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Abstract

We consider the use of nodal and edge Virtual Element spaces for the discretization of magnetostatic prob-

lems in two dimensions, following the variational formulation of Kikuchi. In addition, we present a novel

Serendipity variant of the same spaces that allow to save many internal degrees of freedom. These Vir-

tual Element Spaces of different type can be useful in applications where an exact sequence is particularly

convenient, together with commuting-diagram interpolation operators, as is definitely the case in electro-

magnetic problems. We prove stability and optimal error estimates, and we check the performance with

some academic numerical experiments.
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1. Introduction

This paper is a first step towards the application of the Virtual Element technology, VEM, (see e.g.

[10, 12, 13]) to the numerical solution of Electromagnetic problems.

Virtual Elements, introduced in [10], originate from the Mimetic Finite Difference methods, MFD, (see

for instance [46, 49, 17, 27, 16] and the references therein), and their main difference with respect to MFD

is that, instead of dealing only with degrees of freedom (as in classical Finite Differences), Virtual Elements

deal with subspaces of the infinite dimensional spaces, in the traditional framework of Galerkin methods.

Presently, VEMs can be seen as being part of the wider family of Galerkin methods based on decomposi-

tions of the computational domains in polygons or polyhedrons, as Discontinuous Galerkin (see e.g. [5, 9, 33],

or recently [40], and the references therein) or Hybridizable Discontinuous Galerkin and their variants (see

for instance [36],[34], or the much more recent [35] and the references therein) based on one or more local

polynomial spaces). But one could also take into account that VEMs deal, in fact, with non-polynomial basis
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functions and should, in this respect, be related more to other methods such as polygonal interpolant basis

functions, barycentric coordinates, mean value coordinates, metric coordinate method, natural neighbor-

based coordinates, generalized FEMs, and maximum entropy shape functions. See for instance [57], [39],

[53] [55], [7], [44], [51], [43], [56], and the references therein.

Finally, many aspects are closely connected with Finite Volumes and related methods (see for in-

stance [42], [32], [41], [50] and the references therein).

A very brief list of VEMs applied to different types of problems is [19, 8, 11, 22, 29, 45, 30, 54].

Here we consider the simplest case of Magnetostatic two-dimensional problem:

given j ∈ L2(Ω)

(
with

∫
Ω

j dΩ = 0

)
, and µ ∈ R,

find H ∈ H(rot; Ω) and B ∈ H(div; Ω) such that:

rotH = j and divB = 0, with B = µH, in Ω

with the boundary conditions H · t = 0 on ∂Ω

(1.1)

where Ω ⊂ R2 is a simply connected polygon, and rotv := ∂v2
∂x −

∂v1
∂y . It is clear that (1.1) could be easily

reduced to a simple elliptic problem, and even to a Poisson problem for a constant permeability µ, just by

introducing a scalar variable A (potential) such that Ax = B2, Ay = −B1. In fact, it is easy to check that

the function A is the solution of the Poisson problem
− div(µ−1∇A) = j in Ω

∂A

∂n
= 0 on ∂Ω.

(1.2)

Hence the interest of (1.1), in itself, is surely minor. However, as we shall see, the purpose here is to set

the way to the three-dimensional case (and in particular to the combined use of Serendipity-nodal and

Serendipity-edge virtual elements to be used on the faces of a polyhedral decomposition).

We recall that, strictly sticking to the two-dimensional case, the use of Serendipity elements would not

be particularly relevant, since a similar effect (i.e., to get rid of the internal degrees of frredom) could

be obtained by the usual static condensation. But this will not be the case when the two-dimensional

Serendipity elements are used on the faces of a three-dimensional decomposition, where standard static

condensation could not be used, and even sophisticated techniques in reordering the unknowns during a

Gaussian elimination could not be as effective as a direct Serendipity approach.

With this in mind, here we will study the numerical solution of (1.1) using the natural restriction to

the two-dimensional case of the variational formulation of Kikuchi (introduced for the three-dimensional

case in [48], [47]). As we said, in order to reduce the number of internal degrees of freedom, we will give

particular attention to the use of Serendipity variants. Serendipity VEMs were already introduced, in [14]

for nodal elements, and in [15] for edge/face elements. However, the Serendipity elements presented here do
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not coincide with those defined in [14] and in [15], since the local projectors use different degrees of freedom.

Actually, as we shall see in more details in Sections 5 and 6, the Serendipity elements defined in [14] and

in [15] would not give rise to the necessary exact sequence for our two-dimensional problem (1.1), and also

on the faces of three dimensional problems, while the present ones have been tailored specifically for that

purpose.

To give, in advance, an idea of the relevance that the use of Serendipity VEMs on faces could have, we

anticipate here a schematic three dimensional example about this gain. For the sake of simplicity, in order

to clarify the order of magnitude of the gain, in Tables 1 and 2 we compared the number of inter-element

degrees of freedom (vertices, edges, and faces) on some simple uniform meshes of cubes (8 × 8 × 8,

16 × 16 × 16, and 32 × 32 × 32), for k = 2, 3, 4, 5, without counting the degrees of freedom internal to the

cubes, (assuming, in some sense, that all the degrees of freedom internal to the cubes were eliminated by

standard static condensation).

For each decomposition, and for each value of k between 2 and 5, we compared the inter-element degrees

of freedom needed when using on all faces: either standard nodal two dimensional Qk finite elements, or

our nodal two-dimensional Virtual Elements (VEMk), or their present two-dimensional Serendipity variants

(VEMSk) . We point out that Qk Finite Elements (on a schematic decomposition like this one) could also

have efficient Serendipity variants (see e.g. [3, 4]), that however would suffer losses of accuracy for more

general decompositions (and already when using faces that are non-affine quadrilaterals).

Interelement dofs k=2

Mesh VEMS2 VEM2 Q2

83 2,673 7,857 4,401

163 18,785 57,953 31,841

323 140,481 444,609 241,857

Interelement dofs k=3

Mesh VEMS3 VEM3 Q3

83 4,617 14,985 11,529

163 32,657 110,993 84,881

323 245,025 853,281 650,529

Table 1: Number of inter-element dofs for cubic uniform mesh: k = 2 and k = 3

Interelement dofs k=4

Mesh VEMS4 VEM4 Q4

83 8,289 23,841 22,113

163 59,585 177,089 164,033

323 450, 945 1,363,329 1,261,953

Interelement dofs k=5

Mesh VEMS5 VEM5 Q5

83 15,417 34,425 36,153

163 112,625 256,241 269,297

323 859,617 1,974,753 2,076,129

Table 2: Number of inter-element dofs for cubic uniform mesh: k = 4 and k = 5
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A layout of the paper is as follows: in the next section we will introduce some basic notation, recall some

well known properties of polynomial spaces, and present the Kikuchi formulation of (1.1). Then in Section

3 we present the local Virtual Element spaces of nodal type and of edge type. As we mentioned already, the

spaces are the same already discussed in [10], [1] and in [28], [13], respectively, but using different (though

computationally equivalent) degrees of freedom, that will come handy for the Serendipity construction. In

Section 4 we present the global version of the Virtual Element spaces, use them to write the discretized

problem, and prove the corresponding error bounds. In Section 5 we introduce and discuss the Serendipity

variants, both for nodal and edge elements, and prove some crucial properties of the coupling of the two for

the (simpler) case in which, for each element, the local order is smaller than the number of edges. Then, in

Section 6, we briefly discuss the extension of the previous results to the case of VEMs of an order (locally)

higher than (or equal to) the number of edges. In Section 7 we present some numerical results that show

that the quality of the approximation is very good, and also that the Serendipity variant does not jeopardize

the accuracy. Finally, in Section 9 we draw some conclusions.

