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This paper is a brief introduction to the mathematical tools employed in the modeling
and simulation of the interactions of a large number of living entities, and provides a
presentation of the papers published in a special issue devoted to this topic. In addition,
we bring to the reader’s attention some perspective ideas on possible objectives of future
researches.
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1. Introduction

This paper presents a special issue focused on mathematical tools and applica-
tions of the so-called active particles approach. This refers to the various analytic
and computational tools used in the study, from modeling to simulations, of sys-
tems with a large number of interacting living entities, typically called active par-
ticles. The term active particles, as witnessed in the survey,38 has been introduced
to denote dynamics that go somehow beyond classical deterministic rules, but it
is nowadays systematically used just to denote interacting entities in large living
systems.

The recent expository paper34 shows how swarming phenomena, which appear
in the natural world (e.g. wheeling flocks of birds, swirling schools of fish, or systems
of interacting robots) generate challenging problems in physics and in mathematics,
with an immediate interest in technology. This literature is developed from the pio-
neer paper by Cucker and Smale,24 which has the great merit of having initiated this
research line. Applications are everywhere, as reported for instance in Refs. 4 and 35.

These systems require computational methods suitable to account for the het-
erogeneity often shown by complex systems. Monte Carlo particle methods and
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discontinuous Galerkin methods have been recently used for this computational
target, see Refs. 6, 27, 35 and 40 as examples of recent developments from the
pioneer computational approach of Bird.17

The interest of mathematical sciences for this specific research field is rapidly
growing due to the joint action of the stimuli exerted by highly challenging problems
and by the related interest in various fields: in nature, society, technology, and
science in general. Hence mathematicians started to enter a research domain which
used to be an almost exclusive field for physicists.

This special issue follows recent other ones in this journal, devoted to closely
related topics, specifically self-propelled particles11,12 and modeling of social sys-
tems.13 Its contents are presented in Sec. 2, which addresses the basic features of the
known mathematical approaches to modeling and to related analytical problems.
Section 3 is devoted to research perspectives focused on the derivation of models at
the higher scale from underlying description at the lower scale. Indeed, this topic
pervades all papers proposed in this special issue.

2. Presentation of the Contents, Looking Ahead to Further
Developments

A brief description of the contents of this special issue is presented in this section.
All papers are devoted to various aspects of the modeling: derivations based on the
physical interpretation of interactions, qualitative analyses, and simulations. The
interpretation of swarms behavior is broad, as it focuses on organized living entities
with the ability to express specific strategies, individual and collective, somehow
related to their well-being. This aspect is constantly present in the preceding special
issues,11–13 while new results and research perspectives are proposed in the papers
presented here.

In more detail, various topics on control theory applied to alignment dynamics in
swarms are presented in Ref. 1. This subject has been introduced in Refs. 2 and 20
and it is now giving rise to various developments. A detailed analysis, starting
from modeling and followed by a qualitative analysis of some control actions, is
proposed in Ref. 1, where well-focused simulations enlighten the achievements of
the theoretical analysis.

Control problems is the key issue treated in Ref. 41, focusing on the description
of the dynamics, in time and space, of an ecological model derived from a detailed
interpretation of the dynamics at the microscopic scale.

Analytical problems related to swarming models are studied in Ref. 32, where
the authors prove a uniform-in-time convergence (from the discrete-time Cucker–
Smale model24 to the continuous-time model) which is valid for the whole time
interval, as time-step tends to zero. This improves on classical theory, which yields
convergence results valid only in any finite-time interval. This paper belongs to a
recent group of several important contributions to the study of analytical properties
of swarming models.15,25,33,37
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Multiscale problems for age structures myxobacteria are dealt with in Ref. 26,
where the authors derive an individual-based model by taking into account
the information delivered by empirical data. Subsequently, the authors obtain a
Kolmogorov–Fokker–Plank kinetic equation by a mean-field approximation, and
hence move to the derivation of models at the macroscopic scale. A computational
analysis enlightens the descriptive ability of the model.

An additional application in biology is developed in Ref. 23 by a kinetic theory
approach focusing on the dynamics of multi-cellular systems. An active particle
approach allows to include very special features which characterize biological func-
tions, as shown in Ref. 29 as well as in the micro–macro derivations presented in
Ref. 9. The derivation of macroscopic equations from the underlying description by
kinetic equations is also developed in Ref. 23 by a first-order perturbation tech-
nique. An additional useful reference for higher order approximations can be found
in Ref. 18. A class of aggregation–diffusion partial differential equations (PDEs)
with nonlinear mobility is derived in Ref. 30 by large particle limit of a suitable
nonlocal version of the follow-the-leader scheme. The authors show that the result
applies also to strongly degenerate diffusion equations.

Active particle methods can also be used to model human crowds by macroscopic
equations, as shown in Ref. 22, where models at the microscopic scale are used to
develop a macroscopic description of the dynamics by which pedestrians select their
velocity direction. This delicate matter has also been treated by the kinetic theory
approach in Ref. 14. The model is subsequently applied to describe the behaviors
of pedestrians in the presence of obstacles.

