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Abstract

We give here a simplified presentation of the lowest order Serendipity Virtual Element method, and show

its use for the numerical solution of linear magneto-static problems in three dimensions. The method can

be applied to very general decompositions of the computational domain (as is natural for Virtual Element

Methods) and uses as unknowns the (constant) tangential component of the magnetic field H on each

edge, and the vertex values of the Lagrange multiplier p (used to enforce the solenoidality of the magnetic

induction B = µH). In this respect the method can be seen as the natural generalization of the lowest order

Edge Finite Element Method (the so-called “first kind Nédélec” elements) to polyhedra of almost arbitrary

shape, and as we show on some numerical examples it exhibits very good accuracy (for being a lowest order

element) and excellent robustness with respect to distortions.
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1. Introduction

In this paper we introduce a simplified version of the Serendipity Virtual Element Methods (VEMs)

presented in [9] and [10] and we show how they can be used for the numerical solution of linear magneto-

static problems in the so-called Kikuchi formulation (see e.g. [21]).

Serendipity VEMs are a recent variant of Virtual Element Methods that allow (as is the case of classical

Serendipity Finite Elements (FEMs) on quadrilaterals and hexahedra) to eliminate a certain number of

degrees of freedom (internal to faces and volumes) without compromising the order of accuracy. In the

Virtual Element framework they are particularly useful since the original formulations of VEMs (as in [6]

or [8]) often use more degrees of freedom than their FEM counterpart (when it exists).

The advantage of VEMs, when it comes to Serendipity variants, is that, contrary to FEMs, they do not

use a reference element: an inevitable sacrifice, if you want to be able to deal with very general geometries.
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Such a sacrifice, that requires additional computations on the current element, has however the advantage of

being much more robust with respect to distortions, whereas Serendipity FEMs can lose orders of accuracy

already on innocent quadrilaterals that are not parallelograms (as is well known, and has been analyzed e.g.

in [2], [3]).

Here, as we said, we present a variant of the general theories of [9] and [10], that is specially designed

for lowest order cases and comes out to be simpler, both for the theoretical presentation and the practical

implementation.

Then we apply it to the classical model magnetostatic problem, in a smooth-enough simply connected

bounded domain Ω in R3:

given j ∈ H(div; Ω) (with divj = 0 in Ω), and µ = µ(x) ≥ µ0 > 0,

find H ∈ H(curl; Ω) and B ∈ H(div; Ω) such that:

curlH = j and divB = 0, with B = µH in Ω

with the boundary conditions H ∧ n = 0 on ∂Ω.

(1.1)

In particular we shall deal with the variational formulation introduced in [21], that reads

find H ∈ H0(curl; Ω) and p ∈ H1
0 (Ω) such that:∫

Ω

curlH · curlv dΩ +

∫
Ω

∇p · µv dΩ =

∫
Ω

j · curlv dΩ ∀v ∈ H0(curl; Ω)∫
Ω

∇q · µH dΩ = 0 ∀q ∈ H1
0 (Ω).

(1.2)

For many other different approaches to the same problem see e.g. [23], [18], [13] and the references

therein.

In our discretization, the scalar variable p (Lagrange multiplier for the condition div(µH) = 0) will be

discretized using only vertex values as degrees of freedom, and the magnetic field H will be discretized using

only one degree of freedom (= constant tangential component) per edge. In its turn the current j (here a

given quantity) will be discretized by its lowest order Face Virtual Element interpolant jI , individuated by

its constant normal component on each face.

On tetrahedrons this would correspond to use a piecewise linear scalar for p, a lowest-order Nédélec

of the first kind for H, and a lowest order Raviart-Thomas for j: in a sense, nothing new. But already

on prisms, pyramids, or hexahedra we start gaining, as we can allow more general geometries and more

dramatic distortions, and there are no difficulties in using much more general polyhedrons.

On polyhedrons the present approach could also be seen as being close to previous works on Mimetic

Finite Differences (the ancestor of Virtual Elements) like [16] or [22]. Here however the approach is more

simple and direct, allowing a thorough analysis of convergence properties. Also the use of an explicit

stabilizing term, reminiscent of Hybrid Discontinuous Galerkin methods (see e.g. [17] and the references

therein) contributes, in our opinion, to the user-friendliness of the presentation.
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A layout of the paper is as follows. The next section will be dedicated to recall the basic notation of

functional spaces and differential operators.

Then in Section 3 we will introduce and discuss the two-dimensional VEMs (nodal and edge) that will

be used on the faces of the three-dimensional decompositions. As usual, we will present first the spaces on

a single two dimensional element (local spaces).

In Section 4 we will finally present our “Simplified Serendipity Spaces” in three dimensions. We first

deal with a single element (polyhedron) and then discuss the spaces on a general decomposition.

In Section 5 we will use these spaces to discretize the linear magneto-static problem, and briefly discuss

their convergence and the a-priori error analysis.

Finally, in Section 6 we will present some numerical results.

2. Notation

In any dimension, for an integer s ≥ −1 we will denote by Ps the space of polynomials of degree ≤ s.

Following a common convention, P−1 ≡ {0} and P0 ≡ R. Moreover, Πs,O will denote the L2(O)-orthogonal

projection onto Ps (or (Ps)2, or (Ps)3). When no confusion can occur, this will be simply denoted by Πs.

2.1. Basic notation in 2 and 3 dimensions

In two and three dimensions we will denote by x the indipendent variable. In two dimensions we will

also use x = (x, y) or (more often) x = (x1, x2) following the circumstances. We will also use

x⊥ := (−x2, x1) (2.1)

In two dimensions, for a vector v and a scalar q we will write

rotv :=
∂v2

∂x
− ∂v1

∂y
, rot q := (

∂q

∂y
,− ∂q

∂x
)T . (2.2)

We observe that

div(p0x) = rot(p0x
⊥) = 2p0, ∀p0 ∈ R. (2.3)

The following decompositions of polynomial vector spaces are well known and will be useful in what follows.

