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VIRTUAL ELEMENT METHOD FOR PLATE BENDING
PROBLEMS

FRANCO BREZZI1,2,3 AND L. DONATELLA MARINI4,2

Abstract. We discuss the application of Virtual Elements to linear plate bending
problems, in the Kirchhoff-Love formulation. As we shall see, in the Virtual Element
environment the treatment of the C1-continuity condition is much easier than for
traditional Finite Elements. The main difference consists in the fact that traditional
Finite Elements, for every element K and for every given set of degrees of freedom,
require the use of a space of polynomials (or piecewise polynomials for composite
elements) for which the given set of degrees of freedom is unisolvent. For Virtual
Elements instead we only need unisolvence for a space of smooth functions that
contains a subset made of polynomials (whose degree determines the accuracy). As
we shall see the non-polynomial part of our local spaces does not need to be known
in detail, and therefore the construction of the local stiffness matrix is simple, and
can be done for much more general geometries.

Keywords: High-order MFD; Plate bending problems; Virtual Elements

1. Introduction

The Finite Element literature of the last fifty years contains a big variety of H1-
conforming (in practice, C0) elements of various degrees, with different features. On
the other hand, the list of available H2-conforming (in practice, C1) elements is much
more slim. Among the most commonly used are the composite Hsieh-Clough-Tocher
element (with cubic accuracy) and its reduced version (with quadratic accuracy), the
Argyris element (with quintic accuracy) and its reduced Bell version (with quartic
accuracy). But a much bigger effort has been devoted to alternative formulations that
could avoid the use of C1 finite elements, including mixed formulations (essentially,
based on the Hellinger-Reissner principle) or the use of the Reissner-Mindlin model for
thin plates and shells (instead of moderately thick). Dual hybrid elements of Pian and
co-authors (see e.g. [32], [33]) could be seen as intermediate C1 formulations, as the
displacements are indeed C1 but they are defined only at the interelement boundaries
(see also [11] and in particular [17]). And several among the most common and
useful applications of nonconforming elements (as for instance the Morley element)
can indeed be seen as an effort to bypass C1 continuity.
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We refer for instance to the books [1], [24], [6], [39] (or, for more mathematically
oriented ones, to [18], [10], [9]) and to the references therein.

In this paper we want to show that the newly born Virtual Element Method [4]
is able to tackle the construction of C1-approximations in a much swifter way, and
on very general polygonal elements, and we propose a few examples of elements that
could surely be interesting in the approximation of the solution of plate bending
problems in the Kirchhoff-Love formulation.

Virtual Element Methods could be seen as an evolution of Mimetic Finite Differ-
ences and related methods (see e.g. [23], [25], [28], [29], or the more recent [8], [19]
[20], [37] ). In particular they are strictly related to the more theoretical versions of
MFD ([26], [14], [16] [15] [12]), and specially to their last versions concerning higher
order methods ([31], [22] [3], [2]).

As we shall see, the basic idea consists in choosing first some degrees of freedom at
the interelement boundaries that could identify in a unique way the traces of globally
C1 functions that are polynomials of degree ≤ r on each edge, with normal derivative
of degree ≤ s on each edge. Then we add a suitable amount of internal degrees of
freedom, and we define the discrete subspace inside the elements by means of a local
plate bending problem. Needless to say, the actual solution of these local problems
will not be required, not even in an approximate way.

Actually, we will show that, having constructed the discrete subspace Vh as above,
if the boundary and internal degrees of freedom are chosen properly, then

a) in each element K, the restriction of the discrete space to K contains the space
Pk of polynomials of degree ≤ k, where k depends on r and s,

b) for every polynomial pk ∈ Pk(K), and for every non-polynomial element vh of Vh,
the contribution of K to the energy bilinear form a(pk, vh) can be computed exactly,
using only the degrees of freedom of vh (and not the fact that vh solves a local plate
problem),

c) we can then easily complete the computation of the energy bilinear form a(vh, wh)
(when neither vh nor wh is a polynomial in Pk) in an almost arbitrary way, in order
to ensure stability.

Note that, if we have a), b), and c) we can ensure a sort of k− th order patch test,
meaning that, on any patch of elements: if the true solution is a global polynomial
of degree ≤ k, then our discrete solution will coincide exactly with the true solution.

For other attempts to deal with elements of a general shape we refer to [5], [7], [21],
[30], [34], [35], [36], [38] and the references therein. We point out, however, that here
we do not use numerical integration.

An outline of the paper is as follows. In Section 2 we recall the continuous problem
and fix some notation. In Section 3 we present in an abstract framework the Virtual
Element approach, state the basic assumptions and prove a convergence theorem. In
Section 4 we explicitly show how to construct a C1 VEM-approximation of the plate
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bending problem with the optimal convergence rate, namely, order k, with k ≥ 2
whenever the discrete space Vh contains locally the polynomials of degree k.