A model of the diffusion of criminality is proposed in Ref. 21. The authors start
from an agent-type model and move to the higher scale by a mean-field continuum
model with truncated Lévy flights for residential burglary in one space dimension.
The authors show that the continuum model has an excellent agreement with the
agent-based simulations. This suggests that local diffusion models are universal for
continuum limits of this problem, the important quantity being the diffusion coef-
ficient. A detailed analysis of the diffusion dynamics is supported by the additional
aid of computational simulations.

3. From the Contents of the Special Issue to Research
Perspectives

The papers of this special issue focus a variety of research perspectives, too many
to be treated in a short note like the present one. Indeed, we trust that the hints
present in these papers will rapidly motivate future research activity on several
challenging frontier problems.

A research perspective refers to a topic which pervades the whole contents of
the issue, namely the derivation, by asymptotic methods, of models at the higher
macroscopic scale from the underlying description at the lower scale.
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As it is known, the physical–biological systems of a large number of interacting
individuals can be modeled at three classical scales as follows:

• Microscopic (individual-based) scales, where interacting entities are individually
identified, while the state of the whole system is given by their position and
velocity (which are variables depending on time) and the dynamics is described
by the systems of ordinary differential equations.

• Mesoscopic (kinetic) scales, where position and velocity are still used to identify
the microscopic state, but their representation is delivered by a suitable proba-
bility distribution function over the microscopic state.

• Macroscopic (hydrodynamic) scales, where the overall state of the system is
described by locally averaged quantities, typically density and linear momen-
tum, regarded as dependent variables of time and space. Mathematical models
describe the evolution of the macrovariables by systems of PDEs where the accel-
eration term of the momentum equation, which acts on the particles in the ele-
mentary space volume, has to be modeled by suitable heuristic interpretations of
the physical reality.

The scientific community agrees that the approach at each scale presents advan-
tages and drawbacks.

For instance, models at the microscopic scale are definitely consistent with phys-
ical reality (as the number of entities, say active particles, is always finite), but the
computation of local-averaged quantities, as well as the action on each particle from
the surrounding ones, is subject to fluctuations that are density dependent.

The kinetic theory approach allows to insert in the individual state additional
variables, as for instance emotional states (see Ref. 14) in crowd models, or bio-
logical functions (see Ref. 16) in the case of multicellular systems. In addition,
macroscopic quantities are simply obtained by weighted moments of the dependent
variables, namely by quadrature, but the number of particles is not high enough to
justify the continuous approximation of the dependent variables which are statisti-
cal distributions over the microscopic state.

The macroscopic approach provides directly the dynamics of the macroscopic
quantities which are of interest for the applications and allow the use of deter-
ministic methods for PDEs, but the continuity assumption does not correspond to
physical reality, while the averaging process hides the heterogeneous behavior of
individuals that is typical of living systems.

These reasoning’s motivate the need to develop a unified modeling approach,
where interactions at each scale are modeled by the same principles. In more details,
each active particle interacts, at the microscale, with all particles in its sensitiv-
ity domain by interactions which are nonlocal and nonlinearly additive. Further,
the theoretical–empirical approach proposed in Ref. 5 suggests that interactions
involve only a fixed number of individuals rather than all individuals in their sen-
sitivity domain. Some pioneering papers have accounted for this specific feature in
swarming modeling15 and in related computational problems.3 An additional hint
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is given by the research activity on socio-economical systems,28 that suggest to take
nonsymmetric interactions also into account.

It is rather immediate to observe that these modeling principles have to be
accounted in the kinetic theory approach, where it is required that the number of
interacting particles is sufficiently high to allow the use of a continuous probability
distribution, to be identified as a dependent variable of the differential system.

On the other hand, the modeling approach at the macroscopic scale is less
immediate, as in it the aforementioned principles should be referred to the active
particles in the elementary volume of the physical space rather than to individuals.

An additional difficulty to be accounted for is that the microscopic state of active
particles might include an additional variable, called activity, modeling emotional-
social states as shown in vehicular traffic19 and in crowd modeling.8,42 This feature
is always present in the modeling of social systems, and it becomes an important
feature when stress conditions appear in crowd dynamics.39,43

The unified approach that has been outlined above is a necessary preliminary
step for the derivation of models at the macroscopic scale from the underlying
models at the lower scale, say from individual-based to macroscopic, and/or from
kinetic to macroscopic, being understood that kinetic models should use models
of individual-based interactions derived from those at the microscopic scale. Some
results can already be found in the literature concerning, for instance, vehicular
traffic,10 crowd dynamics,8 and swarms.7,18,37 We might say that such a unified
approach is the challenging research perspective that we propose in this paper.
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41. E. Trélat, J. Zhu and E. Zuazua, Alee optimal control of a system ecology, Math.
Models Methods Appl. Sci. 28 (2018) 1665–1697.

42. L. Wang, M. Short and A. L. Bertozzi, Efficient numerical methods for multiscale
crowd dynamics with emotional contagion, Math. Models Methods Appl. Sci. 27 (2017)
205–230.

43. N. Wijermans, C. Conrado, M. van Steen, C. Martella and J. L. Li, A landscape of
crowd management support: An integrative approach, Saf. Sci. 86 (2016) 142–164.


