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For decades, tetrahedral and hexahedral meshes
were used in majority of engineering simulations;
they are relatively easy to generate and there exist
enormous amount of numerical methods oriented
on these meshes. Nowadays, a growing number
of complex simulations show advantage of using
polyhedral meshes. Here are just two examples.
In the simulation of flow through a water jacket
of an engine [1], the results obtained on a polyhe-
dral mesh are more accurate than the results ob-
tained on a tetrahedral mesh with a comparable
number of cells. In oil reservoir simulations, the
polyhedral meshes offer unlimited possibilities:
cells can be automatically joined, split, or mod-
ified by introducing additional points, edges and
faces to model different geological features. Un-
fortunately, most of the existing numerical meth-
ods cannot be extended to polyhedral meshes,
especially to meshes with cells having strongly
curved (non-planar) faces. In [2], we considered
a diffusion problem, which appears in computa-
tional fluid dynamics, heat conduction, radiation
transport, etc., and developed a new discretization
methodology that has no analogs in literature.

To design the new discretization method, we
followed the general principle of the mimetic fi-
nite difference (MFD) method — to mimic the es-
sential underlying properties of the original con-
tinuum differential operators such as the conser-
vation laws, solution symmetries, and the funda-
mental identities and theorems of vector and ten-
sor calculus. The mixed form of the diffusion
problem is

~F = −K grad p, div ~F = b
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A logically cubic mesh with randomly perturbed
interior points (top picture). The part of the
unit cube was cut out to show the interior mesh.
The convergence graphs for a smooth solution
and the identity diffusion tensor (bottom picture)
show optimal convergence rates for the new MFD
method (blue), and the lack of convergence for
the mixed finite element (black) and the old MFD
(red) methods.

where the first equation is the constitutive equa-
tion relating the scalar function p (pressure in
flow simulations) to the velocity field ~F and the
second one is the mass conservation law. The
material properties are described by the full sym-
metric tensor K, and b is the source function.
For this problem, the MFD method mimics the
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Gauss divergence theorem, the symmetry be-
tween the continuous gradient and divergence op-
erators, and the null spaces of these operators.
Therefore, it produces the discretization scheme
which is always symmetric and locally conserva-
tive.

The previously developed (old) MFD method
[3] used one degree of freedom per cell to ap-
proximate the pressure and one degree of free-
dom per mesh face to approximate the average
normal component of the velocity. The same de-
grees of freedom are used in the mixed finite el-
ement (MFE) method on tetrahedral and hexahe-
dral meshes. The new discretization methodol-
ogy uses three degrees of freedom, three average
velocity components, to approximate velocity on
strongly curved faces. As shown on figures, it im-
proves drastically the capabilities of the existing
methods.

When faces of mesh cells are plane segments,
or slightly perturbed plane segments, the new dis-
cretization method is reduced to method from [3].
Necessity to use three velocity components on
strongly curved faces is possibly the intrinsic dif-
ficulty and the reason why nobody succeeded in
doing a reasonable job on meshes with such cells.
The theoretical analysis of the convergence rates
is done in [2].

Another advantage of the developed method-
ology is that its practical implementation is sim-
ple and follows roughly the path described in [4].
In particular, we get a family of discretization
schemes with similar properties. This family may
be used to attack other computational problems,
e.g., to enforce the discrete maximum principle.
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A polyhedral mesh where the mixed finite ele-
ment method can not be used (top picture). Note
that 68% of interior mesh faces are non-planar.
The convergence graphs (bottom picture) for the
same problem as above show optimal conver-
gence rates for the new MFD method (blue) and
lack of convergence for the old MFD method
(red).
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