Throughout the paper we shall use the common notation for the Sobolev spaces
Hm(D) for m a nonnegative integer and D an open bounded domain. In particular
(see e.g. [27], [18]) the L2(D) scalar product and norm will be indicated by (·, ·)0,D
or (·, ·)D and ‖ · ‖0,D or ‖ · ‖D, respectively. Moreover, for m a nonnegative integer,
the mth seminorm of the function ϕ will be defined by

(1.1) |ϕ|2m,D :=
∑
|α|=m

∣∣∣∣∣∣ ∂|α|ϕ
∂α1
x1 ∂

α2
x2

∣∣∣∣∣∣2
0,D

where for the nonegative multi-index α = (α1, α2) we denoted as usual |α| = α1 +α2.

When D ≡ Ω the subscript D will often be omitted.

2. The Continuous Problem

Let Ω ⊂ R2 be a convex polygonal domain occupied by the plate, let Γ be its
boundary, and let f ∈ L2(Ω) be a transversal load acting on the plate. The Kirchoff-
Love model for thin plates (see e.g. [18]) corresponds to look for the transversal
displacement w solution of

(2.1) D∆2w = f in Ω,

where D = Et3/12(1 − ν2) is the bending rigidity, t the thickness, E the Young
modulus, and ν the Poisson’s ratio.

Assuming for instance the plate to be clamped all over the boundary, equation
(2.1) is supplemented with the boundary conditions

(2.2) w =
∂w

∂n
= 0 on Γ.

The variational formulation of (2.1)-(2.2) is:

(2.3)

{
Find w ∈ V := H2

0 (Ω) solution of

a(w, v) = (f, v) ∀v ∈ H2
0 (Ω),

where, as we said, (·, ·) is the usual scalar product in L2(Ω), and the energy bilinear
form a(·, ·) is given by

(2.4) a(w, v) = D
[
(1− ν)

∫
Ω

w/ijv/ij dx+ ν

∫
Ω

∆w∆v dx
]
.

In (2.4) v/i = ∂v/∂xi, i = 1, 2, and we used the summation convention of repeated
indices. Thus, for instance:

(2.5) w/ijv/ij = (w/11v/11 + 2w/12v/12 + w/22v/22).

Setting ‖v‖V := |v|2,Ω, it is easy to see that, thanks to the boundary conditions in V
and to the Poincaré inequality, this is indeed a norm on V . Moreover

(2.6) ∃M > 0 such that a(u, v) ≤M‖u‖V ‖v‖V u, v ∈ V,
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(2.7) ∃α > 0 such that a(v, v) ≥ α‖v‖2
V v ∈ V.

Hence, (2.3) has a unique solution, and (see, e.g. [27])

(2.8) ‖w‖V ≤ C‖f‖L2(Ω).

Before going to the discretization of (2.3) let us fix some notation that will be used
later on. On a domain D ⊂ R2, with boundary ∂D, we denote by n = (n1, n2) the
outward unit normal vector to ∂D, and by t = (t1, t2) the unit tangent vector in the
counterclockwise ordering of the boundary. For v ∈ H2(Ω), let M = Mij(v) i, j = 1, 2
be the moment tensor given by the stress-strain relation

(2.9)

M11

M22

M12

 = D

1 ν 0
ν 1 0
0 0 1− ν

v/11

v/22

v/12

 ,
and let Mn = Mijnj be its normal vector. We then denote by Mnn(v) := Mijninj
the normal bending moment, by Mnt(v) := Mijnitj the twisting moment, and by
Qn(v) := Mij/inj the normal shear force.

Always for a generic domain D we also set, as in (2.4)

(2.10) aD(w, v) = D
[
(1− ν)

∫
D
w/ijv/ij dx+ ν

∫
D

∆w∆v dx
]
,

keeping the simpler notation a(w, v) only when D = Ω.

After integrating by parts twice we have

(2.11) aD(w, v) =

∫
D
D∆2w v dx+

∫
∂D
Mnn(w)

∂v

∂n
dt−

∫
∂D

(
Qn(w)+

∂Mnt(w)

∂t

)
v dt.

When D = Ω and v ∈ V the last two terms in (2.11) disappear, due to the boundary
conditions (2.2), but (2.11) will be useful later on when dealing with the discrete
problem (and, in any case, whenever boundary conditions of a different type are
considered on some part of the boundary). In the sequel we shall often use v/n and
v/t for ∂v/∂n and ∂v/∂t, respectively.

