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A FAMILY OF THREE-DIMENSIONAL VIRTUAL ELEMENTS WITH
APPLICATIONS TO MAGNETOSTATICS

L. BEIRAO DA VEIGA*, F. BREZZI', F. DASSI¥, L. D. MARINI$, AND A. RUSSOY

Abstract. We consider, as a simple model problem, the application of Virtual Element Methods
(VEM) to the linear Magnetostatic three-dimensional problem in the formulation of F. Kikuchi. In
doing so, we also introduce new serendipity VEM spaces, where the serendipity reduction is made only
on the faces of a general polyhedral decomposition (assuming that internal degrees of freedom could
be more easily eliminated by static condensation). These new spaces are meant, more generally,
for the combined approximation of H!-conforming (0-forms), H(curl)-conforming (1-forms), and
H (div)-conforming (2-forms) functional spaces in three dimensions, and they could surely be useful
for other problems and in more general contexts.
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1. Introduction. The aim of this paper is two-fold. We present a variant of
the serendipity nodal, edge, and face Virtual Elements presented in [12] that could
be used in many different applications (in particular since they can be set in an exact
sequence), and we show their use on a model linear Magnetostatic problem in three
dimensions, following the formulation of F. Kikuchi [36], [35]. Even though such
formulation is not widely used within the Electromagnetic computational community,
we believe that is it a very nice example of use of the De Rham diagram (see e.g. [27])
that here is available for serendipity spaces of general order.

Virtual Elements were introduced a few years ago [5, 8, 9], and can be seen as part
of the wider family of Galerkin approximations based on polytopal decompositions, in-
cluding Mimetic Finite Difference methods (the ancestors of VEM: see e.g. [37, 13] and
the references therein), Discontinuous Galerkin (see e.g. [2, 24], or recently [29], and
the references therein), Hybridizable Discontinuous Galerkin and their variants (see
[26], or much more recently [25, 28], and the references therein). On the other hand
their use of non-polynomial basis functions connect them as well with other methods
such as polygonal interpolant basis functions, barycentric coordinates, mean value co-
ordinates, metric coordinate method, natural neighbor-based coordinates, generalized
FEMSs, and maximum entropy shape functions. See for instance [45], [33], [43], [44]
and the references therein. Finally, many aspects are closely connected with Finite
Volumes and related methods (see e.g. [31], [30], and the references therein).

The list of VEM contributions in the literature is nowadays quite large; in addition
to the ones above, we here limit ourselves to mentioning [15, 3, 7, 17, 21, 34, 22, 39, 46].

Here we deal, as a simple model problem, with the classical magnetostatic problem
in a smooth-enough bounded domain 2 in R3, simply connected, with connected
boundary: given j € Hy(div;Q) with divj = 0 in , and given p = u(x) with
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2 L. BEIRAO DA VEIGA, F. BREZZI, F. DASSI, L. D. MARINI, A. RUSSO

0 <po <p < pn,

find H € H(curl; Q) and B € H(div;{2) such that:
(1.1) curlH = j and divB = 0, with B = uH in ,
with the boundary conditions H A = 0 on 0.

When discretizing a three-dimensional problem, the degrees of freedom internal
to elements (tetrahedra, hexahedra, polyhedra, etc.) can, in most cases, be easily
eliminated by static condensation, and their burden on the resolution of the final
linear system is not overwhelming. This is not the case for edges and faces, where
static condensation would definitely be much more problematic. On edges one cannot
save too much: in general the trial and test functions, there, are just one-dimensional
polynomials. On faces, however, for 0-forms and 1-forms, higher order approximations
on polygons with many edges find a substantial benefit by the use of the serendipity
approach, that allows an important saving of degrees of freedom internal to faces.

For that we constructed serendipity virtual elements in [10] and [12] (for scalar or
vector valued local spaces, respectively) that however were not fully adapted to the
construction of De Rham complexes. The spaces were therefore modified, for the 2d
case, in [4]. Here we use this latest version on the boundary of the polyhedra of our
three-dimensional decompositions, and we show that this can be a quite viable choice.

