume that
we have N linear functionals F1, ...,FN from V to R, linearly independent, that play the
role of original degrees of freedom.

The name of the game is to be able to slim down the space V and, accordingly, the
degrees of freedom F , in such a way that we preserve certain properties at a cheaper
price.
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3.1 The d.o.f. and the subspace that we want to keep

We then assume that, among the original degrees of freedom, we have a subset of degrees
of freedom that we want to keep. Typically these will be the boundary ones (or a subset
of them, necessary to ensure the desired conformity properties for the global space) plus,
possibly, some internal ones that we will need in order to satisfy some additional prop-
erties (for instance, an inf-sup condition of the global space with respect to some other
given space).

All this will become clear in the examples that follow, but for the moment we do not
need to specify them. We just assume that our original degrees of freedom are numbered
in such a way that those that we want to keep are the first ones. In other words, given an
integer numberM≤ N , the degrees of freedom that we want to keep are F1, ...,FM.

We also assume that we have a subspace S ⊂ V that we want to preserve while
reducing V . A typical example would be to choose S as the space of polynomials up to
a certain degree, that we want to keep in order to ensure the desired accuracy for the final
discretized problem.

3.2 The crucial step

Here comes the crucial step: we assume that we have an intermediate set of degrees of
freedom (or, with a suitable numbering of the original ones, an integer S withM≤ S ≤
N ) having the crucial property defined here below.

Definition 3.1. The degrees of freedom F1, ...,FS are S -identifying if

∀q ∈ S {F1(q) = ... = FS(q) = 0} ⇒ {q ≡ 0}. (3.1)

Defining the operator DS : S → RS by

DS(q) := (F1(q), ...,FS(q)), (3.2)

we immediately have that property (3.1) could also be expressed as:

DS is injective from S to RS .

Remark 3.2. It is clear that we have, actually, to choose the degrees of freedom (within
FM+1, ...,FN ) that we want to add, and then re-order the degrees of freedom so that the
first S are “the first M ones plus the chosen additional ones”. However, quite often in
what follows, with an abuse of language we will talk about choosing S to mean that we
choose the additional degrees of freedom and, if necessary, we re-order the whole set.
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Note that, in a certain number of cases, we will be allowed to take S = M, meaning
that the degrees of freedom “that we want to keep in any case” are already S -identifying.
In other cases, we will have to add other degrees of freedom, on top of the firstM ones,
in order to have (3.1).

Remark 3.3. In all the examples in this paper, the choice of the degrees of freedom that
we want to keep, and the choice of the space S that we want to preserve will be dictated
by general needs on the properties of “the global space that comes out of the local spaces
used within each element”: conformity, accuracy, compatibility with other spaces, and so
on. On the other hand, the choice of the additional FM+1, ...,FS degrees of freedom (if
any) will depend very much on several other properties, related to the combination of: the
shape of E, the space S , and the degrees of freedom F1, ...,FM.

In all cases, the first important step will be to check whether the initial F1, ...,FM are
already S -identifying or not. And if they are not, an even more crucial (and sometimes
delicate) step will be to identify the space

Z := {q ∈ S such that F1(q) = ... = FM(q) = 0} (3.3)

and decide what are the additional degrees of freedom needed to obtain (3.1).
In several cases, depending on the dimension (2 or 3), on the types of spaces (nodal,

edge, face), on the degree of the polynomials S , and on the geometry of the element we
are working on, the identification ofZ , and the identification of a possible set of additional
degrees of freedom

FM+1, ...,FS (3.4)

will be relatively easy, and computationally cheap. In other cases, it risks to be a night-
mare. It is therefore worthwhile, in our opinion, to introduce a general strategy that,
though rather expensive (in terms of operations to be performed at the element level),
can be used in a systematic (and conceptually simple) way in the computer code. As we
shall see, in cases where the same decomposition is going to be used many times (for
solving PDE problems with different coefficients, or with different right-hand sides) such
a procedure, implemented once and for all, could be of great help.

3.3 A systematic way to pick FM+1, ...,FS
To further simplify the presentation, we also assume that the degrees of freedomFM+1, ...,FN
are naturally sliced in several layers: typically, when they correspond to moments against
a polynomial space, the slices could be the homogeneous polynomials of increasing de-
gree: 0, 1, 2, ..., k, or some obvious adaptations of this same slicing to other cases, for
instance when S is, say, a Raviart-Thomas space or a Nédélec-first kind space. Note that
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this is not necessary (we could always take N -M slices of size 1), but it could help in
simplifying the code, as well as the intuitive grasp of the procedure. Hence we introduce
the integer numbers σ0, σ1, ...σρ to identify the slices:

{FM+1, ...,FM+σ0}, {FM+σ0+1, ...,FM+σ1}, ..., {FM+σρ+1, ...,FN}. (3.5)

LetNS be the dimension of S . Taking a basis s1, ..., sNS
in S we can therefore consider

the NS ×N matrix D given by

Dij := Fj(si). (3.6)

Since S ⊆ V , and the degrees of freedom F1, ...,FN are unisolvent in V we easily
have that the matrix D has maximum rank (i.e. rank equal to NS ). Note that to say that
Z ≡ {0} is equivalent to say that the sub-matrix DM, made by the firstM columns of
D, has already maximum rank. And our target (in choosing NS ) is to have a sub-matrix
DNS

(made by the first NS columns of D) that has maximum rank. Having to choose S
we can proceed (in a sort of brutal way) by checking successively the sub-matrices

DM, DM+σ0 , DM+σ1 , ... (3.7)

until we find the first one that has maximum rank (that surely exists, since the whole
matrix D ≡ DN has maximum rank). This will determine a viable choice for S.

Needless to say, in a number of particular cases we could find a simpler, cheaper, and
sometimes more effective way of choosing S, as we shall see in the following sections.
However, the general strategy described above has to be considered as a solid back-up that
allows us to proceed even in the worst cases. Hence in the remaining part of the present
section, that deals with the general strategy to construct our Serendipity-like spaces, we
shall assume, from now on, that S has been chosen.

3.4 Construction of the Serendipity subspaces

It is now time to explain the way to construct (after S has been chosen) our Serendipity-
like local spaces, and in particular to see how property (3.1) is used for it.

Assume therefore that we have chosen the degrees of freedom F1, ...,FS , and let us
construct a suitable (serendipity!) subspace VS , with S ⊆ VS ⊆ V , for which F1, ...,FS
are a unisolvent set of degrees of freedom.

The procedure will now be simple, since we prepared everything already.
We define a projection operator ΠS : V → S as follows. For v ∈ V , we define ΠSv

as the unique element of S such that[
DS(ΠSv),DSq

]
RS

=
[
DSv,DSq

]
RS
∀q ∈ S (3.8)
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where [ · , ·]RS is the Euclidean scalar product in RS . Note that the fact thatDS is injective
(that is, property (3.1)) plays a crucial role in ensuring that problem (3.8) has a unique
solution in S . Needless to say, the Euclidean scalar product [ · , ·]RS could be substituted
by any other symmetric and positive definite bilinear form on RS .

Once ΠS has been defined, we can introduce the serendipity space VS as

VS := {v ∈ V such that Fi(v) = Fi(ΠSv) (i = S + 1, ...,N )}. (3.9)

The following proposition is an immediate consequence of this construction.

Proposition 3.4. With the above construction, the degrees of freedom F1, ...,FS are uni-
solvent for the space VS . Moreover, if v ∈ VS , using F1(v), ...,FS(v) one can compute
the remaining FS+1(v), ...,FN (v). Finally, we observe that S ⊆ VS .

To summarize the results of the present section, we recall that, in all cases, in order to
pass from the original space (with original degrees of freedom) to the Serendipity space
(with a smaller number of degrees of freedom), one has to:

• Identify theM degrees of freedom that we want to keep, and the polynomial space
S that we want to maintain inside the local space.