3. The discrete problem. Abstract framework

Let {Th}h be a sequence of decompositions of Ω into elements K, and let Eh be the
set of edges e of Th. We want to construct a finite dimensional space Vh ⊂ H2

0 (Ω), a
bilinear form ah(·, ·) : Vh × Vh → R, and an element fh ∈ V ′h such that the discrete
problem:

(3.1)

{
Find wh ∈ Vh such that

ah(wh, vh) =< fh, vh > ∀ vh ∈ Vh,
has a unique solution wh, and good approximation properties hold. Namely, if k ≥ 2
is the target degree of accuracy, and the solution w of (2.3) is smooth enough, we
want to have

(3.2) ‖w − wh‖V ≤ C hk−1|w|k+1,Ω,
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where C, here and in the following formulae, is, as usual, a positive constant inde-
pendent of h. Note that (3.2), as written, implies our k − th order Patch-Test, since
when w ∈ Pk then |w|k+1 = 0.

Let us first recall the basic assumptions that we need (see e.g. [12]).

H0 - There exists an integer N and a positive real number γ such that for every h
and for every K ∈ Th:

• the number of edges of K is ≤ N ,
• the ratio between the shortest edge and the diameter hK of K is bigger than
γ, and
• K is star-shaped with respect to every point of a ball of radius γhK .

H1 - We assume that we are given, for each h:

• a space Vh ⊂ V ; for each element K we will denote

(3.3) V K
h = restriction of Vh to K

• a symmetric bilinear form ah from Vh × Vh to R that can be split as

(3.4) ah(uh, vh) =
∑
K

aKh (uh, vh) ∀uh, vh ∈ Vh,

where aKh is a bilinear symmetric form on V K
h × V K

h ;
• an element fh ∈ V ′h.

Similarly, we split the bilinear form a(·, ·) and the norm ‖ · ‖V as

(3.5) a(u, v) =
∑
K

aK(u, v) ∀u, v ∈ V, ‖v‖V = (
∑
K

|v|2V,K)1/2 ∀v ∈ V.

Since in what follows we shall also deal with functions in H2(Th) :=
∏

K H
2(K), we

also need to define a broken H2 semi-norm:

(3.6) |v|h,V :=
(∑

K

|v|2V,K
)1/2

∀v ∈
∏
K

H2(K).

3.1. An abstract convergence theorem. Together with H0 and H1 we further
assume the following properties.

H2 - There exists an integer k ≥ 2 (that will determine our order of accuracy) such
that for all h, and for all K in Th,

• k-Consistency: ∀p ∈ Pk, ∀vh ∈ Vh
(3.7) aKh (p, vh) = aK(p, vh).

• Stability: ∃ two positive constants α∗ and α∗, independent of h and of K, such
that

(3.8) ∀vh ∈ Vh α∗ a
K(vh, vh) ≤ aKh (vh, vh) ≤ α∗ aK(vh, vh).
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We note that the symmetry of ah, (3.8) and the continuity of aK easily imply the
continuity of ah with

(3.9)
aKh (u, v) ≤

(
aKh (u, u)

)1/2 (
aKh (v, v)

)1/2

≤ α∗
(
aK(u, u)

)1/2 (
aK(v, v)

)1/2

≤ α∗M ‖u‖V,K ‖v‖V,K for all u and v in Vh.

In turn, (3.8) and (3.9) easily imply

(3.10) ∀v ∈ Vh α∗ a(v, v) ≤ ah(v, v) ≤ α∗ a(v, v).

and

(3.11) ah(u, v) ≤ α∗M ‖u‖V ‖v‖V for all u and v in Vh.

We have the following convergence theorem.

Theorem 3.1. Under the Assumptions H1-H2 the discrete problem: Find wh ∈ Vh
such that

(3.12) ah(wh, vh) =< fh, vh > ∀ vh ∈ Vh,

has a unique solution wh. Moreover, for every approximation wI of w in Vh and for
every approximation wπ of w that is piecewise in Pk, we have

‖w − wh‖V ≤ C
(
‖w − wI‖V + ‖w − wπ‖h,V + ‖f − fh‖V ′

h

)
where C is a constant depending only on α, α∗, α

∗, M and, with the usual notation,
the norm in V ′h is defined as

(3.13) ‖f − fh‖V ′
h

:= sup
vh∈Vh

< f − fh, vh >
‖vh‖V

.