We point out that, contrary to what happens for FEMs (where, typically, the
serendipity subspaces do not depend on the degrees of freedom used in the bigger, non-
serendipity, spaces), for Virtual Elements the construction of the serendipity spaces
depends, in general, heavily on the degrees of freedom used, so that if we want an
exact sequence the degrees of freedom in the VEM spaces must be chosen properly.

We will show that the present serendipity VEM spaces are perfectly suited for the
approximation of problem (1.1) with the Kikuchi approach, and we believe that they
might be quite interesting in many other problems in Electromagnetism as well as in
other important applications of Scientific Computing. In particular we have a whole
family of spaces of different order of accuracy k. For simplicity we assumed here that
the same order k is used in all the elements of the decomposition, but we point out
that the great versatility of VEM would very easily comply with the use of different
orders in different elements, allowing very effective h-p strategies.

A single (lowest order only, and particularly cheap) Virtual Element Method for
electro-magnetic problems was already proposed in [6], but the family proposed here
does not include it: roughly speaking, the element in [6] is based on a generalization
to polyhedra of the lowest order Nédélec first type element (say, of degree between
0 and 1), while, instead, the family presented here could be seen as being based on
generalizations to polyhedra of the Nédélec second type elements (of order k > 1).

A layout of the paper is as follows: in Section 2 we introduce some basic notation,
and recall some well known properties of polynomial spaces. In Section 3 we will
first recall the Kikuchi variational formulation of (1.1). Then, in Subsection 3.2 we
present the local two-dimensional Virtual Element spaces of nodal and edge type to
be used on the interelement boundaries. As we mentioned already, the spaces are the
same already discussed in [5], [1] and in [20], [9], respectively, but with a different
choice of the degrees of freedom, suitable for the serendipity construction discussed in
Subsection 3.3. In Subsection 3.4 we present the local three-dimensional spaces. In
Subsection 3.5 we construct the global version of all these spaces, and discuss their
properties and the properties of the relative exact sequence. In Section 4 we first
introduce the discretized problem, and in Subsection 4.3 we prove the a priori error
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A 3D VEM FAMILY FOR MAGNETOSTATIC PROBLEMS

bounds for it. In Section 5 we present some numerical results that show that the
quality of the approximation is very good, and also that the serendipity variant does

not jeopardize the accuracy.

2. Notation and well known properties of polynomial spaces. In two
dimensions, we will denote by « the indipendent variable, using = (z,y) or (more

often) = (z1,x2) following the circumstances. We will also use &+ :=

and in general, for a vector v = (v, v2),
(2.1) vt = (—vg,v1).
Moreover, for a vector v and a scalar g we will write

v On — (91 _9q
(2.2) rotv := ar oy rotq := (8y7_6$>'

We recall some commonly used functional spaces. On a domain O we have

H(div; 0) = {v € [L*(0)]? with divv € L*(0)},
Hy(div; O) = { € H(div; O) s.t. ¢ -n =0 on 00},
H(curl; 0) = {v € [L*(0)]* with curlv € [L*(0)]*},
Hy(curl; O) = {v € H(curl; O) with v An =0 on 00},
HY(0) = {q € L*(0) with grad q € [L*(0)]*},

H}(0) = {q € H'(0) with ¢ = 0 on 00}.

For an integer s > —1 we will denote by P, the space of polynomials of degree < s.

Following a common convention, P_; = {0} and Py = R. Moreover, for s > 1

(2.3) P! := {homogeneous pol.s in Py}, P%(0):={qecP,s. t. / qdO = 0}.
O

The following decompositions of polynomial vector spaces are well known and will

be useful in what follows. In two dimensions we have

(2.4) (P,)? =rot(P,y1) ®xPs_; and (P,)? =grad(P,,) @ 2 P, i,

and in three dimension

(2.5) (Py)% = curl((Psy1)?®) @ xP,_;, and (P,)® =grad(Py1) ®x A (Ps_1)>.