In two dimensions we have, for all s ≥ 0:

(Ps)2 = rotPs+1 ⊕ xPs−1 and (Ps)2 = gradPs+1 ⊕ x⊥Ps−1. (2.4)

In three dimensions the analogues of (2.4) (always for all s ≥ 0) are

(Ps)3 = curl((Ps+1)3)⊕ xPs−1, and (Ps)3 = grad(Ps+1)⊕ x ∧ (Ps−1)3. (2.5)

We also note that by direct computation we have, similarly to (2.3):

div(p0x) = 3p0 ∀p0 ∈ P0 and curl(p0 ∧ x) = 2p0 ∀p0 ∈ (P0)3. (2.6)

3



Finally, on a polyhedron P we set xP = x − bP with bP the barycenter of P. Analogously, for each face

f ∈ ∂P, we set xf = x− bf , with bf = barycenter of f . Note that clearly∫
P

xP dP = 0, (2.7)

as well as ∫
f

xf df = 0. (2.8)

2.2. Polynomial spaces: Raviart-Thomas and Nédélec

We recall the definition of the classical lowest order Raviart-Thomas local spaces in d space dimensions

RT0 = (P0)d ⊕ x P0, (2.9)

and also the classical lowest order Nédélec first-type local spaces in two and three space dimensions

N0 = (P0)2 ⊕ x⊥ P0 or N0 = (P0)3 ⊕ x ∧ (P0)3. (2.10)

In what follows, when dealing with the faces of a polyhedron (or of a polyhedral decomposition) we shall

use two-dimensional differential operators that act on the restrictions to faces of scalar functions that are

defined on a three-dimensional domain. Similarly, for vector valued functions we will use two-dimensional

differential operators that act on the restrictions to faces of the tangential components. In many cases,

no confusion will be likely to occur; however, to stay on the safe side, we will often use a superscript τ

to denote the tangential components of a three-dimensional vector, and a subscript f to indicate the two-

dimensional differential operator. Hence, to fix ideas, if a face has equation x3 = 0 then xτ := (x1, x2) and,

say, divfv
τ := ∂v1

∂x1
+ ∂v2

∂x2
.

2.3. Some Functional Spaces

We recall some commonly used functional spaces:

H(div; Ω) = {v ∈ [L2(Ω)]3 with divv ∈ L2(Ω)},

H0(div; Ω) = {ϕ ∈ H(div; Ω) with ϕ · n = 0 on ∂Ω},

H(curl; Ω) = {v ∈ [L2(Ω)]3 with curlv ∈ [L2(Ω)]3},

H0(curl; Ω) = {v ∈ H(curl; Ω) with H ∧ n = 0 on ∂Ω},

H1(Ω) = {q ∈ L2(Ω) with gradq ∈ (L2(Ω))2},

H1
0 (Ω) = {q ∈ H1(Ω) with q = 0 on ∂Ω}.

3. Two-dimensional Simplified Serendipity Spaces

We begin with the definition of the local spaces. Let P denote a generic polyhedron, and let f be a face

of such polyhedron. For the time being, we only assume that all faces f are simply connected.
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3.1. The local spaces on faces

The following spaces are a simplified version of the local lowest-order nodal and edge Serendipity spaces

on faces introduced in [7].

3.2. The local nodal space on faces

The present local nodal Virtual Element space on faces can be seen as an extension to polygons of the

simplest space of piecewise linear functions on triangles, as well as a simplified version of the basic VEM

nodal spaces.

Indeed, in [9] (formula (2.5) with k = 1, k∆ = 0) the basic lowest order local nodal space on faces was

introduced as

Ṽ node
1 (f) :=

{
q ∈ C0(f) : q|e ∈ P1(e) ∀e ∈ ∂f, ∆q ∈ P0(f)

}
. (3.1)

It is clear that we always have P1 ⊂ Ṽ node
1 (f). The original degrees of freedom proposed in [6] or in [1] were

• The values of q at the vertices (that is : for each vertex ν, the value q(ν)); (3.2)

• The mean value of q on f (that is: for each face f,
1

|f |

∫
f

q df). (3.3)

However, it was pointed out in [7] that the degrees of freedom (3.3) could be replaced by the integral∫
f

∇q · xf df. (3.4)

Indeed, the obvious identity

2

∫
f

q df =

∫
f

q divxf df = −
∫
f

∇q · xf df +

∫
∂f

qxf · nds (3.5)

shows that given boundary values and mean value (3.3) on f one can compute (3.4) and conversely, given

the boundary values and (3.4) one can compute the mean value on f .

At this point, remembering (2.8), we easily see that∫
f

∇q · xf df = 0 ∀q ∈ P1, (3.6)

so that the linear subspace of Ṽ node
1 (f) made of those q that verify (3.6) will still contain P1. Such a subspace

can obviously be written as

V node
1 (f) :=

{
q ∈ C0(f) : q|e ∈ P1(e) ∀e ∈ ∂f, ∆q ∈ P0(f),

∫
f

∇q · xf df = 0
}
, (3.7)

and will be our local scalar nodal VEM space, with the degrees of freedom (3.2) (i.e., the vertex values).

Then from the unisolvence of the degrees of freedom (3.2) and (3.3) in Ṽ node
1 (f) it follows rather obviously

that the degrees of freedom (3.2) are unisolvent in V node
1 (f). Indeed: for a q ∈ V node

1 (f), the degrees of
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freedom (3.2) give the value of q along the whole ∂f . Then, following (3.5), and using the information that∫
f
∇q · xf df = 0 (that is included in the definition (3.7) of q ∈ V node

1 (f)) we have

2

∫
f

q df =

∫
∂f

q xf · nds, (3.8)

and then from the boundary values of q we can easily compute the mean value of q on f . Now we know

both the degrees of freedom (3.2) and (3.3), and we are back on the track of the space Ṽ node
1 (f).

We point out that, if needed, out of the d.o.f. in (3.2) we can compute the L2-projection Π1 of ∇q onto

(P1)2. Indeed, from the definition of projection and (3.5) we deduce∫
f

Π1∇q · p1 df :=

∫
f

∇q · p1 df = −
∫
f

q divp1 df +

∫
∂f

q p1 · nds, (3.9)

and the last two terms are computable for every p1 ∈ (P1)2.