Proof. Existence and uniqueness of the solution of (3.12) is a consequence of (3.8)
and (2.7). Next, setting

(3.14) δh := wh − wI
we have

(3.15)

α∗α‖δh‖2
V ≤ ( use (2.7) and (3.10)

≤ α∗a(δh, δh) ≤ α∗a(δh, δh) use (3.14)

= ah(wh, δh)− ah(wI , δh)(use (3.12) and (3.4))

=< fh, δh > −
∑
K

aKh (wI , δh) (use ± wπ)

=< fh, δh > −
∑
K

(
aKh (wI − wπ, δh) + aKh (wπ, δh)

)
(use (3.7))

=< fh, δh > −
∑
K

(
aKh (wI − wπ, δh) + aK(wπ, δh)

)
(use ±w and (3.5))

=< fh, δh > −
∑
K

(
aKh (wI − wπ, δh) + aK(wπ − w, δh)

)
− a(w, δh)
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Now we can use (2.3) in (3.15) to get

(3.16)

α∗α‖δh‖2
V ≤

≤< fh, δh > −
∑
K

(
aKh (wI − wπ, δh) + aK(wπ − w, δh)

)
− (f, δh)

=< fh, δh > −(f, δh)−
∑
K

(
aKh (wI − wπ, δh) + aK(wπ − w, δh)

)
.

Finally we use (3.13), (3.9), and the continuity of each aK in (3.16) to obtain

(3.17) ‖δh‖2
V ≤ C

(
‖f − fh‖V ′

h
+ ‖wI − wπ‖h,V + ‖w − wπ‖h,V

)
‖δh‖V

for some constant C depending only on α, α∗, α
∗, and M . Then the result follows

easily by the triangle inequality.

4. Construction of Vh, ah, and fh

We shall construct now a space Vh, a bilinear form ah, and a right-hand side fh
satisfying assumptions H1−H2. Our family of elements will depend on three integer
indices (r, s, m), related to the degree of accuracy k ≥ 2 by:

(4.1) r = max{3, k}, s = k − 1, m = k − 4.

Remark 4.1. As we shall see in a while, the indices r and s will be related, respec-
tively, to the polynomial degree of the functions in Vh, and to the polynomial degree
of their normal derivative, on each edge of the decomposition. On the other hand, the
index m will be related (in a way to be made precise) to degrees of freedom internal
to each element.

Remark 4.2. As it will be clear when constructing the spaces, condition (4.1) will
not allow, for instance, to take the simple choice

(4.2) r = 5, s = 3, m = 0 and k = 4

(that might produce a Bell-like type of element). What we really need is actually

(4.3) r ≥ max{3, k}, s ≥ k − 1, m ≥ k − 4.

On the other hand, the present choice allows to consider a family of discretizations
that depends only on one parameter (here, k). Choosing (4.3), instead, we should
actually deal with a family of spaces Vh depending on four parameters r, s, m, and k,
with a considerable complication in the notation and little conceptual gain. However,
in developing our theory we should keep an eye on more general cases, like (4.3) or
other possible approaches for which our theory would apply almost unchanged (but
whose comprehensive treatment would imply a much more complicated notation).

Remark 4.3. We can easily attach to each vertex ξ a characteristic length hξ, taken,
for instance, as the average of the diameters of the elements having ξ as a vertex. To
an edge e we can attach, as characteristic length he the length |e| of the edge itself,
while to an element K we can attach as characteristic length hK its diameter.



8 FRANCO BREZZI1,2,3 AND L. DONATELLA MARINI4,2

4.1. Local construction of Vh. Let K be a generic polygon in Th, let k ≥ 2, and
let r, s,m be given by (4.1). We define V K

h (that will be the local version of our
discretized space Vh) as

(4.4) V K
h := {v ∈ H2(K) s.t. ∆2v ∈ Pm(K), v|e ∈ Pr(e), (v/n)|e ∈ Ps(e), ∀e ∈ ∂K}.

We shall make use of the following notation: for t a nonnegative integer, and e an
edge with midpoint xe, we denote by Me

t the set of t+ 1 normalized monomials

(4.5) Me
t :=

{
1,
x− xe
he

,
(x− xe

he

)2

, ...,
(x− xe

he

)t}
.

Similarly, for a two-dimensional domain K with diameter hK and barycenter xK we
denote by MK

t the set of (t+ 1)(t+ 2)/2 normalized monomials

(4.6) MK
t :=

{(x− xK
hK

)β
, |β| ≤ t

}
,

where, as usual, for a nonnegative multiindex β = (β1, β2) we set |β| = β1 + β2 and

xβ = xβ11 x
β2
2 . In K we define the following degrees of freedom:

• The value of v(ξ) ∀ vertex ξ(4.7)

• The values of hξv/1(ξ) and hξv/2(ξ) ∀ vertex ξ(4.8)

• For r > 3, the moments
1

he

∫
e

q(ξ)v(ξ)dξ ∀q ∈Me
r−4, ∀ edge e(4.9)

• For s > 1, the moments

∫
e

q(ξ)v/n(ξ)dξ ∀q ∈Me
s−2 ∀ edge e(4.10)

• For m ≥ 0, the moments
1

h2
K

∫
K

q(x)v(x) dx ∀q ∈MK
m.(4.11)

Note that all the quantities (4.7)-(4.11) have the same dimension, and hence in a
homothetic blow up of K would scale in the same manner.