• Consider the space Z defined in (3.3).

• If Z ≡ {0}, take S =M and proceed directly to (3.8), and then to (3.9).

• If instead Z contains some nonzero elements, identify NZ additional degrees of
freedom that, added to the previous M, form a set of S -identifying degrees of
freedom, in the sense of Definition (3.1). Then take S =M+NZ .

Clearly, in the latter case, NZ will have to be equal, or bigger than the dimension of Z .
In the following sections we will first recall the mixed virtual element spaces already

introduced in [9] (although with slightly different degrees of freedom), and then discuss
the application of the general Serendipity strategy to each particular case.

4 Face Virtual Elements in 2d

4.1 Definition of the VEM spaces

We start by considering the two-dimensional face elements Vf
k,kd,kr

(E). For k, kd, kr
integers, with k ≥ 0, kd ≥ 0, kr ≥ −1 we set:

Vf
k,kd,kr

(E) :={v|v · ne∈Pk(e)∀ edge e, divv∈Pkd(E), rotv∈Pkr(E)}, (4.1)
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with the following degrees of freedom:

D1 :

∫
e

v · ne qk de for all qk ∈ Pk(e), for all edge e, (4.2)

D2 : for kd ≥ 1:
∫
E

v · gradqkd dE for all qkd ∈ Pkd(E), (4.3)

D3 : for kr ≥ 0:
∫
E

v · x⊥ qkr dE for all qkr ∈ Pkr(E). (4.4)

Proposition 4.1. The degrees of freedom (4.2)-(4.4) are unisolvent. Moreover, they allow
to compute the L2(E)-orthogonal projection operator from Vf

k,kd,kr
(E) to (Ps)2 for every

integer s ≤ kr + 1.

Proof. First we observe that, using (2.12) with s = kr, for every v in Vf
k,kd,kr

(E) we can
always find a pkr such that rot(x⊥ pkr) = rotv. Then rot(v − x⊥ pkr) = 0, and therefore
v − x⊥ pkr is a gradient. We deduce that:{

every v ∈ Vf
k,kd,kr

(E) can be written in a unique way as

v = gradφ+ x⊥pkr for some function φ and some pkr in Pkr .
(4.5)

This immediately gives the unisolvence of the do.f. Indeed, the number of d.o.f. being
equal to the dimension of Vf

k,kd,kr
(E), we have to show that if a v in Vf

k,kd,kr
(E) verifies

D1 = D2 = D3 = 0, then v ≡ 0. From D1 = 0 we immediately deduce v · n =

0 on ∂E which, together with D2 = 0 and an integration by parts gives div v = 0 in E.
Consequently:∫

E

v · gradϕ dE = −
∫
E

divv ϕ dE +

∫
∂E

v · nϕ de = 0 ∀ϕ ∈ H1(E). (4.6)

Finally, using (4.5), then (4.6) and D3 = 0:∫
E

|v|2 dE =

∫
E

v · (gradφ+ x⊥pkr) dE = 0 + 0. (4.7)

Arguing as for (4.6) we see that the d.o.f. (4.2) and (4.3) allow to compute the integral∫
E
v · p dE for every p = gradϕ, and ϕ polynomial of any degree. On the other hand,

the d.o.f. (4.4) allow to compute also
∫
E
v · x⊥p dE for every p ∈ Pkr . Hence, looking

now at (2.10), we deduce that for every s ≤ kr + 1 and for every v ∈ V f
k,kd,kk

(E) we can
compute the L2-projection Π0

sv on (Ps(E))2.

Remark 4.2. As it comes out clearly from the last part of the above proof, once the
degrees of freedom (4.2) and (4.3) match the values of k and kd (respectively) in (4.1),
then the computability of Π0

s (for s arbitrarily big) depends only on the value of kr.
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Remark 4.3. It is easy to see that when used in combination with the degrees of freedom
(4.2), the degrees of freedom (4.3) can equivalently be replaced by

• for kd ≥ 1:
∫
E

divv qkd dE for all qkd ∈ P 0
kd

(E). (4.8)

Along the same lines, it should also be pointed out, at the general level, that for the
same space we could obviously construct a huge number of different unisolvent sets of
d.o.f. which, as such, are all equivalent. In some cases the procedure that one has to follow
to pass from one set to an equivalent one is reasonably simple and can be performed with
a modest amount of computations. In other cases, however, this passage would require
much more difficult computations: typically, the solution of a partial differential equation
(or even a system of partial differential equations) within the element, something that goes
far beyond the work that one is ready to perform. Here for instance, instead of the degrees
of freedom (4.4) we could clearly use

• for kr ≥ 0:
∫
E

rotv qkr dE for all qkr ∈ Pkr(E). (4.9)

It is however easy to see that in order to pass from one set to the other we should solve a
div− rot system in E. Depending on what you need to compute inside the element E you
must therefore choose and use one set of degrees of freedom, and forget the other ones
that are equivalent but not “computationally equivalent”.

Remark 4.4. In principle, one could consider, say, face Virtual Elements with kd = −1,
implying that we restrict our attention to divergence-free vectors. Unfortunately, in this
case, the divergence theorem requires

∫
∂E
v ·n = 0 in (4.2), and we could not use a local

basis in the computational domain.

4.2 Comparisons with Finite Elements

The comparison between VEMs and FEMs can only be done on a limited number of clas-
sical geometries (here for simplicity we consider only simplexes and boxes). However
it should be clear from the very beginning that VEMs allow much more general geome-
tries. For these more general geometries the comparison should actually be done between
VEMs and other methods designed for polytopes, as for instance [13], [17], [22], [24],
[26], [27], [31], [33], [32], [34], [37], [40], [38], [41], [42], [45].

The natural comparison, within Finite Elements, of our V f
k,k−1,k−1 elements are clearly

the BDM spaces as described in (2.20) for triangles (see Figure 1).
The same comparison for quadrilaterals is shown in Figure 2. In both cases we see

that the elements in V f
k,k−1,k−1 have a higher number of degrees of freedom than the cor-

responding BDM Finite Elements.
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rot
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Figure 1: Triangles: BDMk and V EMk,k−1,k−1
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 D div
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Figure 2: Quadrilaterals: BDMk and V EMk,k−1,k−1
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On the other hand, the natural counterpart for V f
k,k,k−1 are the classical Raviart-Thomas

elements. For comparison, see Figure 3 for triangles, where again VEMs have more de-

div

0
RT RT

1

VEM
0,0,−1

VEM
1,1,0

VEM
2,2,1

2
RT

R R R R

D D D DDDD

R rot

D

Figure 3: Triangles: RTk and V EMk,k,k−1

grees of freedom. Instead, on quadrilaterals VEMs have a smaller number of degrees of
freedom than RT (see Figure 4).

  div

VEM VEM VEM

   

  

0
RT RT

  1
RT

2

0,0,−1 1,1,0 2,2,1

  

R R R R

  D  D   D
  D   D

  D  D

R

  D

rot

Figure 4: Quadrilaterals: RTk and V EMk,k,k−1

Finally, the natural counterpart of the V EM f
k,k,k are the BDFM finite element spaces.