3.3. The local edge space on faces

The present local edge Virtual Element space on faces can be seen as an extension to polygons of the

simplest space of lowest order Nédélec elements of the first kind N0 (see (2.10)), as well as a simplified

version of the basic VEM edge spaces in [7, 10].

Indeed, in [10] (formula (6.1) with k = 0, kd = 0, kr = 0) the basic lowest order local edge space on faces

was introduced as

Ṽ edge
0 (f) :=

{
v ∈ (L2(f))2 : divv ∈ P0(f), rotv ∈ P0(f),v · te ∈ P0(e) ∀e ∈ ∂f

}
, (3.10)

with the degrees of freedom given by the (constant) tangential components on each edge, plus the integral∫
f

v · xf df. (3.11)

The space given in (3.10) clearly contains all constant vector fields. However, for these functions the

degree of freedom (3.11) is identically zero (due to (2.8)). Hence we could consider the subspace

V edge
0 (f) :=

{
v ∈ (L2(f))2 : divv ∈ P0(f), rotv ∈ P0(f),v · te ∈ P0(e) ∀e ∈ ∂f,

and

∫
f

v · xf df = 0
}
,

(3.12)

that we will take, from now on, as our edge VEM space, and have that it always contains the constant vector

fields. In V edge
0 (f) we will therefore have the degrees of freedom:

• on each e ∈ ∂f , the moments

∫
e

v · te de. (3.13)

Note that the number of degrees of freedom of V node
1 (f) (=number of vertexes) and of V edge

0 (f) (=number

of edges) obviously coincide.
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Remark 1. It is immediate to check that the space (3.12) contains, together with constant vector fields,

also all vector fields of the form v = p0 + x⊥f p0 with p0 ∈ R2 and p0 ∈ R (that is, the lowest order Nédélec

elements of the first kind, that we recalled in (2.10)).

We observe that the d.o.f. (3.13) allow to compute, for each v ∈ V edge
0 (f), the (constant) value of rotv

on the face f by the usual Stokes theorem

|f |rotv =

∫
f

rotv df =

∫
∂f

v · tds, (3.14)

as well as the L2-orthogonal projection Π1 : V edge
0 (f) → (P1(f))2. Indeed, using (2.4) and integrating by

parts we have ∫
f

Π1v · p1 df :=

∫
f

v · p1 df =

∫
f

v · (rot p2 + xfp0) df

=

∫
f

rotv p2 df +

∫
∂f

v · t p2 ds+

∫
f

v · xfp0 df

=

∫
f

rotv p2 df +

∫
∂f

v · t p2 ds,

(3.15)

and all the terms in the right-hand side are computable.

We close this section with a simple but important result.

Proposition 3.1. It holds

∇V node
1 (f) = {v ∈ V edge

0 (f) : rotv = 0}. (3.16)

Proof. We start by noting that, for any function q ∈ V node
1 (f), it holds

∇q ∈ V edge
0 (f) and rot∇q = 0.

Indeed, it is immediate to check that ∇q satisfies all the requirements in the definition of V edge
0 (f) and,

being a gradient, it also has vanishing rotor. Therefore

∇V node
1 (f) ⊆ {v ∈ V edge

0 (f) : rotv = 0},

that combined with

dim
(
∇V node

1 (f)
)

= dim
(
V node

1 (f)
)
− 1 = dim

(
V edge

0 (f)
)
− 1

= dim
(
{v ∈ V edge

0 (f) : rotv = 0}
)

yields the proof.

4. Three-dimensional spaces

Let P be a polyhedron. For the time being, we just assume that P and all of its faces are simply

connected. Let Nv be the number of vertices, Ne the number of edges, and Nf the number of faces of P.
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4.1. The local spaces on polyhedrons

For each face f we are going to use the spaces V node
1 (f) and V edge

0 (f) as defined in (3.7) and (3.12),

respectively. Then we introduce their three-dimensional analogues.

4.1.1. The local nodal spaces

The three dimensional local nodal space is defined as

V node
1 (P) :=

{
q ∈ C0(P) : q|f ∈ V node

1 (f) ∀ face f ∈ ∂P, ∆ q = 0 in P
}
. (4.1)

In V node
1 (P) the degrees of freedom are simply

• for each vertex ν, the nodal value q(ν). (4.2)

We note that

P1(P) ⊆ V node
1 (P),

since first order polynomials clearly satisfy all the conditions in (4.1).

4.1.2. The local edge spaces

In analogy with the two-dimensional case we start by recalling the three dimensional edge space defined

in [10] as

Ṽ edge
0 (P) :=

{
v ∈ (L2(P))3 : vτ |f ∈ V edge

0 (f) ∀ face f ∈ ∂P, v · te continuous at each edge e ∈ ∂P,

divv = 0 in P, curl(curlv) ∈ (P0(P))3
}
, (4.3)

with the degrees of freedom given by the values of the (constant) tangential components on each edge plus

the integrals ∫
P

(curlv) · (xP ∧ p0) dP ∀p0 ∈ (P0(P))3. (4.4)

We observe, first, that the constant vectors are contained in Ṽ edge
0 (P), and for them the integral in (4.4) is

always equal to zero. Hence, following the path that is becoming usual here, we set

V edge
0 (P) :=

{
v ∈ (L2(P))3 : vτ |f ∈ V edge

0 (f) ∀ face f ∈ ∂P, v · te continuous at each edge e ∈ ∂P,

divv = 0 in P, curl(curlv) ∈ (P0(P))3,

∫
P

(curlv) · (xP ∧ p0) dP = 0 ∀p0 ∈ (P0(P))3
}
, (4.5)

and observe that all the constant vector fields are contained in V edge
0 (P).