Figure 1 shows the first two elements of the family determined by the d.o.f. (4.7)-

(4.11): for both elements we have that v ∈ P3(e) on each edge, but
∂v

∂n |e
∈ P1(e) for

k = 2, and
∂v

∂n |e
∈ P2(e) for k = 3. These elements are the extension to polygonal

domains of the Hsieh-Clough-Tocher triangle (k = 3) and of its reduced version
(k = 2).

We note that he degrees of freedom (4.7) and (4.8) are always needed to ensure
C1−continuity at the vertices. Moreover, on each edge, they provide v and v/t at the
endpoints of the edge: enough information to identify uniquely a polynomial of degree
≤ 3. This, together with (4.9), explains the requirement r ≥ 3. Indeed, to identify a
polynomial of degree r, together with (4.7)-(4.8) we need r−3 additional information
(as for instance (4.9)). At the same time, conditions (4.8) provide, for every edge,
v/n at the endpoints of the edge, thus allowing to identify uniquely a polynomial of
degree ≤ 1. For s > 1, to identify a polynomial of degree ≤ s, we would need the
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Figure 1. Local d.o.f. for the lowest-order element: k = 2 (left), and
next to the lowest k = 3 (right)

additional s− 1 conditions (4.10). On the other hand, the d.o.f. (4.11) are equivalent
to prescribe PK

m v in K, where, for m a nonnegative integer,

(4.12) PK
m v is the L2(K)− projector operator onto the space Pm(K).

We summarize the above discussion in the following proposition

Proposition 4.1. In each element K the d.o.f. (4.7), (4.8), and (4.9) uniquely
determine a polynomial of degree ≤ r on each edge of K, the degrees of freedom (4.8)
and (4.10) uniquely determine a polynomial of degree ≤ s on each edge of K, and the
d.o.f. (4.11) are equivalent to prescribe PK

m v in K.

Let ` be the number of edges (and hence of vertices) of K, and let GK be the set
of degrees of freedom corresponding to K, whose total number amounts to

(4.13)

T := T∂ + T0; with T∂ = {3`+ `(r − 3) + `(s− 1)} ≡ `(r + s− 1),

and T0 =
{(m+ 1)(m+ 2)

2

}
≡ m2 + 3m+ 2

2
.

Now we have to show how to associate to the above degrees of freedom a function
in K. It is important to point out from the very beginning that we do not need to
be able to compute such a function, but just to show that it exists and it has certain
properties.

Proposition 4.2. The degrees of freedom (4.7)–(4.11) are unisolvent in V K
h (as de-

fined in (4.4)).

Proof. According to Proposition 4.1, to prove the proposition it is enough to show
that, for each K ∈ Th, a function u in V K

h such that

(4.14) u = 0,
∂u

∂n
= 0 on ∂K

and

(4.15) PK
m u = 0 in K
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is actually identically zero in K. To this end, we show that ∆2u = 0 in K, which
joined with (4.14) gives u ≡ 0. We first solve, for every q ∈ Pm(K), the following
auxiliary problem: Find ψ = ψ(q) ∈ H2

0 (K) such that:

(4.16) aK(ψ, v) = (q, v)0,K ∀v ∈ H2
0 (K),

that could also be written as

(4.17) D∆2ψ = q in K, ψ|∂K =
∂ψ

∂n |∂K
= 0, or else ψ = (D∆2

0,K)−1(q).

Next, we consider the map R, from Pm(K) into itself, defined by

(4.18) R(q) := PK
m ((D∆2

0,K)−1(q)) ≡ PK
m ψ(q) ∀q ∈ Pm(K).

We claim that the operator R defined by (4.18) is an isomorphism from Pm(K) into
itself. Indeed, from (4.18) and the definition of PK

m we have, for every q ∈ Pm(K):

(R(q), q)0,K = (PK
m (D∆2

0,K)−1(q), q)0,K = (PK
m ψ(q)), q)0,K

= (ψ(q), q)0,K = aK(ψ(q), ψ(q)).

Since ψ ∈ H2
0 (K) we have then that

(4.19) {R(q) = 0} ⇒ {aK(ψ(q), ψ(q)) = 0} ⇒ {ψ(q) = 0} ⇒ {q = 0}.
We note that, if u ∈ V K

h is such that u = ∂u/∂n = 0 on ∂K, then

(4.20) PK
m u = PK

m ((D∆2
0,K)−1(D∆2u)) = R(D∆2u).