We omit a detailed comparison, and we only point out that here too VEMs have more
degrees of freedom.
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4.3 B-Compatible Interpolators for Face VEM in 2d

Given a smooth enough vector valued function u, we can now use the degrees of freedom
(4.2)–(4.4) to define an interpolation operator that, for brevity, we denote by ΠI (neglect-
ing its obvious dependence on k, kd, kr, and E) given by

• ΠIu ∈ Vf
k,kd,kr

(E) and (4.10)

•
∫
e

(u− ΠIu) · ne qk de = 0 for all qk ∈ Pk(e), for all edge e, (4.11)

• for kd ≥ 1:
∫
E

(u− ΠIu) · gradqkd dE = 0 for all qkd ∈ Pkd(E), (4.12)

• for kr ≥ 0:
∫
E

(u− ΠIu) · x⊥ qkr dE = 0 for all qkr ∈ Pkr(E). (4.13)

It is easy to check that ΠI is a B-compatible operator (in the sense, for instance, of
Section 5.4.3 of [18]). In our particular case, this means that∫

E

div(u− ΠIu)qkd dE = 0, ∀qkd ∈ Pkd(E), (4.14)

which is an easy consequence of (4.11) and (4.12) upon an integration by parts.

Remark 4.5. It is important to point out that in the definition (4.11)-(4.13) of the operator
ΠI , only the degrees of freedom (4.11)-(4.12) are necessary in order to have (4.14). Hence,
among the degrees of freedom that we will want to keep (in our Serendipity approach), we
will have to include (4.11)-(4.12), in order to preserve conformity and B-Compatibility,
while the degrees of freedom (4.13) will be, so to speak, “expendible”.

5 Serendipity face elements in 2 dimensions

We want now to eliminate some of the internal degrees of freedom of the VEM spaces
defined in the previous section, following the general strategy of Sect. 3. As we have seen
there, we have to decide first what are theM degrees of freedom that we want to keep,
and what is the polynomial space that we want to preserve.

The first choice (concerning the degrees of freedom) is rather simple, as we already
pointed out in Remark 4.5: in order to have an H(div)-conforming global space we need
to keep all the boundary degrees of freedom, i.e., (4.2) in the present case; and in order to
preserve the B-compatibility we also need the degrees of freedom (4.3). Concerning the
space to be preserved, the obvious choice would be S = BDMk ≡ (Pk)2 if kd = k − 1,
and S = RTk if kd = k. Clearly, these are not the only possible reasonable choices.
In particular cases, other choices could also be valuable. For instance, if we know that
the H(div) component of the solution of our problem is a gradient, we can restrict out
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attention to the case of the gradients of Pk+1 (as suggested, for instance, in [20]. See also
[13] in the context of Mimetic Finite Differences).

Here however, we don’t want to enter the details of a very general setting. Hence, we
will limit ourselves to the cases kd = k and kd = k − 1, that, as we shall see, can be
treated with the same arguments. For this, we will denote simply by Sk the space to be
preserved, knowing that it should be either BDMk or RTk. Still following Section 3, we
go then hunting for the space Z in (3.3) that in both our cases reduces to

Zk := {v ∈ (Pk)2 such that divv = 0 in E and v · n = 0 on ∂E}. (5.1)

Assuming for simplicity that E is simply connected, Zk can also be written as

Zk = rot
(
Pk+1 ∩H1

0 (E)
)
. (5.2)

5.1 Characterization of Zk

Following [11] we start by observing that, for r integer ≥ 1, if a polynomial pr ∈ Pr,2
vanishes identically on a segment (with positive measure) belonging to the straight line
with equation ax+ by + c = 0, then pr can be written in the form

pr(x, y) = (ax+ by + c) qr−1(x, y) (5.3)

for some polynomial qr−1 of degree r − 1. As a consequence, if a polynomial pr in Pr,2
vanishes identically on r+1 segments (with positive measure) belonging to r+1 different
straight lines, then pr is identically zero. So far so good. Now, to the polygon E we attach
the integer number ηE defined as

ηE := the minimum number of straight lines necessary to cover ∂E, (5.4)

and we recall the following obvious but useful property (already used in [11]).

Proposition 5.1. Let pr ∈ Pr,2 be a polynomial of degree r that vanishes identically on
∂E. Then for r < ηE we have pr ≡ 0, and for r ≥ ηE we have that pr must be of the form
pr = qr−ηEbη, where qr−ηE is a polynomial of degree r − ηE and bη is a polynomial of
degree ηE that vanishes identically on ∂E.

As an immediate consequence of this and of (5.2), we have that

Zk :=

{
{0} for ηE > k,

rot
(
bηEPk−ηE+1

)
for ηE ≤ k.

(5.5)
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Remark 5.2. IfE is convex then bη will not change sign inE, a property that will become
handy in just a while. Moreover, assume that E is not convex, but there are only two “re-
entrant” edges (more precisely: edges belonging to straight lines that intersect the interior
of E, and consequently whose equations change sign inside E), and let γ2 be the second
degree polynomial that vanishes on the two straight lines that contain the two re-entrant
edges. In this case it is easy to see that the product bη γ2 does not change sign in E.

The following Lemma is an immediate consequence of Proposition 5.1.

Lemma 5.3. Assume, for simplicity, that E is convex, and let (k, kd, kr) be a triplet of
integers with k ≥ 0, kd ≥ max{0, k − 1} and kr ≥ k + 1− ηE . Assume that pk ∈ Zk is
such that

•
∫
E

pk · (x⊥qs) dE = 0 for all qs ∈ Pk+1−ηE(E). (5.6)

Then pk ≡ 0.

Proof. Using (5.5) we have that if k+1 < ηE the proof is immediate, while for k+1 ≥ ηE

then pk = rot(bηψ) for some polynomial ψ of degree k + 1 − ηE . Then we use (2.12)
with s = k + 1− ηE and ps = ψ to get a qs such that rot(x⊥ qs) = ψ, and we insert it in
(5.6) to obtain

0=

∫
E

pk · x⊥qs dE=

∫
E

rot(bη ψ) · x⊥qs dE

=

∫
E

(bη ψ)rot (x⊥qs) dE=

∫
E

bηψ
2 dE (5.7)

that ends the proof since bη does not change sign.

Remark 5.4. If we give up the convexity assumption we could always follow the path
of Subsection 3.2. Otherwise, we should find some “ad hoc” alternative ways to design
suitable sets of conditions that, in a way similar to Lemma 5.3, imply that pk = 0. This is
surely possible in many circumstances. For instance, assume that E is a quadrilateral with
two re-entrant edges, and k = 3 (so that k+ 1− ηE = 0, and (5.6) would be required just
for qs constant). Assuming that the origin is in the re-entrant vertex, we could use, instead
of (5.6), ∫

E

pk · (x⊥γ2) dE = 0, (5.8)

where γ2 is “the product of the two re-entrant edges” as in Remark 5.2. It is immediate
to see that, as the origin is in the re-entrant vertex, then γ2 is a homogeneous polynomial
of degree 2, so that from (2.13) we have rot(x⊥ γ2) = 4γ2. Hence, still following Remark
5.2, we have that bηγ2 does not change sign, and therefore the argument in (5.7) still goes
through. Indeed, always for k + 1 = ηE we would have now that ϕ = λbη for some
constant λ, and then:
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0 =

∫
E

pk · (x⊥γ2) dE =

∫
E

rot(λ bη) · (x⊥γ2) dE =

=

∫
E

(λ bη) rot (x⊥γ2) dE = 4

∫
E

λ bηγ2 dE (5.9)

that implies λ = 0 and ends the proof. However, a detailed study of the different cases of
non convex polygons and of the possible remedies goes beyonds the scope of the present
paper, and in any case we always have the systematic path of Subsection 3.2. Throughout
the sequel of the paper, for simplicity, we will stick to the convexity assumption.

5.2 The Serendipity face spaces

At this point we just have to follow the general setting of Section 3: define as in (3.2) the
mapping DS of the degrees of freedom, use it to define the operator ΠS as in (3.8), and
finally define our serendipity space as in (3.9).

Remark 5.5. It is easy to see that even for our Serendipity spaces we can construct an
interpolation operator, using this time the degrees of freedom (4.2) and (4.3), plus those
in (5.6) when ηE ≥ k. It is also easy to see that such an interpolation operator will be
B-compatible.