Remark 2. It is easy to check that the space (4.5), together with constant vector fields, contains all vector

fields of the form v = p0 + xP ∧ q0 with p0 and q0 in R3 (that is, the lowest order Nédélec elements of the

first kind in three dimensions, as defined in (2.10)).
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In V edge
0 (P) we have now the degrees of freedom,

• on each edge e ∈ ∂P the moments

∫
e

v · te de. (4.6)

Out of the above degrees of freedom we can compute the (L2(P))3-orthogonal projection Π0 from V edge
0 (P)

to (P0(P))3. Indeed, by definition of projection, (2.6), and an integration by parts we have:∫
P

Π0v · p0 dP :=

∫
P

v · p0 dP =

∫
P

v · curl(xP ∧ q0) dP (for q0 = −1

2
p0)

=

∫
P

curlv · (xP ∧ q0) dP +

∫
∂P

(v ∧ n) · (xP ∧ q0) dS

= 0 +

∫
∂P

(
n ∧ (xP ∧ q0)

)
· v dS

=
∑
f

∫
f

(
n ∧ (xP ∧ q0)

)τ
· vτ df,

(4.7)

that is computable as in (3.15). Hence, we can define a scalar product

[v,w]edge,P := (Π0v,Π0w)0,P + h2
P

∑
e∈∂P

∫
e

[(v −Π0v) · te] [(w −Π0w) · te] de (4.8)

and we note that (assuming very mild mesh regularity conditions, for instance as in Section 5.1) we have

α∗(v,v)0,P ≤ [v,v]edge,P ≤ α∗(v,v)0,P ∀v ∈ V edge
0 (P) (4.9)

for some constants α∗, α
∗ independent of hP. We observe that

[v,p0]edge,P =

∫
P

v · p0 dP = (v,p0)0,P ∀v ∈ V edge
0 (P), ∀p0 ∈ (P0(P))3. (4.10)

4.1.3. The local face spaces

In three dimensions we will also need a Virtual Element face space. For it, we proceed as in the previous

case. We start with the space defined in [10]

Ṽ face
0 (P) :=

{
ψ ∈ (L2(P))3 : ψ · nf ∈ P0(f) ∀ face f, divψ∈P0(P), curlψ∈(P0(P))3

}
, (4.11)

where the degrees of freedom are given by the (constant) values of the normal components on the faces plus

the value of the integrals: ∫
P

ψ · (xP ∧ p0) dP ∀p0 ∈ [P0(P)]3. (4.12)

We note that the constant vector fields are inside this space, but also that the value of the integral in (4.12),

for ψ constant, is always equal to zero, due to (2.7), so that we can define

V face
0 (P) :=

{
ψ ∈ (L2(P))3 : ψ · nf ∈ P0(f) ∀ face f, divψ∈P0(P), curlψ∈(P0(P))3,

and

∫
P

ψ · (xP ∧ p0) dP = 0 ∀p0 ∈ [P0(P)]3
}
. (4.13)
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Remark 3. It is easy to check that the space (4.13), together with constant vector fields, contains all vector

fields of the form (P0)3 + xPP0 (that is, the lowest order Raviart-Thomas space, as defined in (2.9)).

For V face
0 (P) we have therefore the degrees of freedom

• for each face f ∈ ∂P the moments

∫
f

ψ · nf df. (4.14)

Clearly, out of the degrees of freedom (4.14) we can easily compute the (constant) value of divψ

divψ =
1

|P|

∫
P

divψ dP =
1

|P|

∫
∂P

ψ · ndS. (4.15)

According to [10] we also have, now, that from the above degrees of freedom we can compute the (L2(P))3-

orthogonal projection from V face
0 (P) to (P0(P))3 (and, actually, to (P1(P))3). Indeed, using (2.5), an inte-

gration by parts, and (4.13), we have:∫
P

Π1ψ · p1 dP :=

∫
P

ψ · p1 dP =

∫
P

ψ · (∇p2 + xP ∧ p0) dP

= −
∫

P

divψ p2 dP +

∫
∂P

ψ · n p2 dS +

∫
P

ψ · (xP ∧ p0) dP

= −
∫

P

divψ p2 dP +

∫
∂P

ψ · n p2 dS,

(4.16)

where, using (4.15) and (4.14), all the terms in the right-hand side are computable. Hence, we can define a

scalar product

[ψ,ϕ]face,P := (Π0ψ,Π0ϕ)0,P + hP

∑
f∈∂P

∫
f

[(I −Π0)ψ · n][(I −Π0)ϕ · n] df, (4.17)

and we again note that, assuming very mild mesh regularity conditions, for instance as in Section 5.1,

α1(ψ,ψ)0,P ≤ [ψ,ψ]face,P ≤ α2(ψ,ψ)0,P ∀ψ ∈ V face
0 (P) (4.18)

for positive constants α1, α2 independent of hP. Moreover, we also have

[ψ,p0]face,P =

∫
P

ψ · p0 dP = (ψ,p0)0,P ∀ψ ∈ V face
0 (P), ∀p0 ∈ (P0(P))3. (4.19)

Remark 4. Using Remarks 3 and 2, by a simple dimensional count we see that the present local Nodal,

Edge, and Face Virtual Element spaces coincide, whenever the element P is a tetrahedron, with the classical

P1, N0 and RT0 elements (respectively). With a minor additional effort we could see that the same is true

when P is a ”rectangular box”. Note that the methods do not coincide, due to a different choice of the scalar

products. However, the two types of scalar products are equivalent, coincide on constants, and in practice the

results are not significantly different. Hence, the present setting might be considered as a sort of “natural”

extension of the P1-N0-RT0 approach to (much) more general element geometries.
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4.1.4. Exact sequence properties

Here we present two important results. We first have

Proposition 4.1. It holds

∇V node
1 (P) = {v ∈ V edge

0 (P) : curlv = 0}. (4.20)

Proof. We first point out that, with the above definitions and using Proposition 3.1, for every q ∈ V node
1 (P),

we easily have that the tangential gradient (applied face by face) will belong to V edge
0 (f). Moreover, from

the definition of V node
1 (P), we immediately have that curl∇q = 0 and div∇q = ∆q = 0. Therefore, for any

q ∈ V node
1 (P), it holds ∇q ∈ {v ∈ V edge

0 (P) : curlv = 0} and thus

∇V node
1 (P) ⊆ {v ∈ V edge

0 (P) : curlv = 0}.