2. Notation and Variational Formulation

2.1. Basic notation

In two dimensions, we will denote by x the independent variable, using x = (x, y) or (more often)

x = (x1, x2) following the circumstances. We will also use x⊥ := (−x2, x1), and in general, for a vector

v ≡ (v1, v2),

v⊥ := (−v2, v1). (2.1)

Moreover, for a vector v and a scalar q we will write

rotv :=
∂v2

∂x
− ∂v1

∂y
, rot q :=

(
∂q

∂y
,− ∂q

∂x

)T
(2.2)

and we consider the spaces

H1(Ω) = {q ∈ L2(Ω) with ∇q ∈ [L2(Ω)]2}, (2.3)

H(rot; Ω) = {v ∈ [L2(Ω)]2 with rotv ∈ L2(Ω)}, (2.4)

and for taking into account boundary conditions

H1
0 (Ω) = {q ∈ H1(Ω) with q = 0 on ∂Ω}, (2.5)

H0(rot; Ω) = {v ∈ H(rot; Ω) with v · t = 0 on ∂Ω}, (2.6)

where t denotes the unit tangent vector. For an integer s ≥ −1 we denote by Ps the space of polynomials of

degree ≤ s. Following a common convention, P−1 ≡ {0} and P0 ≡ R. Moreover, for s ≥ 1, on a domain O,

P0
s(O) := {q ∈ Ps such that

∫
O
q dO = 0}. (2.7)
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We denote by πs,d (here for d = 1 or d = 2) the dimension of Ps in d space dimensions, and we recall that

πs,1 = s+ 1 and πs,2 = (s+ 1)(s+ 2)/2. (2.8)

Obviously, in d dimensions, the (common value) of the dimension of the space P0
s and of the spaces ∇(Ps),

rot(Ps) will be equal to the dimension of Ps minus one.

The following decompositions are well known:

(Ps)2 = rotPs+1 ⊕ xPs−1 and (Ps)2 = gradPs+1 ⊕ x⊥Ps−1, (2.9)

implying that

div is an isomorphism between
{
xPs

}
and Ps, (2.10)

rot is an isomorphism between
{
x⊥Ps

}
and Ps. (2.11)

Finally we recall the definition of the classical local spaces for mixed formulations

RTs = rotPs+1 ⊕ xPs and N1s = gradPs+1 ⊕ x⊥Ps (2.12)

and

BDMs ≡ N2s := (Ps)2 (2.13)

2.2. Computationally equivalent sets of degrees of freedom

As we shall see, we are going to deal in each element with finite dimensional spaces whose functions are

defined as the solution of a boundary value problem within the element. The problem will be individuated

by a certain number of parameters that will then be used, in the actual computations, as degrees of freedom.

As the local dimension (as we said) will always be finite, it is clear that, on the one hand, an arbitrary

set of n (= dimension of the local space) linearly independent functionals will constitute a unisolvent set of

degrees of freedom, and consequently all such sets could be considered as equivalent, as they identify the same

finite dimensional space. On the other hand, starting from the values of a set of n functionals there will be

some other quantities that can be computed, out of them, without solving the boundary value problem: as,

trivially, if we give the sum and the difference of two numbers instead of the two number themselves, or, a

little less trivially, if we give the mean value of the normal derivative of a smooth function on the boundary

of the element and we want to compute the mean value of its Laplacian in the same element. Hence, we will

say that two sets of degrees of freedom (δ1, ..., δn) and (ζ1, ..., ζn) are computationally equivalent if one

can compute one set out of the other, on the computer, with simple algebraic manipulations without solving

the boundary value problem. As a negative example, consider the one-dimensional linear space of functions

u ∈ H1
0 (E) such that ∆u = constant. This space can be described by assigning either the constant value of

∆u or the meanvalue of u. However, these degrees of freedom are not computationally equivalent, since in

general we cannot compute one out of the other without solving a PDE in E.
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2.3. The Variational Formulation

Among the various possible variational formulations of (1.1) we will consider the K-formulation intro-

duced in [48] and [47], that reads

find H ∈ H0(rot; Ω) and p ∈ H1
0 (Ω) such that:∫

Ω

rotH rotv dΩ +

∫
Ω

∇p · µv dΩ =

∫
Ω

j rotv dΩ ∀v ∈ H0(rot; Ω)∫
Ω

∇q · µH dΩ = 0 ∀q ∈ H1
0 (Ω).

(2.14)

It is easy to check, by the usual theory of mixed methods (see e.g. [25]), that (2.14) has a unique solution

(H, p). Then we check that p ≡ 0 and that H and B ≡ µH give the solution of (1.1). Indeed, checking

that p ≡ 0 is immediate, just taking v = ∇p in the first equation; and once we know that p ≡ 0 the first

equation gives rotH = j, and then the second equation gives div µH = 0.

It should be pointed out that problem (2.14) has also an equivalent formulation of the Hodge-Laplacian

type, [6], that however will not be dealt with here. Other boundary conditions could be easily considered as

well. Needless to say, there are a number of different (and much more general) ways to tackle electromagnetic

problems. We briefly refer, for instance, to [37], [38], [52] and to the references therein. Theoretical results

more related to the present approach can be found in [23], [24].

3. The local VEM spaces

We will now design a Virtual Element approximation of (2.14), taking into account different possible

variants for the space of scalar multipliers as well as for the H(rot)-conforming vectors.

Later on, these same spaces will be reduced with a Serendipity approach, in order to eliminate as many

internal degrees of freedom as possible. This will come out as particularly relevant in future developments

concerning the three-dimensional problems, when the elements of the present papers will have to be used

on faces, where the use of static condensation would be much more involved.

We begin by defining the local spaces to be used for the approximation. We assume therefore that E is

a generic polygon, with Ne edges e, satisfying the usual regularity assumptions (see, e.g., [10]).

3.1. The local spaces - Nodal

We recall here the definition of the local nodal spaces. Actually, the spaces presented here are exactly

the same as the ones in [10], but with different (though computationally equivalent) degrees of freedom.

Let k, kd be integers with k ≥ 1. For kd we will consider, in principle, the three cases k − 2 ≤ kd ≤ k.

For the nodal spaces we have,

V nk (E) :=
{
q ∈ C0(E) : q|e ∈ Pk(e) ∀e ∈ ∂E, ∆q ∈ Pkd(E)

}
, (3.1)
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with the degrees of freedom

• the nodal values q(ν) at all vertices ν of E, (3.2)

• for each edge e, the moments

∫
e

q pk−2 ds ∀pk−2 ∈ Pk−2(e), (3.3)

•
∫
E

(∇q · xE) pkd dE ∀pkd ∈ Pkd(E), (3.4)

where xE = x− bE, with bE = barycenter of E.

Proposition 3.1. The degrees of freedom (3.2)-(3.4) are unisolvent.

Proof. The number of conditions being equal to the dimension of V nk (E) (as they are both equal to

Ne πk−1,1 + πkd,2) we have to prove that if, for a certain q ∈ V nk (E), all the d.o.f. vanish, then q ≡ 0.