Taking the curl of the second of (2.5) we also get :
(2.6) curl(P,)? = curl(z A (P,_1)?)
which used in the first of (2.5) gives:

(2.7) (P)? = curl(z A (P,)?) @ zP,_;.

We also recall the definition of the Nédélec local spaces of 1-st and 2-nd kind.

In2d: N1, =gradP,,; @z (P,)? s> 0, N2, := (P,)?, s> 1,
in3d: Nl;=gradP,.1 ®x A (IP’S)?’, s >0, N2, := (]P’S)?’7 s> 1.

This manuscript is for review purposes only.



117
118
119

129

130
131
132
133
134
135
136
137
138
139
140
141

142

149
148
149
150
151
152
153
154

4 L. BEIRAO DA VEIGA, F. BREZZI, F. DASSI, L. D. MARINI, A. RUSSO

In what follows, when dealing with the faces of a polyhedron (or of a polyhedral
decomposition) we shall use two-dimensional differential operators that act on the
restrictions to faces of scalar functions that are defined on a three-dimensional domain.
Similarly, for vector valued functions we will use two-dimensional differential operators
that act on the restrictions to faces of the tangential components. In many cases, no
confusion will be likely to occur; however, to stay on the safe side, we will often use
a superscript 7 to denote the tangential components of a three-dimensional vector,
and a subscript f to indicate the two-dimensional differential operator. Hence, to fix

. . . _ L . L ov ov
ideas, if a face has equation 23 = 0 then &7 := (21, 22) and, say, divjv” := oo T one-

3. The problem and the spaces.

3.1. The Kikuchi variational formulation. Here we shall deal with the
variational formulation introduced in [35]. Given j € Hy(div; Q) with divy = 0,

find H € Hy(curl; Q) and p € H}(f2) such that:
(3.1) Jo curlH -curlv dQ + [, Vp-pv dQ = [, j-curlvdQ Vv € Hy(curl; Q)
JoVapHAQ =0 Vq e Hg(Q).

It is easy to check that (3.1) has a unique solution (H,p). Then we check that H
and pH give the solution of (1.1) and p = 0. Checking that p = 0 is immediate, just
taking v = Vp in the first equation. Once we know that p = 0 the first equation gives
curlH = j, and then the second equation gives divuH = 0.

We will now design the Virtual Element approximation of (3.1) of order & > 1.
We define first the local spaces. Let P be a polyhedron, simply connected, with all
its faces also simply connected and convex. (For the treatment of non-convex faces
we refer to [12]). More detailed assumptions will be given in Section 4.3.

3.2. The local spaces on faces. We first recall the local nodal and edge spaces
on faces introduced in [4]. We shall deal with a sort of generalisation to polygons of
Nédélec elements of the second kind N2 (see (2.8)). For this, let k > 1. For each face
f of P, the edge space on f is defined as

(32) VE(f)= {ve [L2(f)]2: dive € Py(f), rotv €By_1(f), v - t. € Py(e) Vecaf},

with the degrees of freedom

(3.3) e on each e C df, the moments [ (v-t.)prds Vpi € Pi(e),
(3.4) e the moments ff'v-:cfpkdf Vpr € Pr(f),
(3.5) o [protv pp_ydf Vph_y € PRy (f) (only for k > 1)),

where 7 = & — by, with by = barycenter of f, and P9 was defined in (2.3).