Conversely, if v ∈ V edge
0 (P) with curlv = 0, then v = ∇q for some q ∈ H1(P). Since, for any face

f ∈ ∂P , it holds rotf (v|f ) = curlv · nf = 0, using Proposition 3.1 yields that q restricted to the boundary

of P belongs to V node
1 (P)|∂P. Finally, since divv = 0 for all v ∈ V edge

0 (P), we have ∆q = 0. Thus q belongs

to V node
1 (P).

Proposition 4.2. It holds

curlV edge
0 (P) := {ψ ∈ V face

0 (P) : divψ = 0}. (4.21)

Proof. For every v ∈ V edge
0 (P) we have that ψ := curlv belongs to V face

0 (P). Indeed, on each face f we have

that ψ ·nf (≡ rotfv|f ), from (3.12) belongs to P0(f) (as required in (4.13) ); moreover divψ = 0 (obviously)

and curlψ ∈ (P0(P))3 from (4.5). Hence,

curlV edge
0 (P) ⊆ {ψ ∈ V face

0 (P) : divψ = 0}. (4.22)

We show the equality of the two sets by a dimensional count. It is immediate that the condition divψ = 0,

for ψ ∈ V face
0 (P), is equivalent to ∑

f∈∂P

∫
f

ψ · nf df = 0

and thus, recalling (4.14),

dim{ψ ∈ V face
0 (P) : divψ = 0} = Nf − 1. (4.23)

By classical properties of linear operators, using (4.20) and finally the Euler formula on polyhedrons, we get

now

dim(curl(V edge
0 (P))) = dim(V edge

0 (P))− dim{ψ ∈ V edge
0 (P) : curlψ = 0}

= Ne − dim(∇V node1 ) = Ne − (Nv − 1) = Nf − 1,
(4.24)

and the result follows from (4.23) and (4.24).
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4.2. The global spaces

Let Th be a decomposition of the computational domain Ω into polyhedrons P. Again, for the time being,

we assume just that all polyhedrons and all their faces are simply connected. More detailed assumptions

will be presented in Section 5.1. Here we assume that

the permeability µ is constant on each P. (4.25)

We define the global spaces as follows.

V node
1 ≡ V node

1 (Ω) :=
{
q ∈ H1

0 (Ω) such that q|P ∈ V node
1 (P) ∀P ∈ Th

}
, (4.26)

with the obvious degrees of freedom

• for each vertex ν: the nodal value q(ν). (4.27)

For the global edge space we have

V edge
0 ≡ V edge

0 (Ω) :=
{
v ∈ H0(curl; Ω) such that v|P ∈ V edge

0 (P) ∀P ∈ Th
}
, (4.28)

with the obvious degrees of freedom

• on each edge e:

∫
e

v · te de. (4.29)

Finally, for the face space we have:

V face
0 ≡ V face

0 (Ω) :=
{
ψ ∈ H0(div; Ω) such that ψ|P ∈ V face

0 (P) ∀P ∈ Th
}
, (4.30)

with the degrees of freedom

• for each face f :

∫
f

ψ · nf df . (4.31)

It is important to point out that

∇V node
1 ⊆ V edge

0 . (4.32)

In particular, recalling the local results (4.20), it is easy to check that

∇V node
1 ≡ {v ∈ V edge

0 such that curlv = 0}. (4.33)

Similarly, we have

curlV edge
0 ⊆ V face

0 , (4.34)

and it can be checked (recalling the local results (4.22)) that

curlV edge
0 ≡ {ψ ∈ V face

0 such that divψ = 0}. (4.35)
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Remark 5. We point out that the inclusions (4.32), and (4.34) are (in a sense) also practical, and not

only theoretical. By this, more specifically, we mean that: given the degrees of freedom of a q ∈ V node
1 we

can compute the corresponding degrees of freedom of ∇q in V edge
0 ; and given the degrees of freedom of a

v ∈ V edge
0 we can compute the corresponding degrees of freedom of curlv in V face

0 .

From (4.8) we can also define a global scalar product:

[v,w]edge :=
∑

P∈Th

[v,w]edge,P. (4.36)

We note that, recalling (4.9),

α∗(v,v)0,Ω ≤ [v,v]edge ≤ α∗(v,v)0,Ω ∀v ∈ V edge
0 . (4.37)

It is also important to point out that, using (4.10) we have

[v,p]edge = (v,p)0,Ω :=

∫
Ω

v · p dΩ ∀v ∈ V edge
0 , ∀p piecewise in (P0)3. (4.38)

From (4.17) we can also define a scalar product in V face
0 in the obvious way

[ψ,ϕ]face :=
∑

P∈Th

[ψ,ϕ]face,P (4.39)

and we note that

α1(ψ,ψ)0,Ω ≤ [ψ,ψ]face ≤ α2(ψ,ψ)0,Ω ∀ψ ∈ V face
0 . (4.40)

It is also important to point out that, using (4.19) we have

[ψ,p]face = (ψ,p)0,Ω :=

∫
Ω

ψ · pdΩ ∀ψ ∈ V face
0 , ∀p piecewise in (P0)3. (4.41)

5. Discretization of the Magneto-static Problem

We are now ready to present the discretization of our Magneto-static Problem (1.2) that we recall here:

given j ∈ H(div; Ω) (with divj = 0 in Ω), and µ = µ(x) ≥ µ0 > 0,

find H ∈ H0(curl; Ω) and p ∈ H1
0 (Ω) such that:∫

Ω

curlH · curlv dΩ +

∫
Ω

∇p · µv dΩ =

∫
Ω

j · curlv dΩ ∀v ∈ H0(curl; Ω)∫
Ω

∇q · µH dΩ = 0 ∀q ∈ H1
0 (Ω).