Setting to zero the values of the degrees of freedom (3.2)-(3.3) gives immediately

q ≡ 0 on ∂E, (3.5)

which, setting to zero (3.4) as well, implies

0 =

∫
E

(∇q · xE) pkd dE = −
∫
E

q div(xE pkd) dE ∀pkd ∈ Pkd . (3.6)

Equation (3.6), in view of (2.10), immediately implies

0 =

∫
E

q pkd dE ∀pkd ∈ Pkd . (3.7)

Consequently, using (3.7) (plus the fact that ∆q ∈ Pkd) and (3.5),we have:∫
E

|∇q|2 dE = −
∫
E

q∆q dE +

∫
∂E

q(∇q · n) ds = 0, (3.8)

and the proof is concluded.

Remark 1. Looking at the proof above, one can easily see that the degrees of freedom (3.4), when used in

conjunction with the usual boundary degrees of freedom (3.2)-(3.3), are computationally equivalent to the

original degrees of freedom introduced in [10]:∫
E

q pkd dE ∀pkd ∈ Pkd . (3.9)

We also point out that the use of the degrees of freedom (3.4) is not much more complicated, computationally,

than that of (3.9).

Proposition 3.2. For every q ∈ V nk (E), using the degrees of freedom (3.2)-(3.4) one can compute the

L2-orthogonal projection of ∇q onto [Pkd+1(E)]2.
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Proof. It is enough to observe that for every q ∈ V nk (E) and for every pkd+1 ∈ [Pkd+1(E)]2, integrating by

parts we have∫
E

Π0
kd+1∇q · pkd+1 dE :=

∫
E

∇q · pkd+1 dE =

∫
∂E

q pkd+1 · n ds−
∫
E

q div pkd+1 dE,

and all the terms in the right-hand side are computable (using in particular the equivalent dofs (3.9)).

3.2. The local spaces - Edge

We introduce now the local edge spaces. Once more, the spaces presented here are exactly the same

already introduced in [13], but with different (though computationally equivalent) degrees of freedom.

For the edge spaces we will keep the same integers k and kd of the nodal spaces, but here we have

an additional integer parameter (that we call kr) that in practice might assume the values k − 1 or k − 2

according to the type of approximation that we are willing to obtain. Roughly speaking, choosing kr = k−1

we will get, for our edge space, a generalization to polygons of the Nédélec elements of the first kind N1

(that, in turn, in two dimension can be seen as rotated Raviart-Thomas spaces). Choosing instead kr = k−2

we will get, for our edge space, a generalization to polygons of the Nédélec elements of the second kind N2

(that, in turn, in two dimension can be seen as rotated Brezzi-Douglas-Marini spaces); see also (2.12)-(2.13).

For the edge spaces we have then, for k and kd as in the previous subsection, and for kr = k−1 or (only

when k ≥ 2) for kr = k − 2:

V ek−1(E) :=
{
v ∈ [L2(E)]2 : div v ∈ Pkd(E), rotv ∈ Pkr (E),v|e · te ∈ Pk−1(e) ∀e ∈ ∂E

}
, (3.10)

with the degrees of freedom

• on each e ∈ ∂E, the moments

∫
e

(v · te)pk−1 ds ∀pk−1 ∈ Pk−1(e), (3.11)

• the moments

∫
E

v · xE pkd dE ∀pkd ∈ Pkd(E), (3.12)

•
∫
E

rotv p0
kr dE ∀p0

kr ∈ P0
kr (E) (only for kr > 0), (3.13)

where P0
s was defined in (2.7).

Proposition 3.3. The degrees of freedom (3.11)-(3.13) are unisolvent.

Proof. Since the number of d.o.f. equals the dimension of V ek−1(E) (as they are both equal to Neπk−1,1 +

πkd,2 + πkr,2 − 1), we have to prove that if, for a certain v ∈ V ek−1(E), all the d.o.f. vanish, then v ≡ 0.

Conditions (3.11), set equal to zero, give v · t = 0 on ∂E, and hence∫
E

rotv dE = 0.
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This, together with the d.o.f. (3.13) set to be zero, implies

rotv = 0.

In view of (2.10) there exists a unique p∗ ∈ Pkd such that div(v−xEp
∗) = 0 and therefore v−xEp

∗ = rotϕ

for some ϕ ∈ H1(E). Then, if the d.o.f. (3.12) are also zero, integrating the remaining term by parts we

have ∫
E

|v|2 dE =

∫
E

v · (xEp
∗ + rotϕ) dE = 0 +

∫
E

rotv ϕdE +

∫
∂E

v · tϕds = 0,

and the proof is concluded.

Note that

Pk(E) ⊆ V nk (E), and [Pk−1(E)]2 ⊆ V ek−1(E).

Moreover, for each v ∈ V ek−1(E), the polynomial rotv ∈ Pkr (E) is uniquely defined (and computable) by

the d.o.f. (3.11) and (3.13).

Remark 2. Here too we remark that the d.o.f. (3.13), when used together with (3.11) and (3.12), are

computationally equivalent to the original ones introduced first in [28] (up to a rotation of π/2, in order to

go, in 2 dimensions, from H(div) to H(rot)-conforming spaces), and also to those used in [13].

Remark 3. We point out that for kd ≥ k − 2 the L2–projection Π0
k−1 : V ek−1(E) → [Pk−1(E)]2 is also

computable using the degrees of freedom (3.11)-(3.13). Indeed, for any pk−1 ∈ [Pk−1(E)]2 we can use (2.9)

and write

pk−1 = rot qk + xEqk−2, for some qk ∈ Pk(E), and some qk−2 ∈ Pk−2(E).

Therefore, for any v ∈ V ek−1(E) and any pk−1 ∈ [Pk−1(E)]2 we can write∫
E

Π0
k−1v · pk−1 dE :=

∫
E

v · pk−1 dE =

∫
E

v · (rot qk + xEqk−2) dE

=

∫
E

(rotv)qk dE +
∑
e∈∂E

∫
e

(v · t)qk ds+

∫
E

v · xEqk−2 dE

and it is immediate to check that each of the last three terms is computable.

3.3. The local scalar product

Once we have the L2–projection from V ek−1(E) onto polynomials of degree k−1, we can define in V ek−1(E)

the usual VEM-like inner product

[v,w]e,E := (Π0
k−1v,Π

0
k−1w)0,E + SE((I −Π0

k−1)v, (I −Π0
k−1)w), (3.14)

where SE , as already classical in VEMs frameworks, is any symmetric and positive definite bilinear form

such that there exist two constants α∗ and α∗ for which

α∗(v,v)0,E ≤ [v,v]e,E ≤ α∗(v,v)0,E ∀v ∈ V ek−1(E). (3.15)
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See, e.g., [10] or [13], or also [58] for simple choices of SE . Under usual suitable shape regularity assumptions

(see [10, 18, 26]) one can prove that the constants α∗ and α∗ in the above formula can be made independent

of the diameter hE of E.

It is important to point out that

[v,pk−1]e,E ≡ (v,pk−1)0,E ∀v ∈ V ek−1(E), ∀pk−1 ∈ [Pk−1(E)]2. (3.16)

4. Discretization of the Magnetostatic Problem (2.14)

4.1. The global VEM spaces

At this point, given a decomposition Th of the computational domain Ω into polygons, with the usual

regularity assumptions, we can define the global spaces:

V nk =
{
q ∈ H1

0 (Ω) : q|E ∈ V nk (E) ∀E ∈ Th
}
, (4.1)

V ek−1 =
{
v ∈ H0(rot; Ω) : v|E ∈ V ek−1(E) ∀E ∈ Th

}
. (4.2)

The (global) degrees of freedom associated to these spaces are the obvious ones that stem, as in standard

Finite Elements, from the local ones described above.