We recall that for v € V¢(f) the value of rotv is easily computable from the
degrees of freedom (3.3) and (3.5). Indeed, the mean value of rotv on f is computable
from (3.3) and Stokes Theorem, and then (since rotv € P;_1) the use of (3.5) gives
the full value of rotv. Once we know rotw, following [4], we can easily compute,
always for each v € V¢(f), the L*>-projection I | : V(f) = [Pr+1(f)]*. Indeed: by
definition of projection, using (2.4) and integrating by parts we obtain:

) ffH2+1v'pk+1 df == ffv'pk+1df:ffv'(r()tq}c+2+qu1c)df
:ff(rotv)qk+2 df +Xecos J.(v - )qky2 derffv-:z:qu df

and it is immediate to check that each of the last three terms is computable.

(3.6
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A 3D VEM FAMILY FOR MAGNETOSTATIC PROBLEMS 5

Remark 3.1. Among other things, projection operators can be used to define suit-
able scalar products in Vi¢(f). As common in the virtual element literature, we could
use the (Hilbert) norm

(3.7) 1l () = ITR0E 5 + > _(dofi{ (I —I1})w})?,

where the dof; are the degrees of freedom in V2(f), properly scaled. In (3.7) we could
also insert any symmetric and positive definite matrix S and change the second term
into d” S'd (with d = the vector of the dof;{(I —II?)v}). Alternatively we could use

(3.8) e () = M1 0l15 ¢ + gl (T =TI 1) v - £ o

(that is clearly a Hilbert norm) where h¢ is the diameter of the face f. It is easy to
check that the associated inner product scales like the natural [L?(f)]? inner product
(meaning that [|v||ve(s) is bounded above and below by [|v[[o, times suitable constants

2

independent of A ), and moreover coincides with the [L%(f)]? inner product whenever

one of the two entries is in (Pg.1)%.

For each face f of P, the nodal space of order k + 1 is defined as

(39) V()= {a€ H'(F): qe € Prsa(e) Ye C 0, Aq € Pu(f)

with the degrees of freedom

(3.10) e for each vertex v the value q(v),
(3.11) e for each edge e the moments fe qpr-1ds Vpr—1 € Pr_1(e),
(3.12) o [{(Va-zys)prdf Vpi € Pi(f).

3.3. The local serendipity spaces on faces. We recall the serendipity spaces
introduced in [4], which will be used to construct the serendipity spaces on polyhedra.
Let f be a face of P, assumed to be a convex polygon. Following [10] we introduce

(3.13) Bi=k+1-—n

where 7 is the number of straight lines necessary to cover the boundary of f. We note
that the convexity of f does not imply that n is equal to the number of edges of f,
since we might have different consecutive edges that belong to the same straight line.
Next, we define a projection II§ : V2(f) — [Py(f)]? as follows:

(3.14) Jopllv —TIgv) - ¢][Vp-t]ds =0 Vp € Ppya(f),

(3.15) Sy (v —TIw) - £ds = 0,

(3.16) Jyrot(v —Tgo)p)_,df =0 Vpp_; € Py_(f) fork>1,
(3.17) ff —¢v) - xypgdf Vps € Pg(f) only for g > 0.

The serendipity edge space is then defined as:
(B18)  SVE() = {ve Vi) ¢ /f (v~ v) -2 pdf =0 Vo€ Byu(f)

where [P, is the space spanned by all the homogeneous polynomials of degree s with
B < s < k. The degrees of freedom in SV¢(f) will be (3.3) and (3.5), plus

(3.19) /v~a:fp5df Vps € Pg(f) only if 8 > 0.
!
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To summarize: if 8 < 0, i.e., if K +1 < 7, the only internal degrees of freedom are
(3.5), and the moments (3.4) are given by those of II§. Instead, for 5 > 0 we have to
include among the d.o.f. the moments of order up to § given in (3.19). The remaining
moments, of order up to k, are again given by those of 1I5. We point out that, on
triangles, these are now exactly the Nédélec elements of second kind.

Clearly in SV2(f) (that is included in Vi2(f)) we can still use the scalar product
defined in (3.8) or (3.7).