The new Serendipity elements can again be compared, for triangular and quadrilateral
domains, with classical finite elements of different types. The comparison with triangular
elements is, in some sense, not very interesting, since (as it can be easily checked) the new
Serendipity Virtual Elements coincide now exactly with the classical (polynomial) Finite
Elements, having the same number of degrees of freedom, and been one included in the
other. On the other hand, on quadrilaterals we have now a considerable gain, as it can be
seen in Figure 5.

In particular we can see that the new V EMSfk,k−1,k−1 (that is, Serendipity with Sk =

BDMk) have the same number of degrees of freedom as the corresponding BDM spaces
(although it has also to be noted that on the one hand VEMs are much more robust with
respect to geometric distortions, but on the other hand the elimination of the internal
degrees of freedom require an additional work that is not present in the traditional Finite
Elements). Instead, the V EMSfk,k,k−1 (that is, the Serendipity VEMs with Sk = RTk)
have now much less degrees of freedom than the corresponding Finite Element RT spaces.
And we recall once more that VEMs are defined on almost arbitrary geometries. The
comparison, actually, should be done with Serendipity RT spaces. In that case we have
exactly that same number of degrees of freedom as (for instance) the elements in [5]
(but again, with much more generality in the geometry and additional work inside the
elements).
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Figure 5: FEM spaces, VEM spaces and Serendipity ones

Remark 5.6. For stability reasons, in practice, in the definition (5.4) of ηE it would be
wise to apply the same (slight) correction that we used already in [11] for nodal elements:
it consists in taking a smaller value of ηE (and hence using more degrees of freedom)
whenever we have two or more edges that belong almost to the same straight line. Practi-
cally this corresponds to decide (once and for all) a minimum angle θ0 and then to consider
that two straight lines are “distinct” only if they cross with four angles all bigger than θ0.
Parallel lines can be accepted if their distance is not too small (compared with the diam-
eter of E). Note that, in the framework of the general systematic strategy of Subsection
3.2, this would correspond to decide the minimum amount of the smallest singular value
in the matrix D in (3.7) to be accepted in order to say that it has “maximum rank”.

Remark 5.7. Always for stability reasons, the use of the Euclidean scalar product in RS

in (3.8) is recommended only if the degrees of freedom “scale in the same way” (a concept
widely used in the VEM context: see e.g. [7]).

5.3 The lazy choice, the stingy choice, and the static condensation

Always following what has been done in [11], we can distinguish different types of strate-
gies to be adopted in coding these elements, in particular when dealing with very general
geometries. The two extremes of this set of possible choices have been called the stingy
choice and the lazy choice. Here we recall the basic ideas behind them, pointing out,
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however, that there a number of intermediate strategies, to be used to adapt to the differ-
ent situations. The stingy choice corresponds to use the Serendipity strategy in order to
drop as many internal degrees of freedom as we can. This, referring to Remark 5.6, and
considering for simplicity the case of convex polygons, would correspond to compute ηE
taking a small minimum angle, and then reduce the number of internal additional degrees
of freedom to πs,2 with s ≤ k − ηE + 1. In a more general context (even without the con-
vexity assumption), following the general strategy of Subsection 3.2, this would imply,
for instance, to take slices of dimension 1, and discard each one that does not increase the
rank of the submatrix DM+σ in (3.7).

The lazy choice, instead, would correspond to minimize the work necessary to choose
the additional d.o.f. (3.4). This can be done, for instance, pretending that ηE = 3, and
therefore considering, as additional degrees of freedom (5.7), all the polynomials of the
form x⊥q with q ∈ Pk−2. Note that already on a general quadrilateral mesh, for any
quadrilateral that is not degenerated into a triangle our theory allows to take in (5.3) q ∈
Pk−3, using only πk−3,2 additional degrees of freedom and saving k − 1 (that is: πk−2,2 −
πk−3,2) degrees of freedom with respect to the triangular case. But, as a counterpart, it
would require to check the “non-degeneracy into a triangle” of every element. A non-
obvious trade-off. For more general decompositions, with a high k, both the cost and the
gain of the stingy choice would be more conspicuous. Then the decision could rely on
several factors, including the degree k but also, for instance, the number of problems that
we plan to solve on the same grid.

Another matter that would be worth discussing is the comparison with static conden-
sation techniques, that, when solving with a sophisticated direct method, could become
almost automatic and be reasonably cheap. There too, the gain/loss assessment is not al-
ways obvious. We just point out that the present serendipity procedure is not equal to
static condensation (as, for instance, the static condensation of the internal node of a Q2

nine-node finite element is not equal to use a Serendipity eight-node element). Moreover
we point out that, if Serendipity elements are used on the faces of a three-dimensional
decomposition, then the gain is much more clear, since the static condensation of face
unknowns is surely far from obvious.

6 General edge elements in 2d

6.1 Edge VEM spaces and degrees of freedom

The case of edge elements in two dimensions can be treated exactly as we did for face
elements. We summarize them quickly. We set, for every k ≥ 0, kd ≥ −1, and kr ≥ 0:

Ve
k,kd,kr

(E) := {v|v · te∈Pk(e)∀ edge e, divv∈Pkd(E), rotv∈Pkr(E)}, (6.1)



22 L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo

with the degrees of freedom:

D̃1 :

∫
e

v · te qk de for all qk ∈ Pk(e), for all edge e, (6.2)

D̃2 : for kr ≥ 1:
∫
E

v · rotqkr dE for all qkr ∈ Pkr(E), (6.3)

D̃3 : for kd ≥ 0:
∫
E

v · x qkd dE for all qkd ∈ Pkd(E). (6.4)

Similar to Proposition 4.1 we have

Proposition 6.1. The degrees of freedom (6.2)-(6.4) are unisolvent.

Moreover, proceeding as in Remark 4.2 we easily see that out of the above d.o.f. one
can compute ∫

E

v · q dE for every q ∈ (Pkd+1)
2, (6.5)

and hence the projection operator on (Pkd+1(E))2.

Remark 6.2. It is easy to see that when used in combination with the degrees of freedom
(6.2), the degrees of freedom (6.3) can equivalently be replaced by

• for kr ≥ 1:
∫
E

rotv qkr dE for all qkr ∈ P0
kr

(E). (6.6)

Here too we could argue as in Remark 4.3 regarding other equivalent but possibly not
“computationally equivalent” degrees of freedom.

Remark 6.3. In almost all applications, the value of kr in (6.1) is either equal to k or equal
to k − 1. This, as we already saw for face elements, corresponds to choices mimicking
the Nédélec Finite element spaces of first and second kind (that is, N1 and N2), and,
ultimately, the choice among the two cases depends on the accuracy that we demand in
H(rot) (and not only in L2).

Remark 6.4. As we did in Remark 4.4, for Edge Virtual Elements we cannot take kr =

−1, unless we give up the possibility of having a local basis.

6.2 Edge Serendipity VEMs in 2d

We can now extend all the definitions and results obtained for Face Serendipity VEMs
to the case of Edge Serendipity VEMs, just by changing, as we did so far, “n” into “t”,
then “div” into “rot”, and finally “kd, kr” into “kr, kd”. In particular we have now

Zk := {v ∈ (Pk)2 such that rotv = 0 in E and v · t = 0 on ∂E}. (6.7)
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Assuming for simplicity that E is simply connected, Zk can also be written as

Zk := grad
(
Pk+1 ∩H1

0 (E)
)

(6.8)

that can be analyzed exactly as in the case of face VEM. Recalling Proposition 5.1 we
have now

Zk :=

{
{0}, for ηE > k,

grad
(
bηEPk−ηE+1

)
for ηE ≤ k.