It is easy to check (see e.g. [13]) that

∇V nk ≡ {v ∈ V ek−1 such that rotv = 0}. (4.3)

Introducing the additional space of piecewise polynomials in Pkr with global zero mean value

V Ekr :=
{
γ ∈ L2(Ω) : γ|E ∈ Pkr (E) ∀E ∈ Th, and

∫
Ω

γ dΩ = 0
}
, (4.4)

we also have:

Proposition 4.1. With the above definitions we have

rotV ek−1 ≡ V Ekr . (4.5)

Proof. Indeed, the inclusion rotV ek−1 ⊆ V Ekr is obvious. Let us see the converse. Given a γ ∈ V Ekr we can

easily find a w ∈ [H1
0 (Ω)]2 such that rotw = γ. Then we define wI as the unique function in V ek−1 that

takes the same degrees of freedom values as w. In other words we set, for all E ∈ Th,

∫
e

(w −wI) · te pk−1 ds = 0 ∀e ∈ ∂E ,∀pk−1 ∈ Pk−1(e),∫
E

(w −wI) · xE pkd dE = 0 ∀pkd ∈ Pkd(E),∫
E

rot(w −wI) p0
kr dE = 0 ∀p0

kr ∈ P0
kr (E).

(4.6)
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Joining the third of (4.6) with the first (used for pk−1 ≡ 1) one can now check that for all E ∈ Th it holds

(rotwI)|E = Π0
kr (rotw)|E = Π0

krγ|E = γ|E , (4.7)

that proves the above assertion.

Remark 4. As is well known, in general, for mixed formulations, properties (4.3) and (4.5) play a very

important role in the analysis of the numerical methods, as well as (most of the times) in their performance.

We point out that, for dual mixed formulations of Darcy problems (as the classical ones, based on H(div)-L2

pairs) the analog of (4.5) (usually, with face spaces, and div instead of rot) is the critical property. Here,

instead, for problems like (2.14), it will be property (4.3) that is more difficult to deal with, in particular

when using Serendipity VEMs.

From (3.14) we can also define a scalar product in V ek−1 in the obvious way

[v,w]e :=
∑
E∈Th

[v,w]e,E , (4.8)

and we note that

α∗(v,v)0,Ω ≤ [v,v]e ≤ α∗(v,v)0,Ω ∀v ∈ V ek−1. (4.9)

We note that the scalar product (4.8) is also well defined in the DG version of V ek−1, namely

V e,DGk−1 := {v ∈ [L2(Ω)]2 : v|E ∈ V ek−1(E) ∀E ∈ Th
}
. (4.10)

It is also important to point out that, using (3.16) we have

[v,w]e =
∑
E∈Th

[v,w]e,E =
∑
E∈Th

(v,w)0,E =

∫
Ω

v ·w dΩ ∀w ∈ V ek−1, (4.11)

whenever v is in [Pk−1(E)]2 for each E ∈ Th. Finally, since (4.11) also holds when both v and w are

piecewise polynomials of degree ≤ k−1, and taking them equal to each other we easily see that, necessarily,

α∗ ≤ 1 ≤ α∗ (4.12)

in (4.9).

4.2. The discretized problem

Given j ∈ L2(Ω), with
∫

Ω
j dΩ = 0, we can finally introduce the discretization of (2.14)

find Hh ∈ V ek−1 and ph ∈ V nk such that:∫
Ω

rotHh rotv dΩ + [∇ph, µv]e =

∫
Ω

j rotv dΩ ∀v ∈ V ek−1,

[∇q, µHh]e = 0 ∀q ∈ V nk .

(4.13)

We recall that both rotHh and rotv are computable polynomials in each polygon E, so that all the terms

in (4.13) are computable.
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Proposition 4.2. Problem (4.13) has a unique solution (Hh, ph), and ph is always equal to zero.

Proof. Taking v = ∇ph (as we did for the continuous problem (2.14)) in the first equation, and using (4.9)

we easily obtain ph ≡ 0 for (4.13) as well. To prove uniqueness of Hh, set j = 0, and let Hh be the solution

of the homogeneous problem. From the first equation we deduce that rot Hh = 0. Hence, from (4.3) we

have Hh = µ∇q∗h for some q∗h ∈ V nk . The second equation gives then Hh = 0.

Once we know that the solution is unique and ph = 0, the first equation of (4.13) reads∫
Ω

(rotHh − j) rotv dΩ = 0 ∀v ∈ V ek−1 (4.14)

that, in view of (4.5) and the compatibility condition on j (that is, j has zero mean value in Ω), implies

rotHh = Π0
kr j. (4.15)

4.3. Error estimates

Let us bound the error H −Hh. We start by defining the interpolant HI of H as in (4.6). Using (4.7)

and (4.15) we immediately have that

rot(HI −Hh) = 0 (4.16)

and therefore, from (4.3),

HI −Hh = µ∇q∗h for some q∗h ∈ V nk . (4.17)

On the other hand, using (4.9) we have

α∗‖HI −Hh‖20,Ω ≤ [HI −Hh,HI −Hh]e, (4.18)

and the estimate goes:

α∗‖HI −Hh‖20,Ω ≤ [HI −Hh,HI −Hh]e

= (using (4.17)) [HI −Hh, µ∇q∗h]e

= (using the second of (4.13)) [HI , µ∇q∗h]e

= (adding and subtracting Π0
k−1H) [HI −Π0

k−1H, µ∇q∗h]e + [Π0
k−1H, µ∇q∗h]e

= (using (4.11)) [HI −Π0
k−1H, µ∇q∗h]e + (Π0

k−1H, µ∇q∗h)0,Ω

= (adding and subtracting H) [HI −Π0
k−1H, µ∇q∗h]e + (Π0

k−1H −H, µ∇q∗h)0,Ω + (H, µ∇q∗h)0,Ω

= (from the second of (2.14)) [HI −Π0
k−1H, µ∇q∗h]e + (Π0

k−1H −H, µ∇q∗h)0,Ω

≤ (using Cauchy-Schwarz and (4.9))
(
α∗ ‖HI −Π0

k−1H‖0,Ω + ‖Π0
k−1H −H‖0,Ω

)
‖µ∇q∗h‖0,Ω

≤ (from (4.17))
(
α∗ ‖HI −Π0

k−1H‖0,Ω + ‖Π0
k−1H −H‖0,Ω

)
‖HI −Hh‖0,Ω
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that, using also (4.12), implies immediately

‖HI −Hh‖0,Ω ≤
α∗

α∗
‖HI −Π0

k−1H‖0,Ω + ‖Π0
k−1H −H‖0,Ω)

≤ 2α∗

α∗
(‖H −HI‖0,Ω + ‖Π0

k−1H −H‖0,Ω).

We can summarize the result in the following theorem.