For the construction of the nodal serendipity space we proceed as before. Let
% - Vi2y 1 (f) = Prya(f) be a projection defined by

Joy 0e(a = Tgq)0ipds =0 Vp € Prya(f),
(3.20) Jos(@s-m)(q —T&q) ds =0,
J;(V(g—1%q) - xspsdf =0 Vps € Ps(f) only for §>0.

The serendipity nodal space is then defined as:

321 $VE ()= {0 Vi) ¢ [ (Vo= -wypds = 0w < ()}
The degrees of freedom in SV} | (f) will be (3.10) and (3.11), plus

(3.22) /f (Va-w)psdf Vps €Bs(f)  only if 3> 0.

From this construction it follows that the nodal serendipity space contains internal
d.of. only if £+1 > 7, and the number of these d.o.f. is equal to the dimension of Pg
only. The remaining d.o.f. are copied from those of IIy. Note also that on triangles
we have back the old polynomial Finite Elements of degree k£ + 1. Before dealing with
the three dimensional spaces, we recall a useful result proven in [4], Proposition 5.4.

Proposition 3.2. 1t holds
(3.23) VSV (f) = {v € SVE(f) : rotv = 0}.

The following result is immediate, but we point it out for future use.

Proposition 3.3. For every q € V;%, | (f) there exists a (unique) ¢* such that
(3.24) g €SV, (f) (and we denote it as ¢* = o™ (g)),

that has the same degrees of freedom (3.10),(3.11), and (3.22) of ¢. The difference
q — q* is obviously a bubble in V! (f). Similarly, for a v in V|{(f) there exists a
unique v* with

(3.25) v* € SVE(f) (and we denote it as v* = 0% (v)),

with the same degrees of freedom (3.3)-(3.5), and (3.19) of v. The difference v — v*
is an H(rot)-bubble and, in particular, is the gradient of a scalar bubble £(v):

(3.26) VéE=v—v™.

Proof. Tt is clear from the previous discussion that the degrees of freedom (3.10),
(3.11), and (3.22) determine ¢* in a unique way. As ¢ and ¢* share the same boundary
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degrees of freedom (3.10) and (3.11), they will coincide on the whole boundary Jf,
so that ¢ — ¢* is a bubble. Similarly, given v in V(f) the degrees of freedom (3.3)-
(3.5), and (3.19) determine uniquely a v* in SV2(f). The two vector valued functions
v and v*, sharing the degrees of freedom (3.3)-(3.5) must have the same tangential
components on Jf and the same rot. In particular, rot(v—v*) = 0 and (as f is simply
connected) v — v* must be a gradient of some scalar function £ (that we can take as
a bubble, since its tangential derivative on 9f is zero). O

3.4. The local spaces on polyhedra. Let P be a polyhedron, simply con-
nected with all its faces simply connected and convex. For each face f we will use the
serendipity spaces SV | (f) and SVjS(f) as defined in (3.21) and (3.18), respectively.
We then introduce the three-dimensional analogues of (3.21) and (3.18), that are

(3.27) VE(P):= {'v € [L3(P) : divw € Py_y(P), curl(curlv) € [P(P)]%,

vy € SVE(f) V face f C OP, v - t. continuous on each edge e C 3P},

(3.28) VP (P) = {q € COP) 1 qp € SV, (f) Vface f COP, Age Pk,l(P)}.

This time however we will also need a Virtual Element face space (for the discretization
of two-forms), that we define as

(3.29) Vi_,(P):= {w e[L2(P)]? : divw €Py,_1, curlw [P, w - ny € Py y(f) Vf}.

Remark 3.4. We note that in several cases, in particular for polyhedra with
many faces, the number of internal degrees of freedom for the spaces (3.27), (3.28),
and (3.29) will be more than necessary. However, at this point, we will not make
efforts to diminish them, as we assume that in practice we could eliminate them by
static condensation (or even construct suitable serendipity variants).