(6.9)

Then for our Serendipity space we just have to keep (6.2)-(6.3) plus, for k + 1− ηE ≥ 0,
the additional d.o.f.

•
∫
E

v · x q dE for all q ∈ Pk+1−ηE(E). (6.10)

Then everything proceeds as a mirror image of what has been done and said in Sections
3 and 5. In particular, after choosing S as (tipically) N1k or N2k, we can construct a
projector ΠS : Ve

k,kd,kr
(E) → S , based on the degrees of freedom (6.2), (6.3), and

(6.10), and then define, as in (3.9),

Ve
k,S,kr(E) := {v ∈ Ve

k,kd,kr
(E) s. t. Fi(v)=Fi(ΠSv), i=S + 1, ..,N}. (6.11)

7 General face elements in 3d

7.1 The spaces and the degrees of freedom

The definition of the spaces Vf
k,kd,kr

in three dimensions is an immediate generalization
of the two-dimensional case, essentially using (2.16) instead of (2.10). For k ≥ 0, kd ≥ 0,
and kr ≥ −1 they can be defined as

Vf
k,kd,kr

(E) := {v| such that v · nf ∈ Pk(f)∀ face f,

divv ∈ Pkd(E), curlv ∈ (Pkr(E))3}. (7.1)

It is easy to see (arguing as in the two-dimensional case) that we can take, as degrees
of freedom in Vf

k,kd,kr
(E), the following ones

•
∫
f

v · nf qk df for all qk ∈ Pk(f), for all face f, (7.2)

• for kd ≥ 1 :

∫
E

v · gradqkd dE for all qkd ∈ Pkd(E), (7.3)

• and for kr ≥ 0 :

∫
E

v · x ∧ qkr dE for all qkr ∈ (Pkr(E))3. (7.4)

It is also easy to see that, proceeding as in the proof of Proposition 4.1, out of the above
degrees of freedom one can compute the integral∫

E

v · q dE for every q ∈ (Pkr+1)
3, (7.5)
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and then the L2-projection operator Π0
kr+1 on the space (Pkr+1,3)

3.

Remark 7.1. As we did in the previous cases, we can easily see that we could substitute
the degrees of freedom (7.3) with the equivalent ones

•
∫
E

divv qkd dE for all qkd ∈ P0
kd

(E). (7.6)

It is also immediate to see that the degrees of freedom (7.6) are also “computationally
equivalent” to (7.3).

Remark 7.2. In different applications, one could give up the possibility to compute the
L2-projection operator Π0

kr+1 and use, instead of (7.4), the degrees of freedom

•
∫
E

curlv · qkr dE for all qkr ∈ (Pkr(E))3div. (7.7)

(see the notation (2.9)) that are equivalent (but not “computationally equivalent”, in the
spirit of Remark 4.3) to (7.4).

7.2 Serendipity face elements in 3d

The construction of the Serendipity variants of the face Virtual Elements defined in (7.1)
is decidedly more complicated than in the two-dimensional case. As before, in order to
have an H(div) conforming global space and preserve the B-compatibility, we will need
to keep the degrees of freedom (7.2) and (7.3), so that the Serendipity reduction will act
only on the degrees of freedom (7.4).

But the main difference here is in the characterization of the space Zk:

Zk(E) = {z ∈ (Pk)3 such that z · n = 0 on ∂E, and divz = 0 in E}. (7.8)

Indeed, in two dimensions, the elements of Zk were the rot of a scalar function vanishing
on the whole ∂E, and their characterization (in Proposition (5.1)) was relatively easy. In
three dimensions, instead, we have the curl of a vector valued potential whose tangential
components vanish on all faces.

It is immediate to see that for k = 0 and k = 1 the space Zk is reduced to {0}. The
characterization of the elements of Zk for k ≥ 2, instead, is less obvious, and to perform
it for a general polyhedral geometry looks rather heavy and complex, so that it seems
advisable to stick on the systematic strategy of Subsection 3.2, unless the decomposition
has some particular feature that could be exploited.

However, to give an idea of the type of problems to be tackled, we report here, as an
example, the treatment of the simplest case of a tetrahedral element (that might also come
out handy if we opt for some kind of lazy choice).
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7.3 The space Zk(E) for k ≥ 2 on a tetrahedron

We need some additional notation. Let f1, .., f4 be the faces of E, let λi be the P1 polyno-
mial such that: λi(x) = 0 is the plane containing the face fi, and the outward unit normal
to E on fi is given by ni = ∇λi. Then,

• let b4 be the fourth degree polynomial λ1λ2λ3λ4,

• for i = 1, .., 4 let b(−i)3 be the product of all the λj with j 6= i.

We also recall the elementary equality

curl(ϕ∇ψ) = ∇ϕ ∧∇ψ ∀ϕ, ψ ∈ H1. (7.9)

Proposition 7.3. With the above notation, for every polynomial p and for every face fi
(with 1 ≤ i ≤ 4) we have

• (∇p ∧∇λi) · ni = 0

• div(∇p ∧∇λi) = 0

• For every i with 1 ≤ i ≤ 4, if p contains b(−i)3 as a factor, then we have (∇p∧∇λi) ·
n = 0 on all ∂E.

Proof. The first statement follows immediately from the fact that ni = ∇λi and the prop-
erties of the scalar triple product. The second follows immediately from (7.9) observing
that ∇p ∧ ∇λi = curl(p∇λi). Finally, to see the third we remark that on each face
fj (j 6= i) the condition “p = 0 on fj” implies that ∇p is directed as nj = ∇λj . Hence,
on each face fj (whether j = i or not!) at least one between∇p and∇λi is directed as nj
and the scalar triple product vanishes.

As a consequence of Proposition 7.3 we have that:

• for all polynomial p of degree k − 3, and for every constant vector c, we have that
curl(cb4p) belongs to Zk;

• ∀i with 1 ≤ i ≤ 4 and for all polynomial p ∈ Pk−2 we have that curl(∇λib(−i)3 p)

belongs to Zk.

We can then introduce some additional notation. For s ≥ 1 integer,we set

• Bs (the bubbles of degree ≤ s):= {p ∈ Ps(E) : p ≡ 0 on ∂E}.
Note that Bs ≡ {0} for s < 4, and for s ≥ 4 the dimension of Bs is equal to πs−4,3.

For 1 ≤ i ≤ 4 we define
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• Cis (the cups of degree ≤ s):= {b(−i)3 ps−3ni, ps−3 ∈ Ps−3}.
Note that an element of Cis vanishes on the whole ∂E with the only possible excep-
tion of the face fi. Moreover, Cis ≡ {0} for s < 3, and for s ≥ 3 the dimension of
each Cis is equal to πs−3,3.

Then we set

• Cs := span{Cis(i = 1, ..., 4)}.

We have the following result.

Proposition 7.4. Let E be a tetrahedron. Then it holds

Zk = curl(Ck+1) .

Proof. Since we already noted that curl(Ck+1) ⊆ Zk, we only need to prove the converse.
From (7.8) it is easy to check that the space Zk can be written as

Zk =
{

curlp | p ∈ (Pk+1)
3 such that rotf (pτf ) = 0 for all f ∈ ∂E

}
, (7.10)

where we used the well known formula rotfpτf = (curlp|f ) ·nf , valid on every face f of
E.