Hence, if PK
m u = 0 as in (4.15), we can say that

PK
m u = 0 =⇒ R(D∆2v) = 0 =⇒ D∆2v = 0,

and the proof is concluded.

Remark 4.4. We point out once more that we will not try to compute the solutions
of the local bi-harmonic problems involved in the definition of (4.4). On the other
hand we will always assume that we can compute polynomials on ∂K, and hence also
integral of polynomials over K. Indeed, for instance,

(4.21)

∫
K

x2
1 =

1

3

∫
∂K

x3
1n1

and so on.

4.2. Global construction of Vh. For every decomposition Th, and for every k ≥ 2
we are now ready to define the space Vh as

(4.22) Vh = {v ∈ V : v|e ∈ Pr(e),
∂v

∂n |e
∈ Ps(e) ∀e ∈ Eh, ∆2v|K ∈ Pm(K) ∀K ∈ Th},

where r, s, and m are always given by (4.1) (although, actually, they could be any
triple that satisfies (4.3)). It follows from the above discussion that the global degrees
of freedom in Vh could then be taken as

The value of v(ξ) ∀ internal vertex ξ(4.23)

The values of hξv/1(ξ) and hξv/2(ξ) ∀ internal vertex ξ(4.24)
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For r > 3, the moments
1

he

∫
e

q(ξ)v(ξ)dξ ∀q ∈Me
r−4, ∀ internal edge e(4.25)

For s > 1, the moments

∫
e

q(ξ)v/n(ξ)dξ ∀q ∈Me
s−2 ∀ internal edge e(4.26)

For m ≥ 0, the moments
1

h2
K

∫
K

q(x)v(x) dx ∀q ∈MK
m ∀ element K.(4.27)

The dimension of Vh, that is, the total number of degrees of freedom in Vh is then
given by

(4.28) G = 3NV +NE(r − 3 + s− 1) +NKT0,

where NV is the number of internal vertices of Th, NE the number of internal edges,
NK the number of elements, and T0 is still given by (4.13). Needless to say, in the
construction of vh ∈ Vh one should take into account the values of vh and vh/n at the
boundary as well, setting them equal to zero.

Remark 4.5. At this point we can order (in a rather arbitrary way) the degrees of
freedom of Vh

(4.29) g1, g2, ..., gG.

Accordingly we will have a characteristic length hi attached to each degree of freedom
gi, depending on its nature, according to Remark 4.3. It is obvious that, in the com-
puter code, we will have chosen, once and for all, an orientation for the normal unit
vector, say ne, to each internal edge e.

Remark 4.6. It follows easily from the above construction that for every smooth
enough w there exists a unique element wI ∈ Vh such that

(4.30) gi(w − wI) = 0 ∀i = 1, 2, ....G.
Moreover, by the usual Bramble-Hilbert/Deny-Lions technique (see e.g. [18]) and
using a scaling argument to get around the variability in the geometry (see e.g. [13])
it is not difficult to see that, for α and β nonegative indices, we can prove that

(4.31) ‖w − wI‖α,Ω ≤ C hβ−α |w|β,Ω α = 0, 1, 2, α ≤ β ≤ k + 1

(with a constant C independent of h) as in the usual Finite Element framework.

We point out that (as it happens also for the classical finite elements), different
choices of degrees of freedom might be used for the same space. However a different
choice of the local degrees of freedom can induce a different choice of the global
degrees of freedom, that in turn could alter the continuity property of the resulting
functions, giving rise to a different global space. Let us see a couple of examples that,
in our opinion, are particularly meaningful. Let us consider the value k = 5 (and,
according to (4.1), (r, s,m) = (5, 4, 1)), and the corresponding degrees of freedom in
our construction (4.7)-(4.11). They are: the values of w, wx, wy at the vertices, plus,
on every edge, the moments up to the order two of w and of wn, plus the moments
up to the order one of w inside the element. Taking instead k = 4 with r = 5, s = 3,
and m = 0 (using this time (4.3)) we would have the same degrees of freedom minus
the moments of order one of wn on each edge. The two cases are presented in Figure
2, with obvious meaning of the symbols.
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Figure 2. Local d.o.f. for the (5,4,1) element with k = 5 (left), and
for the (5,3,0) element with k = 4 (right)

Note that, however, we could as well have used as local degrees of freedom the ones
in Figure 3, where (with classical notation) the circles at the vertices represent the
six degrees of freedom ”values of (w, wx, wy, wxx, wxy, wyy) at the vertices.