Among the same lines of Proposition 3.3, we have now:

Proposition 3.5. For every function ¢ in the (non serendipity!) space
(3.30) 17kn+1(P) = {q €C(P) : qiy € V1 (f) V face f C 0P, and Ag € Pk,l}
there exists exactly one element ¢* = 0™F(g) in V2, ; (P) such that
(3.31) ay = an’f(q|f) V face f, and A(g—¢*)=0inP.
Similarly, for every vector-valued function v in the (non serendipity!) space
(3.32) VE(P) = {v € [L*(P)]? : divv € Py_y(P), curl(curlv) € [P, (P)]?
vf; € VE(f) V face f C 0P, v - t. continuous on each edge e C 8P},

there exists exactly one element v* = 0®F (v) of V¢(P) such that:
(3.33) e oneach face fof OP: (v*)" =0%f(v") (as defined in (3.25)),

(3.34) e andinP: div(v —v*) =0 and curl(v—v*)=0.
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Proof. The first part, relative to nodal elements, is obvious: on each face we take
as ¢* the one given by (3.24) in Proposition 3.3, and then we take Ag* = Agq inside.
For constructing v* we also start by defining its tangential components on each face
using Proposition 3.3. Now, on each face f we have a (scalar) bubble {; (whose
tangential gradient equals the tangential components of v — v*), and we construct in
P the scalar function ¢ which is: equal to ¢ on each face f, and harmonic inside P.
Then we set v* := v+ V¢, and we check immediately that v* verifies property (3.33),

and also properties (3.34), since ¢ vanishes on all edges and is harmonic inside. ]
Proposition 3.6. It holds
(3.35) VVE 1 (P)={v e V(P): curlv =0}.

Proof. From the above definitions we easily see that the tangential gradient of
any q € Vi | (P), applied face by face, belongs to SV;S(f). Consequently, we also have
that v := gradg belongs to V;¢(P), as divv € P,_1(P) and curlv = 0. Hence,

(3.36) VVE 1 (P) C{v e V(P): curlv =0}.

Conversely, assume that a v € V2(P) has curlv = 0. As P is simply connected we
have that v = Vq for some ¢ € H'(P). On each face f, the tangential gradient of
q (equal to v7) is in SVE(f) (see (3.27)), and since rotyv”™ = curlv - ny = 0, from
(3.23) we deduce that ¢y € SV}’ | (f). Hence, the restriction of ¢ to the boundary of
P belongs to V;%, | (P)|sp. Moreover, Aq = divv is in Pr_1(P). Hence, ¢ € V}, |(P)

and the proof is concluded. ]
In V¢(P) we have (see [4] and [12]) the degrees of freedom

(3.37) o Vedgee: [ (v-te)prds Vpi € Pyle),

(3.38) o Vface f with By > 0: [;v" -xspg, df Vpg, € Pp,(f),

(3.39) e V face f: ff rotpv” p?_df Vpd , €PY (f) (for k> 1),

(3.40) o [p(v-xp)pp_1 dP Vpr_1 € Pr_1(P),

(3.41) o [o(curlv) - (zp Apg) AP Vpy € [Pr(P)]?,

where f; = value of § (see (3.13)) on f, and @p :=x—bp, with bp =barycenter of P.

Proposition 3.7. Out of the above degrees of freedom we can compute the [L?(P)]?
orthogonal projection II{ from Vi¢(P) to [Py (P)]3.

Proof. Extending the arguments used in [6], and using (2.7) we have that for
any p;, € (Px)? there exist two polynomials, g, € (Px)3 and z;_; € Py_1, such that
p;, = curl(xp A qx) + xpzr—1. Hence, from the definition of projection we have:

(3.42) /Hg'u-pk dp ::/'u~pk dP:/v-curl(acp/\qk)dP—i—/('u-:cp)zk,l dp.
P P P P

The second integral is given by the d.o.f. (3.40), while for the first one we have, upon
integration by parts:

Jp v-curl(zp A q) dP = [, curlv-(xp A q;,) AP+ [, (v An)-(xp A q;) dS
(3.43) = [peurlv - (zp Aq,)dP + [, (n A (xzp A qk)) -vdS
= [pcurlv - (zp A q;) dP + f ff (nf A (xp /\qk)> -vTdf.