Theorem 4.3. Problem (4.13) has a unique solution and the following estimate holds:

‖H −Hh‖0,Ω ≤ C
(
‖H −HI‖0,Ω + ‖H −Π0

k−1H‖0,Ω
)
, (4.19)

with C a constant independent of the mesh size. Moreover, thanks to (4.15) we also have

‖ rot(H −Hh)‖0,Ω = ‖j −Π0
krj‖0,Ω, (4.20)

so that

‖H −Hh‖H(rot;Ω) ≤ C
(
‖H −HI‖0,Ω + ‖H −Π0

k−1H‖0,Ω + ‖j −Π0
krj‖0,Ω

)
. (4.21)

The above result can be combined with standard polynomial approximation estimates on polygons in

order to estimate the terms involving the L2 projection on polynomials. Moreover, approximation estimates

for the VEM interpolant HI can be derived by a simple modification of the arguments in [21]. We therefore

obtain, provided that H and j are sufficiently regular,

‖H −Hh‖0,Ω ≤ Chs|H|s,Ω , ‖ rot(H −Hh)‖0,Ω ≤ Chr|j|r,Ω, (4.22)

with 0 ≤ s ≤ k and 0 ≤ r ≤ kr + 1.

Remark 5. It should be pointed out that the proofs of both Proposition 4.2 and Theorem 4.3 rely heavily on

(4.3), and on the chain (4.7)-(4.15)-(4.16) ending with (4.17) (which also needs (4.3)). The whole procedure

is simple and neat, and follows classical arguments. However, it should be clear that, in particular, without

(4.3) the whole construction would collapse and the proofs would become much more complicated.

5. Serendipity spaces

Following a denomination started with Qk Finite Element approximations on quadrilaterals, and then

made popular in several other contexts, the Serendipity variants can be roughly described as a reduction of

the degrees of freedom operated without jeopardizing the expected accuracy. In our context this implies, to

start with, that we are going to keep all the boundary degrees of freedom in order to guarantee conformity

(H1 for nodal VEMs, and H(rot) for edge VEMs), keeping the existence of a local basis. Then, to the

boundary d.o.f. we add all the internal d.o.f. that are necessary to ensure that the local VEM space
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contains, for nodal VEMs, all polynomials of the chosen degree (here: k), and for edge VEMs, all vector-

valued polynomials of the chosen degree (here (Pk−1)2), or, possibly, even some bigger space if we have in

mind the accuracy of N1-like spaces (see (2.12)), for instance if we need to be as accurate in H(rot) as we

are in (L2)2.

In what follows, therefore, we go back to the nodal and edge spaces defined in (3.1) and (3.10) and we

want to define their Serendipity versions, in order to reduce the internal degrees of freedom as much as

possible. For the sake of simplicity, setting

η = minimum number of straight lines necessary to cover the boundary,

we assume first that, on each polygon E, the degree k is smaller than η. This means to assume that the

geometry of E is such that every polynomial of degree k vanishing on all ∂E is identically zero: in other

words, we are assuming that

Pk(E) does not contain bubbles. (5.1)

At the end of the Section we will also give indications for higher values of k (for simplicity on convex

polygons).

5.1. Local Serendipity nodal spaces

For the nodal Virtual elements we define a projection Πn
S : V nk (E)→ Pk(E) by

∫
∂E

∂t(q −Πn
Sq)∂tp ds = 0 ∀p ∈ Pk(E),∫

∂E

(xE · n)(q −Πn
Sq) ds = 0,

(5.2)

where again xE = x− bE, with bE = barycenter of E, and ∂t denotes the derivative along the boundary.

Proposition 5.1. The operator Πn
S is well defined.

Proof. Indeed, the number of conditions in (5.2) being equal to the dimension of Pk, we have to check that

for Πn
Sq ∈ Pk(E) we have{∫

∂E

∂tΠ
n
Sq ∂tp ds = 0 ∀p ∈ Pk(E) and

∫
∂E

(xE · n)Πn
Sq ds = 0

}
=⇒ Πn

Sq ≡ 0.

The first condition implies Πn
Sq constant on each edge, and hence (recalling (5.1)) Πn

Sq = c in E. The second

condition gives c = 0, observing that∫
∂E

(xE · n) ds =

∫
E

divxE dE = 2|E|. (5.3)
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We point out that for q ∈ V nk (E) we can compute Πn
Sq using only the boundary degrees of freedom (3.2)

and (3.3).

Then we introduce, for k ≥ 2, the Serendipity nodal space as:

SV nk (E) =
{
q ∈ V nk (E) :

∫
E

(∇q −∇Πn
Sq) · xE pkd dE = 0∀pkd ∈ Pkd

}
. (5.4)

Using that Πn
Sq depends only on the boundary values of q, one can check that a set of degrees of freedom

for the space SV nk (E) is given by the nodal values at the vertices of E and the moments of order k − 2 on

the edges, i.e., (3.2)-(3.3). Clearly, we have

Pk(E) ⊆ SV nk (E) ⊆ V nk (E).

Remark 6. We also note that for q ∈ SV nk one can use its degrees of freedom (that, as we saw, are just (3.2)

and (3.3)) to compute Πn
Sq through (5.2), and then compute its moments (3.4) (since, following (5.4), the

moments (3.4) of q and of Πn
Sq are the same). In other words, for a q ∈ SV nk , the knowledge of the degrees

of freedom (3.2) and (3.3) allows the computation of the degrees of freedom (3.4) (and then, in particular,

as shown in Proposition 3.2, the computation of the L2-projection of ∇q onto [Pk−1(E)]2.)

Remark 7. We also point out that, when dealing with SV nk on the computer, one uses only the degrees of

freedom (3.2) and (3.3), and they do not depend on the value of kd. This means that for q ∈ SV nk one can

always think that, say, kd = k and use the moments of Πn
Sq as being the moments of q up to the order k.

Note also that to use moments of an order higher than k would be correct but useless: Πn
Sq is, itself, in Pk,

and its projection on a bigger space will not change it.

Remark 8. Note that the procedure for the construction of Serendipity Virtual Elements is quite different

from the one that is normally used for Finite Elements. There (on FEM), the basic procedure is to present

the reduced (Serendipity) space as the span of: {Pk plus some additional monomials, or some explicitly

and suitably chosen polynomials of degree higher than k}. Then the degrees of freedom for the Serendipity

space can be chosen in an almost arbitrary way, taking into account the practical convenience. For Virtual

Elements, on the contrary, the construction of the Serendipity space SV nk (E) is based on the choice of the

projection operator Πn
S in (5.2), that, in turn, uses a subset of the degrees of freedom used for the starting

space V nk (E), and requires also the choice of some sort of inner product. For instance here, in (5.2), we used

a sort of H1(∂E) inner product, while in [14] we used instead an Euclidean inner product among the chosen

degrees of freedom. Taking one choice or the other for the degrees of freedom and for the scalar products

will clearly change the definition of the projection operator Πn
S, and this will change the space SV nk (E).

Note that the change will not (essentially, in all cases) be restricted to the formal way of defining it: it will

actually be a true change of the elements that belong to the space (apart, obviously, from the elements of Pk,

that will remain untouchable). In general, therefore, we might expect that a change in the original degrees
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of freedom in V nk (E) or a change in the inner product(s) used to define the projection operator Πn
S will end

up in a different Serendipity space having different properties.

5.2. Local Serendipity edge spaces

For the edge Virtual elements, instead, we should, in principle, distinguish two cases: whether we want

to preserve just the space N2k−1 ≡ [Pk−1(E)]2 or the (bigger) space N1k−1 ≡ {v ∈ [Pk−1(E)]2 with rotv ∈

Pk−1(E)} (see (2.12) and (2.13)). The difference between the two cases is in the choice of kr: kr = k − 2

and kr = k− 1, respectively. We will treat, as far as possible, the two cases together. For this we introduce

the space

Sek−1 := gradPk ⊕ x⊥Pkr , (5.5)

that corresponds to N2 when kr = k − 2, and to N1 when kr = k − 1 (see again (2.12) and (2.13)). We

point out that, in both cases

dimension(Sek−1) = πk,2 − 1 + πkr,2. (5.6)

We can now define a projection Πe
S : V ek−1(E)→ Sek−1 as follows:∫

∂E

[(v −Πe
Sv) · t][∇p · t] ds = 0 ∀p ∈ Pk(E), (5.7)∫

∂E

(v −Πe
Sv) · tds = 0, (5.8)∫

E

rot(v −Πe
Sv)p0

kr dE = 0 ∀p0
kr ∈ P0

kr (E). (5.9)

Proposition 5.2. The operator Πe
S is well defined.