(5.1)

It is easy to check, by the usual theory of mixed methods, that (5.1) has a unique solution (H, p). Then we

check that H and µH give the solution of (1.1) and p = 0. Checking that p = 0 is immediate, just taking

v = ∇p in the first equation. Once we know that p = 0, the first equation gives curlH = j, and then the

second equation gives divµH = 0.
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Remark 6. We observe that an alternative variational formulation could be

given j ∈ H(div; Ω) (with divj = 0 in Ω), and µ = µ(x) ≥ µ0 > 0,

find H ∈ H0(curl; Ω) and p ∈ H1
0 (Ω) such that:∫

Ω

curlH · curlv dΩ +

∫
Ω

∇p · µv dΩ =

∫
Ω

j · curlv dΩ ∀v ∈ H0(curl; Ω)∫
Ω

∇q · µH dΩ−
∫

Ω

∇p · ∇q dΩ = 0 ∀q ∈ H1
0 (Ω),

(5.2)

or other possible variants mimicking, one way or another, the Hodge-Laplacian approach (see [4]). We

observe that the discretization that we are going to introduce for (5.1) will apply to (5.2) as well.

We first construct the interpolant jI ∈ V face
0 of j that matches the degrees of freedom (4.31):

• for each face f :

∫
f

(j − jI) · nf df = 0. (5.3)

From the d.o.f. (5.3) and an integration by parts it follows that∫
P

div(j − jI) dP = 0 ∀P ∈ Th. (5.4)

Moreover, they also imply that jI ∈ H0(div; Ω) and that divjI = 0 in Ω. Hence, according to (4.35), we

have that jI will be the curl of some w∗ ∈ V edge
0 :

∃w∗ ∈ V edge
0 such that curlw∗ = jI . (5.5)

Then we can introduce the discretization of (1.2):
find Hh ∈ V edge

0 and ph ∈ V node
1 such that:

[curlHh, curlv]face + [∇ph, µv]edge = [jI , curlv]face ∀v ∈ V edge
0

[∇q, µHh]edge = 0 ∀q ∈ V node
1 .

(5.6)

We point out that both curlHh and curlv (as well as jI) are face Virtual Elements in V face
0 (P) in each

polyhedron P, so that (taking also into account Remark 5) their face scalar products are computable as in

(4.39). Similarly, from the degrees of freedom of a q ∈ V node
1 we can compute the degrees of freedom of ∇q,

as an element of V edge
0 , so that the two edge-scalar products that appear in (5.6) are computable as in (4.36).

Proposition 5.1. Problem (5.6) has a unique solution (Hh, ph), and ph ≡ 0.

Proof. Taking v = ∇ph (as we did for the continuous problem (5.1)) in the first equation, and using (4.37)

we easily obtain ph ≡ 0 for (5.6) as well. To prove uniqueness of Hh, set jI = 0, and let Hh be the solution

of the homogeneous problem. From the first equation we deduce that curlHh = 0. Hence, from (4.33) we

have Hh = ∇q∗h for some q∗h ∈ V node
1 . The second equation and (4.37) give then Hh = 0.
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Once we know that ph = 0, the first equation of (5.6) reads

[curlHh, curlv]face = [jI , curlv]face ∀v ∈ V edge
0 , (5.7)

that in view of (5.5) becomes

[curlHh − curlw∗, curlv]face = 0 ∀v ∈ V edge
0 . (5.8)

Using v = Hh −w∗ and (4.40), this easily implies

curlHh = curlw∗ = jI . (5.9)

5.1. Error estimates

For the theoretical derivations we consider the following mesh assumptions, that are quite standard in

the VEM literature. We assume the existence of a positive constant γ such that any polyhedron P (of

diameter hP) satisfies the following conditions:

1. P is star shaped with respect to a ball of radius bigger than γhP;

2. any face f ∈ ∂P is star shaped with respect to a ball of radius bigger than γhP , and every edge of P

has length bigger than γhP.

We note that condition 1 (and 2) implies that P (and any face of P) is simply connected. At the theoretical

level, some of the above conditions could be avoided by using more technical arguments. At the practical

level, as shown by the numerical tests of the Section 6, condition 2 is negligible since the method seems

essentially impervious to degeneration of faces and edges. On the contrary, although the scheme is quite

robust to distortion of the elements, condition 1 is more relevant since extremely anisotropic element shapes

can lead to poor results. We also recall that we assumed µ to be piecewise constant (see (4.25)).

Let us bound the error H−Hh. We start by defining the interpolant HI ∈ V edge
0 of H, defined through

the degrees of freedom (4.29):

• on each edge e:

∫
e

(H −HI) · te ds = 0. (5.10)

Proposition 5.2. With the choices (5.3) and (5.10) we have

curlHI = jI . (5.11)

Proof. From (4.35) we know that curlHI ∈ V face
0 . To prove (5.11) we should just show that the face degrees

of freedom (4.31) of the difference curlHI − jI are zero, that is:

∀f :

∫
f

(curlHI − jI) · nf df = 0. (5.12)
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Since j = curlH, from the interpolation formulas (5.3) we see that

∀f :

∫
f

(curlH − jI) · nf df = 0,

so that we can replace jI with curlH in (5.12), that becomes

∀f :

∫
f

curl(HI −H) · nf df = 0. (5.13)

Observing that (5.10) implies that ∫
f

rotf (H −HI)|f df = 0,

and recalling that on each f the normal component of curl(HI −H) is equal to the rotf of the tangential

components (HI −H)|f , we deduce∫
f

curl(HI −H) · nf df ≡
∫
f

rotf (HI −H)|f df = 0.

Hence, (5.13) is satisfied, and the proof is concluded.