The first term is given by the d.o.f. (3.41), and the second is computable as in (3.6).0
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Hence, following the path of Remark 3.1 we can define a p-dependent scalar product
through the (Hilbert) norm

(3.44) [0lI2,.p == P TR0|5 p + hepo Y (dofi{ (T — TI})w})?,

or, for instance,

(3.45) oI, p = 10200l b+ hepo 37 1 = )07 2 )
fcop

getting, for positive constants a,, a* independent of hp,

(3.46) apolvllg e < llv]

eup S uilvfop Vo e VE(P).

We observe that the associated scalar product will satisfy

1/2 1/2 §

47) ol < (00lonr) ([0 wleur) < matfoloplwlop,
(3.48) [V, Pileup = [p plljv-prdP Vo € VE(P), Vpi € [P(P)]°.

In V' 1 (P) we have the degrees of freedom
(3.49) e V vertex v the nodal value ¢(v),
(3.50) e Vedge e and k > 1 the moments fe qpr—1ds Vpr—1 € Pr_1(e),
(3.51) e V face f with 8y > 0 the moments ff(qu ~xy)ps, df  Vpg, € P, (f),
(3.52) e the moments [, Vq-xp pr_1dP Vpr_1 € Pr_1(P).

We point out (see [4]) that the degrees of freedom (3.49)-(3.51) on each face f
allow to compute the L?(f)-orthogonal projection operator from SV, (f) to Px(f).

This, together with the degrees of freedom (3.52) and an integration by parts, gives
us the L?(P)-orthogonal projection operator from V* ,(P) to Px_1(P). Finally, for
Vi (P) we have the degrees of freedom

(3.53) o V face f: ff(w ng)pr—1df Vpr—1 € Proa1(f),
(3.54) o [bw-(gradpy_1)dP Vpy_1 € Pp_1(P), for k> 1
(3.55) o [pw-(xp Api)dP Vpy € [Pr(P)]°.

According to [12] we have now that from the above degrees of freedom we can compute
the [L%(P)]3-orthogonal projection I1? from Vi{_, (P) to [Ps(P)]® with s < k + 1.

In particular, along the same lines of Remark 3.1 we can define a scalar product
[w, ’U]kail(p) through the Hilbert norm

(3.56) Wl ey = MR_y0l5p +he Y I =T _)v-ngllf 4,
f

and then there exist two positive constants aq, as independent of hp such that

(3.57) arwlffe < lwlf: @) < azlwlie  Ywe Vi, (P),
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and also
(3.58) [wapk—l]v,j_l(P) = (w, Pr—1)o,p Yw € VI (P), Vpi_1 € [Pr_1(P)]*.

Needless to say, instead of (3.56) we could also consider variants of the type of (3.7)
and (3.44), using only the values dof; of the degrees of freedom.
Note that Pj41(P) € Vi (P), [Pk(P)]* € VE(P), and [Pr—1(P)]* C Vi (P).

Proposition 3.8. It holds:
(3.59) curlV¢(P) = {w € Vf_,(P) : divw = 0}.

Proof. For every v € V(P) we have that w := curlv belongs to V{{_, (P). Indeed,
on each face f we have that w-ny = rot v belongs to Py_1(f) (see (3.2) and (3.29)),
and moreover divw = 0 (obviously) and curlw € [Py (P)]? from (3.27). Hence,

(3.60) curlV¢(P) C {w € V{_,(P) : divw = 0}.