Proof. Indeed, the number of conditions in (5.7)-(5.9) being equal to the dimension of Sek−1, we need to

check that for Πe
Sv ∈ Sek−1 the conditions∫

∂E

[Πe
Sv · t][∇p · t] ds = 0 ∀p ∈ Pk(E), (5.10)∫

∂E

Πe
Sv · tds = 0, (5.11)∫

E

rot(Πe
Sv)p0

kr dE = 0 ∀p0
kr ∈ Pkr (E), (5.12)

imply Πe
Sv ≡ 0. It is easy to see that (5.11) and (5.12), together, imply rot(Πe

Sv) = 0, so that Πe
Sv = ∇pk

for some pk ∈ Pk(E). Then (5.10) gives Πe
Sv · t = 0 and using (5.1) we deduce Πe

Sv = 0.

We can now define the Serendipity edge space as:

SV ek−1(E) =
{
v ∈ V ek−1(E) :

∫
E

(v −Πe
Sv) · xE pkd dE = 0 ∀pkd ∈ Pkd

}
. (5.13)

Again by a standard procedure one can check that a set of degrees of freedom for the space SV ek−1(E) is

made by the edge moments (3.11)), and by the rot-moments (3.13). Clearly, we have

Sek−1 ⊂ SV ek−1(E) ⊂ V ek−1(E). (5.14)
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Remark 9. Mimicking Remarks 6 and 7 we point out that for elements v ∈ SV ek−1(E) we can use the

d.o.f.s (3.11) and (3.13), compute ΠSv using (5.7)-(5.9), and then use ΠSv to get the values of the d.o.f.s

(3.12). Then, in particular, we can compute the projection Π0
k−1 on (Pk−1)2, and so on.

Remark 10. Similarly to what we pointed out in Remark 8 for nodal Serendipity Virtual Element spaces,

we have here that the edge Serendipity spaces SV ek−1(E) defined in (5.13) depend on the projection operator

Πe
S, that in turn depends on the degrees of freedom that are chosen, and on the type of scalar product used to

define it. Here too, different degrees of freedom and different scalar products will produce different Serendipity

spaces with different properties.

In order to proceed to the Serendipity discretization of the magneto-static problem (1.1) and to analyze

its convergence properties, a crucial step well be the proof of the Serendipity version of the fundamental

property (4.3). This needs first the following Lemma.

Lemma 5.3.

∇Πn
Sq = Πe

S ∇q ∀q ∈ SV nk (E). (5.15)

Proof. We have to prove that conditions (5.7)-(5.9) (for v ≡ ∇q) are satisfied when using ∇Πn
Sq in place of

Πe
S ∇q. Using the first equation in (5.2) we have, for all p ∈ Pk(E),∑

e∈∂E

∫
e

[
(∇q −∇Πn

Sq) · te
][
∇p · te

]
ds ≡

∑
e∈∂E

∫
e

∂t(q −Πn
Sq)∂tp ds = 0,

so that (5.7) holds true. Moreover, as both q and Πn
Sq are in C0(∂E), we obviously have∑

e∈∂E

∫
e

(∇q −∇Πn
Sq) · te =

∫
∂E

∂t(q −Πn
Sq) ds = 0,

that gives (5.8). Finally it is obvious that∫
E

rot(∇(q −Πn
Sq))p

0
kr dE = 0 ∀p0

kr ∈ P0
kr (E),

giving (5.9) and ending the proof.

Remark 11. Identity (5.15) is particularly useful from the computational point of view. Indeed, looking

at the definition (5.4) of the serendipity nodal space, we see that it allows us to build only the serendipity

projection operator for the edge space, and use it for constructing SV nk (E).

5.3. The coupling of Serendipity nodal and edge spaces

Now we want to prove the Serendipity version of (4.3).

Proposition 5.4. With the above definitions we have

∇ SV nk (E) =
{
v ∈ SV ek−1(E) : rot v = 0

}
. (5.16)
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Proof. Clearly for each q ∈ SV nk (E) the function v = ∇q verifies v · t|e ∈ Pk−1(e) on each edge e, div v =

∆q ∈ Pkd(E), and rot∇q = 0. Moreover the condition∫
E

(∇q −Πe
S∇q) · xE pkd dE = 0 ∀pkd ∈ Pkd (5.17)

is automatically verified using (5.15) and the definition of the nodal Serendipity space (5.4). Conversely, for

a v ∈ SV ek−1(E) with rotv = 0 we clearly have, from (4.3), that v = ∇q for some q ∈ V nk , and using first

(5.15), then ∇q = v, and finally that v ∈ SV ek−1(E), we have for all pkd ∈ Pkd :∫
E

(∇q−∇Πn
Sq)· xE pkd dE=

∫
E

(∇q−Πe
S∇q)· xE pkd dE=

∫
E

(v−Πe
Sv)· xE pkd dE=0 (5.18)

implying that q is actually in SV nk (see (5.4)).

Remark 12. It is easy to see that property (5.15) is essential in (5.16). We can see that the choices of the

degrees of freedom in the original (non Serendipity) nodal and edge Virtual Element Spaces, together with

the choices of the projection operators, are essential (and, in our opinion, non trivial) in order to have the

property (5.16), which is the Serendipity counterpart of (4.3), that, in turn, was the key to the convergence

proof of Theorem 4.3.

Remark 13. We point out that the definition (5.7)-(5.9) of the projection operator Πe
S implies, in particular,

that rotv and rot Πe
Sv are equal. Then it is immediate to see that, similarly to (4.5), we also have

rotSV ek−1 ≡ V Ekr . (5.19)

The global spaces are the obvious extension of the local ones, and so are the global degrees of freedom.

Denoting the global spaces by SV ek−1(Ω) and SV nk (Ω), the discrete problem with the Serendipity spaces is
find Hh ∈ SV ek−1(Ω) and ph ∈ SV nk (Ω) such that:∫

Ω

rotHh rotv dΩ + [∇ph, µv]e =

∫
Ω

j rotv dΩ ∀v ∈ SV ek−1(Ω),

[∇q, µHh]e = 0 ∀q ∈ SV nk (Ω).

(5.20)

Thanks to the inclusion (5.14), the scalar products (3.14) and (4.8) can still be used, and the crucial equality

(5.16) allows us to prove uniqueness of the solution of (5.20), together with the error estimates (4.19) and

(4.21) exactly as we did in the previous section.

6. The case of k ≥ η

It is relatively simple to extend the previous discussion on Serendipity nodal and edge VEMs to the case

of a k that is greater or equal to the number η of edges necessary to cover ∂E. For simplicity we will just
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tackle the case of convex polygons. In what follows we will set

β := k − η.