Therefore, in order to show that Zk ⊆ curl(Ck+1), it is sufficient to prove that for any
p as in definition (7.10) there exists an element ck+1 ∈ Ck+1 such that curlck+1 = curlp.
The above condition is surely satisfied if, given any p as in definition (7.10), we can find
ck+1 ∈ Ck+1 and ψ ∈ Pk+2(E) such that

ck+1 + gradψ = p in E. (7.11)

We start by working on the boundary of the element. Take any face f ∈ ∂E. Since by
definition rotfpτf = 0, there exists a qf ∈ Pk+2(f) such that

pτf = gradfqf on f. (7.12)

Note that each qf , f ∈ ∂E, is uniquely defined up to an additive constant; we also observe
that across each edge e of E (with faces f, f ′ sharing e) it holds

gradqf · te = p|f · te = p|f ′ · te = gradqf ′ · te. (7.13)

Running along the edges of each face (and taking into account that rotfqf = 0 on each
face f ), it is then easy to check that we can choose the free additive constants for qf in
such a way that they glue continuously across all edges.

We can therefore define ψ on each face as follows

ψ|f = qf ∀f ∈ ∂E, (7.14)
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and have that ψ is continuous on ∂E and face-wise polynomial of degree k + 2.
Therefore, we can now take ψ ∈ Pk+2(E) in (7.11) as any polynomial having such a

function as a trace (here is where we use the fact thatE is a tetrahedron). Note that if k < 2

there is only one such polynomial, otherwise there are infinitely many, actually a space
of dimension πk−2,3. Using (7.14), (7.12) and recalling that the tangential components of
elements in Ck+1 on the boundary are always vanishing, we have found that

∀f ∈ ∂E, ∀c̄k+1 ∈ Ck+1

(
c̄k+1 + gradψ

)τf
=
(

gradψ
)τf

= pτf , (7.15)

where the notation (2.6) was used for the tangential components. Let now e ∈ ∂E be an
edge shared by two faces f, f ′, and let s denote the unit vector co-planar with f and or-
thogonal to e (pointing outwards with respect to f ). Similarly, let s′ denote the analogous
vector with respect to f ′. It is immediate to check that {te, s, s′} are linearly independent.
Using (7.13) and (7.15) we obtain that on the edge e

gradψ · te = p · te, gradψ · s = p · s, gradψ · s′ = p · s′.

We conclude that in particular

gradψ|e = p|e ∀e ∈ ∂E. (7.16)

From (7.16) we have that, for all fi in ∂E, the difference (gradψ − p)|fi · n vanishes on
the boundary of the face fi, and is in Pk+1(f). Therefore such a function is a polynomial
bubble of degree k + 1 on the face; thus one can always find a cup cik+1 such that(

p− gradψ
)
|fi
· ni = b

(−i)
3 pik−2 =: cik+1 · ni, i = 1, .., 4.

Note that each cup cik+1 vanishes on all faces fj with j 6= i. By taking the function
c̄k+1 =

∑4
i=1 c

i
k+1 and using (7.15) and (7.16) we have then

p− gradψ − c̄k+1 = 0 on ∂E. (7.17)

The function on the left hand side of (7.17) is a polynomial in (Pk+1)
3 that vanishes on

∂E, and is therefore in the space of bubbles (Bk+1)
3. Since (Bk+1)

3 ⊂ Ck+1 we can find a
ĉk+1 ∈ Ck+1 such that

p− gradψ − c̄k+1 = ĉk+1 on E.

The proof is therefore concluded taking ψ as above and ck+1 = c̄k+1 + ĉk+1.

We now look into the dimension of the space curl(Ck+1) = Zk. We note that, for every
p ∈ Bs we have four cups nip ∈ Cis (i = 1, ..., 4), but only three of them are independent,
as only three normals are independent. Hence, in particular, it must hold

dim(Cs) ≤ 4 πs−3,3 − πs−4,3, (7.18)
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that applied to s = k + 1 gives

dim(Ck+1) ≤ 4πk−2,3 − πk−3,3. (7.19)

According to what we saw in Proposition 7.4, every curl of an element of Ck+1 is an
element of Zk. However, we note that for every ψk−2 ∈ Pk−2 the gradient of ∇(b4ψk−2)

belongs to Ck+1, and curl∇(b4 ψk−2) is zero. Hence

dim(Zk) = dim
(
curl(Ck+1)

)
≤ dim(Ck+1)− πk−2,3 ≤ 3πk−2,3 − πk−3,3. (7.20)

On the other hand, we easily obtain a lower bound on the dimension of Zk by taking
the dimension of (Pk)3 and subtracting the number of constraints in (7.8). This is only
a lower bound since in principle some of those constraints could be linearly dependent.
Noting that the integral of the divergence must be equal to zero for any function with
vanishing normal component on the boundary, one obtains

dim(Zk) ≥ 3πk,3 − 4πk,2 − πk−1,3 + 1 = 3πk−2,3 − πk−3,3, (7.21)

where the last identity is trivial to check. Combining bounds (7.20) and (7.21) we obtain
that

dim(Zk) = 3πk−2,3 − πk−3,3.

Other ad-hoc arguments could be applied for specific geometries. For instance it is
almost immediate to check that on the unit cube ] − 1, 1[3 we have Z1 = Z2 = {0} and
setting b6 := (x2 − 1)(y2 − 1)(z2 − 1)

Z3 = curl
(
span

{
((

b6
x2 − 1

, 0, 0), (0,
b6

y2 − 1
, 0), (0, 0,

b6
z2 − 1

)
})
.

7.4 The lazy choice and the stingy choice

As we have seen, it is far from easy to design general properties that allow, for each
single polyhedron, a simple and systematic strategy to spot the elements of Zk, and use
them to chose the Sk-preserving degrees of freedom. The “simple” available choices are
essentially the lazy choice, and the systematic strategy of subsection 3.2 (with various
prices depending on the type of slicing that we choose).

In particular here the lazy choice would correspond to treat every polyhedron as if
it was a tetrahedron, by picking, in an almost arbitrary way, four different planes that
contain one or more faces each, and then construct the cups and the bubbles relative to
the tetrahedron T made by the four chosen planes. Clearly the number of these cups and
bubbles will depend on the desired accuracy k. Out of them we can then construct the
elements of Zk(T ). To construct a suitable set of Sk-preserving degrees of freedom we
will keep all the boundary degrees of freedom (7.2) and all the “divergence” degrees of
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freedom (7.3), then rearrange the other ones, inserting suitable ones based on Zk(T ):
typically, integrals, over T , against all the elements of Zk(T ). Clearly, on a polyhedron
with many faces, the true space Zk will be much smaller, and our lazy choice will force
us to use many more degrees of freedom than needed.

Moreover the lazy choice, unfortunately, will not be available when E is a paral-
lelepiped (with three pairs of parallel planes). This happens since we cannot find four
faces with four normals all different from each other (as needed to build a tetrahedron).
On the other hand, the systematic strategy described in Subsection 3.2 is always a way-
out, although it might require a heavy additional work on each element (that in our opinion
would be worth the effort only in very special cases, and in particular if one plans to use
the same mesh for many different computations).

Remark 7.5. It is easy to see that, similarly to what has been done for face 2d elements
(and extended to edge 2d elements), here too we can easily construct a B-compatible
interpolation operator, that will work both for the original face 3d spaces and for their
Serendipity variant. See again (4.14) and Remark 5.5.

8 Edge elements in 3d

The definition of edge elements in three dimensions is more complex than the above, and
requires suitable VEM spaces on the faces, and suitable VEM spaces inside.