From (5.9) and (5.11) it follows then

curl(HI −Hh) = 0 (5.14)

and therefore, from (4.33),

HI −Hh = ∇q∗h for some q∗h ∈ V node
1 . (5.15)

Now we define an alternative (L2(Ω))3 inner product and norm that take into account the (piecewise con-

stant) value of the permeability µ. We set, for v in (L2(Ω))3,

|||v|||20,Ω :=

∫
Ω

µ |v|2 dΩ. (5.16)

When v = H in (5.16) we get that |||H|||20,Ω =
∫

Ω
B ·H dΩ, showing the connection between the new norm

and the energy. We now note that, using (4.37), we have

α∗|||HI −Hh|||20,Ω ≤ [HI −Hh, µ(HI −Hh)]edge, (5.17)

and also (from (4.38) and (4.25))

[p0, µv]edge =(p0, µv)0,Ω ∀v ∈ V edge0 and ∀p0 piecewise constant vector. (5.18)
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Then, starting with (5.17) we have:

α∗|||HI −Hh|||20,Ω ≤ [HI −Hh, µ(HI −Hh)]edge

= (using (5.15)) [HI −Hh, µ∇q∗h]edge

= (using the second of (5.6)) [HI , µ∇q∗h]edge

= (adding and subtracting Π0H) [HI −Π0H, µ∇q∗h]edge + [Π0H, µ∇q∗h]edge

= (using (5.18)) [HI −Π0H, µ∇q∗h]edge + (Π0H, µ∇q∗h)0,Ω

= (adding and subtracting H) [HI −Π0H, µ∇q∗h]edge + (Π0H −H, µ∇q∗h)0,Ω + (H, µ∇q∗h)0,Ω

= (from the second of (1.2)) [HI −Π0H, µ∇q∗h]edge + (Π0H −H, µ∇q∗h)0,Ω

≤ (using Cauchy-Schwarz and (4.37))
(
α∗ |||HI −Π0H|||0,Ω + |||Π0H −H|||0,Ω

)
|||∇q∗h|||0,Ω

≤ (using again (5.15))
(
α∗ |||HI −Π0H|||0,Ω + |||Π0H −H|||0,Ω

)
|||HI −Hh|||0,Ω

that implies immediately (since α∗ ≥ 1)

|||HI −Hh|||0,Ω ≤
α∗

α∗
(|||HI −Π0H|||0,Ω + |||Π0H −H|||0,Ω). (5.19)

We can summarize the result in the following theorem.

Theorem 5.3. Problem (5.6) has a unique solution and the following estimate holds:

|||H −Hh|||0,Ω ≤ C
(
|||H −HI |||0,Ω + |||H −Π0H|||0,Ω

)
, (5.20)

with C a constant independent of the mesh size. Moreover, thanks to (5.9) we also have

‖curl(H −Hh)‖0,Ω = ‖j − jI‖0,Ω. (5.21)

The above result can be combined with standard polynomial approximation estimates on star shaped

polyhedra in order to estimate the terms involving the L2 projection on polynomials. Moreover, approxi-

mation estimates for the VEM interpolants HI and jI can be derived (under the mesh assumptions at the

beginning of this section) by an extension of the arguments in [12], [11], [15], [24]. We therefore obtain,

provided that H and j are sufficiently regular,

|||H −Hh|||0,Ω ≤ Ch ‖curl(H −Hh)‖0,Ω ≤ Ch.

6. Numerical results

In this section we provide some numerical results. We first provide a test on a polyhedral domain

with Dirichlet boundary data, then a test on a cylindrical domain with jumping coefficients and Neumann

boundary data, and finally a benchmark example with a more complex geometry.
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6.1. Test case 1: h-analysis with homogeneous Dirichlet boundary conditions

In this subsection we set µ = 1 and take as exact solution of (1.1) the vector field

H(x, y, z) :=
1

π


sin(πy)− sin(πz)

sin(πz)− sin(πx)

sin(πx)− sin(πy)

 .

We consider as domain Ω the truncated octahedron [28] and three different discretizations, see Fig. 1:

• Structured, a mesh composed by structured cubes inside Ω and arbitrarily shaped elements close to

the boundary;

• CVT, a Centroidal Voronoi Tessellation of Ω obtained via a standard Lloyd algorithm [19];

• Random, a mesh obtained by the constrained Voronoi Tessellation of points randomly put inside Ω.

The first type of mesh can be generated by using a Voronoi generation algorithm with seeds disposed in

a regular formation, see [5]. This approach allows to approximate complex geometries and still inherits

many among the computational advantages of regular cubical meshes. The last type of meshes is instead

interesting in order to check the robustness of the method, since it exhibits edges and faces (see the details

in Fig. 1) that can be very small with respect to the size of the parent element. To get such discretizations,

we use the c++ library voro++ [25].

Structured CVT Random

Figure 1: Three different discretizations of the truncated octahedron.

We associate to each mesh a mesh-size h defined as

h :=
1

NP

NP∑
i=1

hP ,
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where NP is the number of polyhedrons in the mesh and hP is the diameter of the polyhedron P . We

compute the L2-error on H as
||H −Π0Hh||0,Ω

||H||0,Ω
,

where Π0Hh is the piecewise constant projection of Hh defined in (4.7). Fig. 2 (left) shows the convergence

rate for each type of mesh. The slopes are coherent with the theory, see Equation (5.20). Moreover, from

this graph we can better appreciate the robustness of the VEM with respect to element distortions. Indeed,

the convergence lines for the three meshes are very close to each other.

l∞−norm

step Structured CVT Random

1 1.5098e-15 1.1844e-15 4.7323e-13

2 7.0101e-16 2.5902e-14 1.6107e-12

3 2.6762e-15 1.0476e-13 1.8733e-10

4 7.0545e-15 1.0953e-10 1.0001e-07

Figure 2: Test case 1: L2−error for H (left), and l∞−norm of dof(ph) (right).

The results for the Lagrange multiplier ph are shown in Fig. 2 (right). As shown in Section 5, the exact

solution ph of the discrete problem is identically zero. Clearly, the roundoff errors generate, out of the

computer, a ph that is almost identically zero. In some sense we could then take the value of the computed

ph as a measure (or, better, a rough indicator) of the conditioning of the final linear system. In particular

we see that the Random meshes generate a worse conditioning.