As we shall see in a while, a crucial role in the Serendipity VEMs with a higher k is played by the space of

bubbles

Bk = {q ∈ Pk(E) such that q ≡ 0 on ∂E}, (6.1)

that clearly can be written as

Bk = bηPβ , (6.2)

where bη is the polynomial of degree η that vanishes identically on ∂E and, say, is equal to 1 at the

barycenter bE of E. Note that, for a convex polygon E, we easily have bη > 0 at all points internal to E.

In this case, the Serendipity projection Πn
S , in order to be well defined, needs, in addition to (5.2), the

conditions ∫
E

(∇(q −Πn
Sq) · xEpβ dE = 0 ∀pβ ∈ Pβ . (6.3)

To check that adding (6.3) to (5.2) the operator Πn
S is well defined, we proceed as we did in Proposition 5.1.

Assuming that we have ∫
∂E

∂tΠ
n
Sq ∂tp ds = 0 ∀p ∈ Pk(E), (6.4)∫
∂E

(xE · n)Πn
Sq ds = 0, (6.5)∫

E

∇Πn
Sq · xEpβ dE = 0 ∀qβ ∈ Pβ , (6.6)

from (6.4) and (6.5) we immediately deduce, as before, that Πn
Sq = 0 on ∂E. Hence, Πn

Sq ∈ Bk, so that

(6.2) gives Πn
Sq = bηp

∗
β for some p∗β ∈ Pβ . Integrating (6.6) by parts, and using (2.10) we obtain∫

E

(Πn
Sq)pβ dE = 0 ∀pβ ∈ Pβ , (6.7)

that used with Πn
Sq = bηp

∗
β and pβ = p∗β gives∫

E

bβ(p∗β)2 dE = 0

which implies Πn
Sq ≡ 0. Having defined the projection q → Πn

Sq we can now define the Serendipity space

SV nk (E) as

SV nk (E) =
{
q ∈ V nk (E) :

∫
E

(∇q −∇Πn
Sq) · xE p dE = 0∀p ∈ Pβ/kd

}
, (6.8)

where Pβ/kd is the space spanned by the homogeneous polynomials of degree s with β < s ≤ kd.

Remark 14. From the above discussion, we see that the degrees of freedom (3.2), (3.3) and, whenever β ≥ 0∫
E

(∇q · xE)pβ dE ∀pβ ∈ Pβ , (6.9)
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will be a unisolvent set of degrees of freedom in SV nk (E), and that, arguing as in Remarks 6 and 7, they will

allow the computation of the L2-orthogonal projection on Pk as well as the (L2)2-orthogonal projection of

the gradients on (Pk−1)2.

The very same logic applies to the Serendipity edge case for k ≥ η, where now the definition of the

projection Πe
Sv would require the additional conditions∫

E

(v −Πe
Sv) · xE pβ dE ∀pβ ∈ Pβ(E). (6.10)

The Serendipity edge space will then be

SV ek−1(E) =
{
v ∈ V ek−1(E) :

∫
E

(v −Πe
Sv) · xE p dE = 0∀p ∈ Pβ/kd

}
. (6.11)

Remark 15. In the same spirit of that of Remark 14 we see that the degrees of freedom (3.11), (3.13),

supplemented (for β ≥ 0) with ∫
E

(v · xE)pβ dE ∀pβ ∈ Pβ , (6.12)

will be a unisolvent set of degrees of freedom in SV ek−1(E), and that they will allow the computation of the

(L2)2-orthogonal projection on (Pk−1)2.

Then we can just proceed following step by step (with the minor obvious adaptations) what we did in

the previous Section.

The case of non-convex E can also be reasonably easily dealt with (essentially, using bk in place of pk in

(6.3) and in (6.10)). We refer to [14] and [15] for the necessary background.

7. Numerical results

In this section we numerically validate the proposed VEM theory for 2D magnetostatic problems. We

set kd = k−2 and kr = k−1 in the definition of the virtual nodal and edge spaces. We will analyze different

aspects of the proposed method. For this, we set µ = 1, Ω = [0, 1]2 and take as exact solution of (1.1)

H(x, y) :=

 −π cos(πx) sin(πy)

π sin(πx) cos(πy)


It is easy to verify that H · t = 0 on ∂Ω and j := rotH has zero meanvalue.

We discretize the unit square Ω = [0, 1]2 in four different ways, see Figure 1:

• quadN: structured mesh composed by N squares;

• voroN: mesh composed by N Voronoi cells;

• rhexN: mesh composed by N regular hexagons.

20



• dhexN: mesh composed by N distorted hexagons.

The mesh-size h is defined as

h :=
1

NE

∑
E∈Th

hE , (7.1)

where NE is the number of mesh elements and hE is the diameter of the element E. Then, for each type of

mesh, we will consider a sequence of four meshes with decreasing mesh size h to make the error convergence

analysis. More specifically, for quadN and voroN we have N = 100, 400, 1600 and 6400, while for rhexN and

dhexN we have N = 94, 389, 1415 and 5711, in order to have essentially the same h for all mesh types. We

then apply the serendipity approach described in Sections 5 and 6, choosing the space N1k−1 as edge space

(see Equation (2.12)). Before showing the numerical results, we underline that the serendipity version of

Section 6 is essential for elements E with k ≥ ηE , since the recipe of Section 5 fails in this case.

In Figure 2 we provide the convergence graphs with the serendipity approach and the standard one. For

completeness we also report the case k = 1, where there are no internal dofs, and hence no serendipity is

needed. Figure 2 shows the convergence rate of the L2 error, computed as

||H −Π0
k−1Hh||0,Ω

||H||0,Ω
.

The trend of this error is coherent with the theory for all the meshes taken into account. What is also

important, in our opinion, is to check that using the Serendipity version of nodal and edge VEM spaces we

have the same accuracy and almost exactly the same results that we have when using the full VEM spaces.

The exact solution ph of the discretized problem is identically zero. Clearly, the roundoff errors generate,

out of the computer, a ph that is almost identically zero. In some sense we could take the values of the

computed ph as a measure (or, better, a rough indicator) of the conditioning of the final linear system. In

particular, we compared the values of ph for the original discretization (4.13) with the values of ph for the

Serendipity version (5.20) to have some information on the conditioning of the linear system. In Table 3

we provide the maximum absolute value of the dofs of ph, i.e., we compute max |dof (ph)|, where dof (ph)

denotes the array of the dofs of the function ph in the space V nk . In this table we consider only the nested

meshes dhexN, similar results are obtained for the other mesh types. All these values are sufficiently close

to the machine precision and they grow with the degree k.

We note that, since we are solving a lower dimensional linear system, the dof values of the scalar function

ph computed with the serendipity approach are closer to the machine precision than those obtained with

the standard procedure, see Table 3.

To better understand the advantage of the serendipity approach in terms of reduction of the number of

degrees of freedom, we compute the following quantity

gain := 100
#dof −#dofS

#dof
% ,
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quad100 voro100

h = 0.1414 h = 0.1394

rhex94 dhex94

h = 0.1355 h = 0.1583

Figure 1: Different discretizations of the unit square [0, 1]2.

where #dof and #dofS are the number of degrees of freedom with the standard and the serendipity approach,

respectively. In Table 4 we provide the value of gain only for one example of each kind of mesh; similar

results are obtained for the other meshes. The gain in terms of degrees of freedom is remarkable and it

increases with the degree k.