8.1 The boundary

At a (very) general level, for every triplet β = (β, βd, βr) and for every face f we set

Ve
β(f) := Ve

β,βd,βr
(f) (8.1)

and we define

Bβ(∂E) := {v|vτf ∈ Ve
β(f)∀ face f andv · tecontinuous∀ edge e of ∂E}. (8.2)

8.2 The curl

For every triplet µ = (µ, µd, µr) we set

Vf
µ(E) := Vf

µ,µd,µr
(E). (8.3)
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8.3 The space

We are ready: for indexes β, kd, µ with βr = µ we define

Ve
β,kd,µ

(E) := {v| s.t. v|∂E ∈ Bβ(∂E); divv ∈ Pkd(E), curlv ∈ Vf
µ}. (8.4)

Note that the equality βr = µ must be required because, on every face f , we have that
rotfvτf (that belongs to Pβr(f)) coincides with (curlv) ·nf (that belongs to Pµ(f)), that
is

rotfvτf ≡ (curlv) · nf ≡ w · nf . (8.5)

This can be easily seen by considering a face f with equation x3 = 0 where curlv ·
nf (the third component of curlv) is given by v2,x − v1,y ≡ rotfvτf . Moreover, since
the divergence of any curlv ∈ Vf

µ(E) vanishes, one can directly take µd = −1 in the
definition of µ. As a consequence of the above observations, we always have µ = βr and
µd = −1. Therefore the space Ve

β,kd,µ
(E) in (8.4) is determined by five (and not seven)

parameters.
As far as the degrees of freedom are concerned, we need, at the boundary:

•
∫
e

v · te qβ de for all qβ ∈ Pβ(e), for all edge e, (8.6)

• for βd ≥ 0:
∫
f

v · x qβd df for all qβd ∈ Pβd(f) for all face f, (8.7)

• for βr ≥ 1:
∫
f

v · rotqβr df for all qβr ∈ Pβr(f) for all face f . (8.8)

As we observed in the two-dimensional case (see (6.5)) we see that out of the above
degrees of freedom we will be able to compute, for each v ∈ Bβ(∂E):∫

f

vτf · qs df ∀ face f and ∀ qs ∈ (Ps(f))2, for s ≤ βd + 1. (8.9)

As far as w := curlv is concerned, we should use (7.2)-(7.4). We note however that,
always for µ = βr and using (8.5), the d.o.f. (7.2) are already determined by the values
of rotfvτf on each face, that in turn can be computed using (8.8) and (8.6). Similarly, the
d.o.f (7.3) (after integration by parts) are equal to

∫
∂E
w·n qµd , since obviously divw = 0.

Hence, the only information that is needed, in addition to (8.6)-(8.8) is:

• for µr ≥ 0 :

∫
E

w · x ∧ qµr dE for all qµr ∈ (Pµr(E))3. (8.10)

Following the previous discussion (see formula (7.5)) we see that out of the above degrees
of freedom we will be able to compute, for each v ∈ Ve

β,kd,µ
(E):∫

E

(curlv) · qs df ∀ qs ∈ (Ps(f))3, for s ≤ µr + 1. (8.11)
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After we took care of w ≡ curlv we must (finally) require

• for kd ≥ 0:
∫
E

v · x qkd dE for all qkd ∈ Pkd(E). (8.12)

Remark 8.1. If we need to compute the projection of an element v ∈ Ve
β,kd,µ

(E) onto
the space (Ps(E))3 we can use the decomposition (2.15) as

ps = curlqs+1 + xrs−1

and, integrating the first term by parts, write∫
E

v · ps =

∫
E

v · curlqs+1 +

∫
E

v · xrs−1

=

∫
E

curlv · qs+1 +

∫
∂E

vτf · qs+1 ∧ n+

∫
E

v · xrs−1. (8.13)

In the last line, the first term, as in (8.11), can be computed for s+ 1 ≤ µr + 1 (meaning
obviously s ≤ µr); the second term, as in (8.9) can be computed for s + 1 ≤ βd + 1

(meaning, here too, s ≤ βd) and finally the last term, following (8.12), can be computed
for s − 1 ≤ kd, meaning s ≤ kd + 1. Summarizing: the projection of an element v ∈
Ve

β,kd,µ
(E) onto the space (Ps(E))3 can be computed for

s ≤ min{µr, βd, kd + 1}.

Remark 8.2. In a case like the present one (in which the space curl(Ve
β,kd,µ

(E)) is not
a polynomial space), the “B-compatibility property” (see e.g. (4.14)) would be better de-
fined, for an interpolation operator Π from (C1(E))3 to Ve

β,kd,µ
(E), as

∀u ∈ (C1(E))3 with curlu ∈ Vf
µ(E) we have curl(Πu− u) = 0. (8.14)

With that, we easily see that the natural interpolation operator associated with the degrees
of freedom (8.6)- (8.8), (8.10), and (8.12) is curl-preserving.

All this is, dealing with spaces with seven indexes, is very general, and very confusing.
We shall therefore look at some particular case.

8.4 A particular case: N2-type VEMs

We set β = (k, k − 1, k − 1), µ = (k − 1,−1, k − 2), and kd = k − 1. Then we have for
each face, the N2-like VEM space:

Ve
β(f) := Ve

k,k−1,k−1(f) ≡ {v| such that

v · te ∈ Pk(e)∀ edge e, divfv ∈ Pk−1, rotfv ∈ Pk−1}. (8.15)
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Note that, for a triangular face, we will have the space (Pk(f))2. The space Bβ(∂E) will
then be made of vector valued functions that on each edge have a tangential component
of degree ≤ k, and whose tangential part on each face has a 2-d divergence and a 2-d
rotational polynomials of degree ≤ k − 1. Moreover the tangential components on edges
are continuous (= single valued) when passing from a face to a neighboring one.

As degrees of freedom in Bβ(∂E) we have

•
∫
e

v · te qk ds on each edge e, for each qk ∈ Pk(e), (8.16)

•
∫
f

vτf · xτf qk−1 df on each face f , for each qk−1 ∈ Pk−1(f), (8.17)

•
∫
f

vτf · rot2qk−1 df on each face f , for each qk−1 ∈ Pk−1(f). (8.18)

As additional degrees of freedom for w ≡ curlv in Vf
µ(E) ≡ Vf

k−1,−1,k−2(E) we have,
according to (8.10)

•
∫
E

w · x ∧ qk−1 dE for all qk−1 ∈ (Pk−1(E))3. (8.19)

Finally we will need the degrees of freedom (8.12) that now become

•
∫
E

v · x qk−1 dE for all qk−1 ∈ Pk−1(E). (8.20)

One can see that this could be interpreted as a generalization to polyhedrons of the
Nédélec second-kind elements.

We point out that the space defined in (8.15) is exactly the same three-dimensional
edge space introduced in [9], while the degrees of freedom are different.

8.5 Another particular case: N1-type spaces

The Virtual Elements of the previous subsection were of the BDM or N2 type. Let us
see here those of RT or N1 type.

We set β = (k, k − 1, k), µ = (k,−1, k − 1), and kd = k − 1. Then we have for each
face:

Ve
β(f) := Ve

k,k−1,k(f) ≡ {v| such that

v · te ∈ Pk(e)∀ edge e, divfv ∈ Pk−1, rotfv ∈ Pk}. (8.21)

The space Bβ(∂E) will be made of vector valued functions that on each edge have a
tangential component of degree ≤ k, and whose tangential part on each face has a 2-d
divergence of degree k − 1 and a 2-d rotational of degree ≤ k. Moreover the tangential
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components on edges are continuous (= single valued) when passing from one face to a
neighboring one.

As degrees of freedom in Bβ(∂E) we have

•
∫
e

v · te qk ds on each edge e, for each qk ∈ Pk(e), (8.22)

•
∫
f

vτf · xτf qk−1 df on each face f , for each qk−1 ∈ Pk−1(f), (8.23)

•
∫
f

vτf · rot2qk df on each face f , for each qk ∈ Pk(f). (8.24)

As additional degrees of freedom for w ≡ curlv in Vf
µ(E) ≡ Vf

k−1,−1,k−1(E) we have,
according to (8.10)

•
∫
E

w · x ∧ qk dE for all qk ∈ (Pk(E))3. (8.25)

Finally we will need the degrees of freedom (8.12) that now become

•
∫
E

v · x qk−1 dE for all qk−1 ∈ Pk−1(E). (8.26)

One can see that this could be interpreted as a generalization to polyhedrons of the N1
elements.