6.2. Test case 2: discontinuous µ and homogeneous Neumann conditions

In this subsection we consider an example taken from [14]. The geometry consists in a cylindrical domain

with two concentric connected components, S1 and S2, separated by a magnetic material, M (see a cross-

section in Fig. 3). A current of the same intensity I =70 000A but opposite direction passes along S1 and

S2. We assign the following current intensity (with ez := (0, 0, 1)t)

j(x, y, z) :=



I

πa2
ez if x ∈ S1

0 if x ∈M

− I

π(c2 − b2)
ez if x ∈ S2.

(6.1)
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a = 0.5 m

b = 1.0 m
c = 1.25 m

0.5 m

Figure 3: Test case 2: meridian cross section of the computational domain.

We apply homogeneous Neumann boundary conditions and we set µS1 = µS2 = 1.0, µM = 1000.0. Then

the exact solution is given by

H(x, y, z) :=



I

2πa2
eθ if x ∈ S1

I

2πr2
eθ if x ∈M[

− I

2π(c2 − b2)
+

1

r2

(
I

2π
+

Ib2

2π(c2 − b2)

)]
eθ if x ∈ S2

(6.2)

where eθ := (−y, x, 0)t, r =
√
x2 + y2 and a = 0.5, b = 1, c = 1.25 (see Fig. 3).

To deal with Neumann boundary conditions, problem (5.1) must be modified, looking forH ∈ H(curl; Ω)

and p ∈ H1(Ω). The magnetic field H will still be unique, while p will be determined only up to a constant.

In the code the constant is fixed by requiring the average of the vertex values of ph to be zero.

We build two meshes of the cylinder by extruding two planar two-dimensional meshes: one made of

polygons [27] and one made of triangles [26]. We refer to the former as voro-extrusion and to the latter as

tria-extrusion (for an example of both see Fig. 4). Then we make two sets of meshes with decreasing mesh-

size. In Fig. 5 we depict the convergence curves on the left, and on the right we provide the l∞−norm of

the vectors dof(ph). Both quantities behave as expected: indeed, we get a convergence rate equal to 1, for

the L2 error on the vector field Hh, while the values of l∞−norm vanish up to machine algebra errors.

6.3. Test case 3: a cylindrical electromagnet

In this subsection we consider a typical benchmark problem, see e.g. [13, 14, 20]. The geometry consists

in a ferromagnetic cylindrical core, C, surrounded by a toroidal coil with a rectangular cross section, T , with

air, A, around these two structures. In Fig. 6 we show a meridian cross section of the domain where we

specify the dimensions of the cylindrical core, the toroidal coil and the bounding box of the domain.

One looks for the magnetic flux generated by a constant current passing along the toroidal coil. More
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Figure 4: Test case 2: two polyhedral decompositions of the cylinder: voro-extrusion (left), and tria-extrusion (right).

10
-2

10
-1

10
0

10
-2

10
-1

10
0

l∞−norm

step voro-extrusion tria-extrusion

1 2.1273e-11 1.3632e-10

2 1.0564e-10 4.1360e-10

3 1.4887e-10 1.0027e-09

4 4.5312e-10 1.1151e-08

Figure 5: Test case 2: L2 error for H (left), and l∞−norm of dof(ph) (right).

2. m1. m

0.2 m

0.05 m

0.3 m

0.2 m

1. m

0.5 m

0.5 m

Figure 6: Test case 3: meridian cross section of the computational domain taken into account.
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specifically, we assume a constant current of 1 Ampère, i.e.,

j(x, y, z) :=


1

A|eθ|
eθ if x ∈ T

0 otherwise

where eθ = (−y, x, 0)
t
, |eθ| denotes the norm of eθ and A is the area of the cross section of the coil. The

relative magnetic permeability is taken as: µT = 1.0 for the coil, µC = 10000.0 in the ferromagnetic core,

and µA = 1.0 for the air. Moreover, we suppose that the artificial boundary is sufficiently far from both

the ferromagnetic cylinder and the toroidal core so that we can apply the Neumann boundary conditions

H · n = 0.

In Fig. 7 we show one of the meshes used in this example. Here too the meshes are constructed by

extruding two-dimensional ones. Figs. 8 and 9 show a qualitative comparison between the solution provided

Figure 7: Test case 3: On the right a clip of the 3d mesh obtained extruding the 2d mesh on the left.

in [13] (left), and that obtained by the present method (right). More specifically, in Fig. 8, we show the

modulus of the magnetic flux density, i.e. the modulus of B = µH, inside the cylindrical core. Then, in

Fig. 9 we show B along some cross sections of the cylindrical core and the toroidal coil. In both cases the

results of two methods show a comparable behavior.

Finally, to have a more quantitative validation of this example, we compute the so-called magnetic energy

W :=

∫
D
B ·H dΩ =

∫
D
µ|H|2 dΩ ,

for each sub-domain C, T and A (see also (5.16)). We consider a sequence of three nested meshes to verify

the convergence rate of these energies. We refer to these meshes as mesh1, mesh2 and mesh3, the first mesh

being the coarsest.
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Figure 8: Test case 3: |B| in a section of C: from [13] (left) and that from the present approach (right).

Figure 9: Test case 3: B in a section of C and T : from [13] (left), and from the present approach (right).

Since we do not have the exact solution of this problem, in order to assess the accuracy of our results for

the magnetic energy W we proceed as in [14], i.e. we consider as exact values of the magnetic energies the

23



values obtained by the software FLUX2D on a very fine mesh. The numerical solution of FLUX2D follows

a scalar potential formulation and exploits the symmetry of the domain via a two-dimensional cylindric

coordinate system. The data are collected in Table 1 and in parenthesis we show the relative error. The

method behaves as expected.

W in A C T

FLUX2D 9.09e-07 4.73e-10 3.61e-08

mesh1 VEM 9.70e-07 (6.7%) 7.54e-10 (59.4%) 3.29e-08 (8.8%)

mesh2 VEM 9.22e-07 (1.4%) 5.53e-10 (16.9%) 3.81e-08 (5.5%)

mesh3 VEM 9.11e-07 (0.2%) 4.98e-10 (5.2%) 3.75e-08 (3.8%)

Table 1: Test case 3: Behavior of W , in the three regions, computed with the present method
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