Figure 3. Alternative d.o.f. for the elements of Figure 2. We have an
”Argyris-like” element on the left and a ”Bell-like” element on the right

.

The theoretical treatment of the case of Figure 3 could be done in a way practically
identical to the one followed here. As already pointed out in Remark 4.2 we chose to
skip the comprehensive treatment of all possible cases allowed by our theory, in order
to avoid a too cumbersome notation.

4.3. Construction of ah. We are left to show how to construct a (computable!)
symmetric bilinear form ah satisfying (3.7) and (3.8). We shall work on a generic
element K ∈ Th, and we recall that we denoted by V K

h the restriction of Vh to K.
First of all, we observe that the local degrees of freedom allow us to compute exactly
aK(p, v) for any p ∈ Pk(K) and for any v ∈ V K

h . Indeed, recalling (2.11), we have

(4.32) aK(p, v) = D

∫
K

∆2p v dx+

∫
∂K

[Mnn(p)
∂v

∂n
+ (Qn(p) +

∂Mnt(p)

∂t
)v] dt.

We note then that ∆2p belongs to Pk−4(K); for m ≥ k − 4, the integral over K that
appears in (4.32) is then computable using only the values of the internal degrees of
freedom of v, without actually knowing v. On the other hand, on each edge of K
both Mnn(p) (which belongs to Pk−2(e)) and Qn(p) + ∂Mnt(p)/∂t (which belongs to
Pk−3(e)) are polynomials, as well as v and v/n. From the degrees of freedom on the
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boundary we can easily compute both v and v/n, and in conclusion all the terms in
the right-hand side of (4.32) can be easily computed without knowing v inside.

Now for every ϕ ∈ C0(K) we define its quasi-average ϕ̂ as the constant function
(over K) whose value

(4.33) ϕ̂ :=
1

`

∑̀
i=1

ϕ(xi)

is given by the average of the values that ϕ assumes at the ` vertices ξi, (i = 1, 2, ..., `)
of K. Next, we introduce the operator ΠK

k : V K
h −→ Pk(K) ⊂ V K

h defined as the
solution of

(4.34)

{
aK(ΠK

k ψ, q) = aK(ψ, q) ∀ψ ∈ V K
h , ∀q ∈ Pk(K)

Π̂K
k ψ = ψ̂, ∇̂ΠK

k ψ = ∇̂ψ.

We note that for v ∈ Pk(K) the first equation in (4.34) implies (ΠK
k v)/ij = v/ij for

i, j = 1, 2, that joined with the second equation gives easily

(4.35) ΠK
k v = v ∀v ∈ Pk(K).

Choosing aKh (u, v) = aK(ΠK
k u,Π

K
k v) would now ensure property (3.7), but not, in

general, property (3.8). Hence we need to add a suitable term capable to ensure
(3.8). Let then SK(u, v) be a symmetric positive definite bilinear form, to be chosen
to verify

(4.36) c0 a
K(v, v) ≤ SK(v, v) ≤ c1 a

K(v, v), ∀v ∈ V K
h with ΠK

k v = 0,

for some positive constants c0, c1 independent of K and hK . Then set

(4.37) aKh (u, v) := aK(ΠK
k u,Π

K
k v) + SK(u− ΠK

k u, v − ΠK
k v).

Proposition 4.3. The bilinear form (4.37) constructed with the above procedure sat-
isfies both the consistency property (3.7) and the stability property (3.8).

Proof. Property (3.7) follows immediately from (4.35) and (4.34): for p ∈ Pk(K),
(4.35) implies SK(p− ΠK

k p, v − ΠK
k v) = 0 ∀v, and hence

(4.38) aKh (p, v) = aK(ΠK
k p,Π

K
k v) = aK(ΠK

k p, v) = aK(p, v).

Moreover, from (4.34) we have aK(ψ − ΠK
k ψ, q) = 0 for all q ∈ Pk(K) and for all

ψ ∈ V K
h , so that by Pythagoras theorem we have

(4.39) aK(v − ΠK
k v, v − ΠK

k v) + aK(ΠK
k v,Π

K
k v) = aK(v, v) ∀v ∈ V K

h .

Property (3.8) follows then easily from (4.36) and (4.39). Indeed setting α∗ :=
max{1, c1} we have

(4.40)

aKh (v, v) ≤ aK(ΠK
k v,Π

K
k v) + c1a

K(v − ΠK
k v, v − ΠK

k v)

≤ max{1, c1}
(
aK(ΠK

k v,Π
K
k v) + aK(v − ΠK

k v, v − ΠK
k v)
)

= α∗aK(v, v),
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and similarly, setting α∗ := min{1, c0}:

(4.41)
aKh (v, v) ≥ min{1, c0}

(
aK(ΠK

k v,Π
K
k v) + aK(v − ΠK

k v, v − ΠK
k v)
)

= α∗a
K(v, v).