7.1. Numerical experiment with singular solution

In this subsection we solve problem (1.1) on a standard L-Shaped domain Ω ⊂ [−1, 1]2, we set again

µ = 1, and we choose the right hand side j and the boundary conditions in such a way that the exact
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k approach dhex94 dhex389 dhex1415 dhex5711

1 standard 1.1875e-14 3.4438e-14 2.1061e-13 7.1641e-13

2
standard 1.9811e-13 2.7685e-12 2.3027e-11 2.0194e-10

serendipity 1.2651e-14 4.5334e-14 1.3284e-13 1.6533e-12

3
standard 2.8698e-11 3.4730e-10 1.8091e-09 8.5544e-08

serendipity 1.1454e-12 3.1212e-12 1.2349e-11 1.4966e-10

4
standard 2.5490e-11 8.2772e-11 2.7047e-09 6.9675e-08

serendipity 2.2063e-12 8.3612e-12 5.1823e-11 3.5685e-10

Table 3: Comparison between the values of max |dof (ph)| obtained via a standard and a serendipity approach. We consider

the set of nested mesh dhexN and similar results are obtained for the other set of meshes.
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Figure 2: Comparison of the L2-error h-convergence rates for standard and serendipity approach varying the mesh types and

the VEM degrees k.
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k quad1600 voro1600 rhex1415 dhex1415

2 17.85% 13.33% 13.33% 13.33%

3 26.90% 21.42% 21.42% 21.42%

4 27.47% 27.13% 27.13% 27.13%

Table 4: Example of gain on the number of degrees of freedom with the serendipity procedure.

solution is

H(x, y) := ∇ζ(x, y) +

 −y
x

 ,

where ∇ζ(x, y) is the gradient of the function ζ defined via the standard polar coordinate system θ, ρ

ζ(θ, ρ) := ρ2/3 sin

(
2

3
θ

)
.

We observe that the function ζ is harmonic and thus the vector field H is divergence free, which is in

agreement with (1.1). Moreover, since the function ζ ∈ H1+ 2
3−ε(Ω), ∀ε > 0, the vector field H ∈ H 2

3−ε(Ω).

We then expect a convergence rate of about h2/3 for each VEM approximation degree k, see Equation (4.22).

As before we consider a sequence of nested meshes of equal squares, quadN, and of well-shaped Voronoi

cells, voroN, where N is the number of elements, see Figure 3. More specifically, we take N = 100, 400, 1600

and 6400 for the mesh of squares, and N = 193, 699, 2050 and 7225 for the Voronoi mesh. Also in this case

we chose the edge space N1k−1 in the serendipity approach.

quad192 voro193

h = 0.1767 h = 0.1700

Figure 3: Different discretizations of the L-Shape domain.

In Figure 4 we provide the convergence graphs with both the standard and the serendipity approach. The
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error behaves as expected: for each degree k the convergence rate is approximately 2/3, and the accuracy

improves when k grows, as expected (see, e.g., [37, 38, 39, 53]). Moreover, the serendipity approach is

indistinguishable from the corresponding standard one for all k. Finally, we do not report the results for

the scalar variable ph since it vanishes up to machine precision also in this case.
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Figure 4: Comparison of the L2-error h-convergence rates for standard and serendipity approach varying the mesh types and

the VEM degrees k.

8. A glimpse to the 3D case

In this section we give a brief hint on the use of the machinery of the previous sections for the three-

dimensional case (although this is actually beyond the scopes of the present paper). We limit ourselves to

the definition of the local spaces, as the rest of the development is still work in progress.

8.1. The local VEM spaces in 3D

Let therefore P be a simply connected polyhedron, with the usual starshapedness assumptions on the

polyhedron itself and on each of its faces f . For simplicity, we will assume that each face f of P is convex.

For an integer k, fixed (as we did in 2 dimensions) once and for all, for each face f we will use the spaces

Serendipity SV nk (f) and SV ek−1(f) as defined in (5.4) and (5.13)-(3.10) (with kr = k − 1), respectively.

Remark 16. The name of the game, here, is to use the Serendipity VEM spaces only at the inter-element

boundaries, without attempting to reduce the number of degrees of freedom (and to make the spaces slimmer)

inside P. In other words, we label the d.o.f.s internal to P as “bound to disappear, out of static condensation”.
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We then introduce the three-dimensional analogues of (5.4) and (5.13) that are

V nk (P) :=
{
q : q|f ∈ SV nk (f), ∀ face f ∈ ∂P, ∆ q ∈ Pk−2

}
, (8.1)

V ek−1(P) :=
{
v : v · t continuous on each edge e ∈ ∂P,v|f ∈ SV ek−1(f) ∀ face f ∈ ∂P,

div v ∈ Pk−2(P), curl(curlv) ∈ (Pk−2(P))3
}
.

(8.2)

Actually, in 3 dimensions we would also need a Virtual Element Face space, that we define as

V fk−1(P) :=
{
w|w · nf ∈ Pk−1(f)∀ face f, divw∈Pk−1(P), curlw∈(Pk−2(P))3

}
. (8.3)

Remark 17. We note that, in many applications, the number of internal degrees of freedom for the spaces

(8.1), (8.2), and (8.3) will be more than necessary. However, as already pointed out in Remark 16, we

will not make efforts to diminish them, as we assume that in practice we could eliminate them by static

condensation.

Remark 18. We also point out that for the Face three-dimensional space we do not need a Serendipity

version on faces (as we do for nodal and edge elements) since the normal component (that is what we use

on faces) is already a Pk−1 polynomial and cannot be further reduced without jeopardizing the accuracy.

We easily see that, with the above definitions, for every q ∈ V nk (P), we have that the tangential gradient,

applied face by face, belongs to SV ek−1(f). Consequently, we also have, almost for free, the crucial property

∇
(
V nk (P)

)
≡
{
v ∈ V ek−1(P) such that curlv = 0

}
,

and using also (5.19) on each face,

curl
(
V ek−1(P)

)
≡
{
v ∈ V fk−1(P) such that div v = 0

}
.

9. Conclusions

We presented a variant of nodal and edge Serendipity spaces on polygonal elements and applied them

to the numerical solution of a simple magnetostatic problem. These Virtual Element Spaces of different

type can be used together in applications where an exact sequence is particularly convenient, together with

commuting-diagram interpolation operators, as is definitely the case in electromagnetic problems.

In more details, we introduced new families of H1-conforming and H(rot)-conforming polygonal elements

that generalize the traditional Lagrange Finite Elements and the Nédélec edge elements (both of the first

and of the second kind) to the case of general polygons. Possibly most important is the fact that the new

elements are very robust with respect to distortions, and so are their Serendipity variants (where many

internal degrees of freedom are eliminated). Such a feature is already interesting in rather simple geometries
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(as, for instance, quadrilaterals) and will also prove to be particularly convenient when applied to the faces

of a polyhedral decomposition.

Here we considered the use of these spaces for the discretization of Magnetostatic problems in two dimen-

sions, following the variational formulation of Kikuchi. We proved stability and optimal error estimate, and

we checked the performance (which turned out to be very good) with some academic numerical experiments.

The extension to more general Hodge-Laplace type operators in 2D would be immediate, and the exten-

sion to the 3D Magnetostatic problems (much more interesting from the practical point of view) is reasonably

“at hand”, and profits significantly of the use of the present spaces on faces (in particular for the use of

their Serendipity version).

It would also be interesting to study the extension of these methods to problems where the dependence of

B from H is nonlinear. For applications of the Virtual Element Methods to various other types of nonlinear

problems we refer to [20, 2, 31, 58].

Clearly much additional work is needed, but we hope that our friend Tinsley will like the pioneering

aspects.
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