8.6 Unisolvence of the degrees of freedom

For the sake of simplicity, we will discuss the unisolvence of our degrees of freedom for
3d edge Virtual Elements of the type N2. The extension to the general case would be
conceptually trivial and only the notation would be heavier.

Assume therefore that, for a particular v in our space, all the degrees of freedom
(8.16)-(8.20) are zero. Using the degrees of freedom (8.16)-(8.18) (which are on each face
the analogues of (6.2)-(6.4)) we easily see that on each face f the tangential component
vτf is identically zero, thanks to Proposition 6.1. Hence, the normal component of w =

curlv will also be zero on each face, that is, the d.o.f. (7.2) forw are zero. We also have,
integrating by parts and using divw = 0,

.

∫
E

w · gradqk−1 dE =
∑
f

∫
f

w · n qk−1 df = 0 for all qk−1∈Pk−1(E), (8.27)

so that the d.o.f. (7.3) forw are also zero. Finally, since the d.o.f. (8.19) are equal to zero,
we have that (7.4) for w are also zero. The unisolvence of the degrees of freedom (7.2)-
(7.4) for face elements implies then w ≡ curlv = 0. Therefore, v = gradϕ for some
ϕ ∈ H1(E), and since vτf = 0 on the boundary we can take ϕ ∈ H1

0 (E). As divv ∈ Pk−1
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we have that ∆ϕ ∈ Pk−1. Since we assumed that the degrees of freedom (8.20) are also
zero, and recalling (2.17) we deduce that∫

E

ϕpk−1 dE = 0 ∀pk−1 ∈ Pk−1. (8.28)

Thus, ∫
E

|∇ϕ|2 dE = −
∫
E

ϕ∆ϕ dE = 0, (8.29)

so that ϕ = 0 and hence v = 0.
With minor modifications, the above proof can be adapted to the general case given in

(8.4).

8.7 Serendipity Edge Virtual Elements in 3d

Following the same path of the previous sections, we could now construct the serendipity
variants of our 3d edge VEMs.

We remark however, from the very beginning, that (contrary to what happened for face
3d elements), here on each face we have a 2d VEM space (and not just a polynomial as
we had in in (7.1)). We also point out that there is a big difference, for three-dimensional
elements, between the degrees of freedom internal to the element (that could be elimi-
nated by static condensation) and the degrees of freedom internal to faces, where static
condensation cannot be applied).

We also point out that in general the number of faces is quite big: for instance, on a
regular mesh of n×n×n cubes we have n3 cubes and, asymptotically, 3n3 faces (precisely
3n3 + 3n2, including the boundary ones).

Hence it would be very convenient, whenever possible, to use, on faces, the 2d serendip-
ity spaces (introduced in Subsection 6.2) instead of the original ones from Subsection 6.1.
In order to describe the Serendipity reduction for the present three-dimensional edge el-
ements, we could choose for simplicity one of the two classical cases (N1-like VEMs or
N2-like VEMs), or else remain in the more general context of the space (8.4). Following
what we did in Subsection 8.4 we take the simplest case of N2-like VEMs, in the hope
that once this case is clear the more complex ones could be reconstructed without major
efforts.

Hence, we start by changing (8.2) into

BSk (∂E) := {v| such that vτf ∈ Ve
Sk

(f) for all face f of ∂E

and v · te continuous along the edges e of ∂E}, (8.30)

where with our choice the space Sk to be preserved, on each face f , is N2(f), and
Ve

Sk
(f) is the corresponding 2d serendipity edge space constructed in Sect. 6 (that is,

precisely, (6.11) with βr equal to k − 1).
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If, for the sake of simplicity, every face f of E is a convex polygon, we can now apply
the general strategy of Sect. 3 to each face. Thus we have:

Proposition 8.3. Assume that every face f of E is a convex polygon, and let ηf be defined
as in (5.4). Then in BSk (∂E) we can use the degrees of freedom

•
∫
e

v · te qk de, ∀ qk ∈ Pk(e), ∀ edge e, (8.31)

• for k ≥ 2 :

∫
f

v · rotf qk−1 df, ∀qk−1 ∈ Pk−1(f), ∀ face f, (8.32)

plus, whenever s := k + 1− ηf is non-negative,

•
∫
f

v · x qs df, ∀qs ∈ Ps(f)∀ face f. (8.33)

Then, as a starting space, we use

V e
k (E) ={v| s.t. v|∂E∈BSk (∂E); divv∈Pk−1(E), curlv∈Vf

k,−1,k−1}. (8.34)

Starting from V e
k (E), and following our choice of N2-like VEMs, we now choose the

polynomial space (that we still denote by Sk) that we want to preserve, as N2k(E) (that
is, (Pk(E))3). Then, following the track of the previous cases, we start our “Serendipity
reduction” by choosing a suitable set of degrees of freedom that we wnt to keep. In par-
ticular, (as in Subsection 3.1), we will choose the boundary ones (8.31)-(8.33) (that are
the boundary-serendipity substitutes of the (8.6), (8.8)) to provide H(curl)-conformity,
together with the ones in (8.25) to ensure B-compatibility (where, this time, B is the curl
operator). In case these are not Sk- identifying, we will have to choose some additional
ones among the (8.12).

8.8 Boundary preserving, curl-preserving, and Sk-identifying degrees
of freedom

In order to decide which degrees of freedom to choose, we must start considering the
vector-valued polynomials p, of degree ≤ k, that have the degrees of freedom (8.31)-
(8.33) and (8.25) equal to zero. We define therefore

Zk := {p ∈ (Pk(E))3 s.t. pτf = 0 on ∂E and curlp = 0}. (8.35)

It is almost immediate to see that all the elements p of Zk must be gradients (since their
curl is equal to zero and E is simply connected). Hence p = gradϕ for some ϕ ∈ Pk+1.
Considering the boundary conditions we see that we can take ϕ ∈ H1

0 (E). In other words,
ϕ will be a scalar bubble of degree k+ 1. Recalling the results of [11] we can define now
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ηE as the minimum number of different planes necessary to cover ∂E, and deduce that
if ηE > k + 1 then Zk is reduced to {0}, and the degrees of freedom (8.31)-(8.33) and
(8.25) will already be able to identify all the elements of Sk in a unique way; this would
mean that we can take S =M in (3.1). Otherwise, for ηE ≤ k + 1, we will have that the
dimension of Zk is equal to πk+1−η,3, and we need an S such that S −M ≥ πk+1−η,3. As
in the two-dimensional cases (and also for nodal Serendipity VEMs) we have now that,
for a convex E we could take as additional degrees of freedom∫

E

v · x q dE for all q ∈ Pk+1−η(E). (8.36)

Othewise, in the non-convex case, the easiest way out would probably be to follow the sys-
tematic path of Subsection 3.2 and start by checking whether the D matrix corresponding
to the above choice (8.36) has maximum rank or not. If you are not particularly unlucky,
it will, and you can behave as in the convex case. Otherwise, you could add (say, one by
one) the degrees of freedom of type (8.36) corresponding to a q homogeneous polynomial
of degree k+2−η (and if all of them fail, you pass to the homogeneous degree k+3−η,
and so on). Or else, you pick a lazy choice and use directly (8.36) with all the q in Pk−3
(as if E was a tetrahedron).

Note that, in several cases, the gain in the number of degrees of freedom (compared to
the general case (8.4)) will not be due to the reduction of the degrees of freedom in (8.36)
using polynomials of degree k + 1 − ηE instead of the original k − 1, but mostly to the
choice of using Serendipity edge VEMs on faces.
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