4.4. Choice of SK. In general, the choice of the bilinear form SK might depend on
the problem and on the degrees of freedom. From (4.36) it is clear that SK must scale
like aK(·, ·) on the kernel of ΠK

k . Since in (4.23)-(4.27)we took care to have degrees of
freedom of the same dimension, then all the elements of the canonical basis ϕ1, ..., ϕT
defined by

(4.42) gi(ϕj) = δij, i, j = 1, T,

will scale in the same way (and in particular as the ones associated to ”point value”
degrees of freedom). Hence the choice

SK(v, w) = D
T∑
i=1

gi(v)gi(w)(hi)
−2,

(with hi as in Remark 4.5) would clearly do the job.

Remark 4.7. Clearly, is we decide to use degrees of freedom involving second deriva-
tives, as the ones in Figure 3, we should scale them by h2

ξ in order to apply the above
argument

4.5. Construction of the right-hand side. In order to build the loading term
< fh, vh > for vh ∈ Vh in a simple and easy way it is convenient to have internal
degrees of freedom in Vh, and this means, according to (4.1) and (4.11), that we need
k ≥ 4. In this case we define fh on each element K as the L2(K)−projection of the
load f onto the space of piecewise polynomials of degree m = k − 4, that is,

fh = PK
k−4f on each K ∈ Th.

Then, always for k ≥ 4, the associated loading term

< fh, vh >=
∑
K∈Th

∫
K

fh vh dx ≡
∑
K∈Th

∫
K

(PK
k−4f) vh dx =

∑
K∈Th

∫
K

f (PK
k−4vh) dx

can be exactly computed using the degrees of freedom for Vh that represent the
internal moments, see (4.11).

For k > 4, that is, m = k − 4 ≥ 1, standard L2 orthogonality and approximation
estimates on star-shaped domains yield

(4.43) < fh, vh > −(f, vh) =
∑
K∈Th

∫
K

(PK
k−4f − f)(vh − PK

1 vh) dx

≤ C
∑
K∈Th

hk−3
K |f |k−3,K h2

K‖vh‖2,K ≤ C hk−1(
∑
K∈Th

|f |2k−3,K)1/2 ‖vh‖V ,
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and thus, recalling (3.13),

(4.44) ‖f − fh‖V ′
h
≤ Chk−1

( ∑
K∈Th

|f |2k−3,K

)1/2

.

Hence, for k > 4 Theorem 3.1 ensures the optimal O(hk−1) error bound. For k ≤ 4
we need some additional tricks. In view of Remark 4.4 we assume that we are able
to compute exactly the integral

(4.45)

∫
K

p1 q1 dx

for every pair p1 and q1 of polynomials of degree ≤ 1 on K. In each case k = 2, 3, 4
the term < fh, vh > will then be defined by

(4.46) < fh, vh >K=

∫
K

P̃ k
1 f P

k

1vh

where P̃ k
1 and P

k

1 are projectors on the space of polynomials of degree ≤ 1 that will
change from one value of k to another.

For k = 2 and for k = 3 we take

(4.47) fh|K ≡ P̃ k
1 f := PK

k−2f, P
k

1vh ≡ ṽh := v̂h+(k−2)(x−xK) · ∇̂vh on each K.

Note that for both values k = 2 and k = 3 we have that ṽh ∈ Pk−2(K). Hence on
each K we have

(4.48)

< fh, vh >K −(f, vh)K = (PK
k−2f, ṽh)K − (f, vh)K

= (PK
k−2f − f, ṽh)K + (f, ṽh − vh)K

= (f, ṽh − vh)K ≤ Chk−1
K ‖f‖0,K‖vh‖k−1,K .

For k = 4 we take instead

(4.49) fh|K ≡ P̃ k
1 f := PK

1 f, P
k

1vh ≡ ṽh := PK
0 vh + (x− xK) · ∇̂vh on each K.

We have on each K

(4.50)

< fh, vh >K −(f, vh)K = (PK
1 f, ṽh)K − (f, vh)K

= (PK
1 f − f, ṽh)K + (f, ṽh − vh)K

= (f − PK
0 f, ṽh − vh)K ≤ Ch3

K |f |1,K‖vh‖2,K

where, going from second to third line we took advantage of the fact that ṽh− vh has
zero mean value over K. Note that, for k = 4, we have m = 0 in (4.1), and from
(4.11) we have the right to use PK

0 vh instead of v̂h, since PK
0 vh is now part of the

degrees of freedom.
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