In order to prove the converse, we first note that from [9] we have that: if w is in
Vi (P) with divw = 0, then w = curlv for some v € ‘N/,f(P) (as defined in (3.32)).
Then we use Proposition 3.5 and obtain a v* € V2(P) that, according to (3.34), has
the same curl. An alternative proof could be derived by a simple dimensional count,
following the same guidelines as in [6]. d

3.5. The global spaces. Let 7T be a decomposition of the computational do-
main 2 into polyhedra P. On 7T, we make the following assumptions, quite standard
in the VEM literature. We assume the existence of a positive constant v such that
any polyhedron P of the mesh (of diameter hp) satisfies the following conditions:

—P is star-shaped with respect to a ball of radius bigger than yhp;
(3.61) —each face f is star-shaped with respect to a ball of radius > vhp,
—each edge has length bigger than vyhp.

We note that the first two conditions imply that P (and, respectively, every face
of P) is simply connected. At the theoretical level, some of the above conditions
could be avoided by using more technical arguments. We also point out that, at the
practical level, as shown by the numerical tests of the Section 5, the third condition is
negligible since the method seems very robust to degeneration of faces and edges. On
the contrary, although the scheme is quite robust to distortion of the elements, the
first condition is more relevant since extremely anisotropic element shapes can lead
to poor results. Finally, as already mentioned, for simplicity we also assume that all
the faces are convex.
We can now define the global nodal space:

(3:62) Vi = Vi (9) = {g € H}(%) such that qp € V2, (P) ¥P € T3 },
with the obvious degrees of freedom

e VY internal vertex v the nodal value ¢(v),

e Vinternal edge e and k > 1: fe qpr—1ds Vpr—1 € Pr_1(e),

e Vinternal face f with By >0: [(Vrq-@y)ps, df Vps, € Py, (f),
o Velement P, k> 1: [, Vq-xp ppr_1dP Vpr_1 € Pr_1(P).
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For the global edge space we have
(3.67)  VE=VEQ) = {v € Hy(curl; Q) such that vjp € VE(P) VP € n}

with the obvious degrees of freedom

(3.68) o Vinternal edge e: [ (v-t.)ppds Vpi € Pi(e),

(3.69) e Vinternal face f with 8y > 0: [, v" @y ps, df Vps, € Py, (f),
(3.70) e Vinternal face f: [, rotsv” pY_df vpd_, ePY L (f) (for k > 1),
(3.71) o Velement P: [,(v-xp)pr—1 AP Vpr_1 € Pr_1(P),

(3.72) e Velement P: [ (curlv) - (xzp Api) AP Vpy € [Pr(P)]%.

Finally, for the global face space we have:
(3.73) Vi, =V, (Q):= {w € Hy(div; ) such that wp € Vi, (P) VP € Th}

with the degrees of freedom

(3.74) e Vinternal face f : ff(w ‘n)pg—1df Vpr—1 € Pr_1(f),
(3.75) e Velement P: [Lw- (xp Apg)dP Vpi € [Pr(P)]?,
(3.76) o Velement P: [, w-(gradpy—1)dP Vpy_y € Pr_1(P) k> 1.

It is important to point out that

(3.77) VVii, C V.

In particular, it is easy to check that from Propositiom 3.6 it holds
(3.78) VVl 1 = {v € Vi such that curlv = 0}.
Similarly, also recalling Proposition 3.8, we easily have

(3.79) curlV¢ C V.

For the converse we follow the same arguments of the proof of Proposition 3.8: first
using [9], this time for the global spaces, and then correcting v with a V¢ which is
single-valued on the faces. Hence

(3.80) curlV¢ = {w € V;_, such that divw = 0}.
Introducing the additional space (for volume 3-forms)

(3.81) Vg = {y € L*(Q) such that vp € Py_1(P) VP € T},
we also have

(3.82) divVi | =vy ..

Proposition 3.9. For the Virtual element spaces defined in (3.62), (3.67), (3.73),
and (3.81) the following is an exact sequence:

i grad curl . div o
R—=V5(Q) — VE(Q) —— Vi 1() — V_1(2) — 0.
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Remark 3.10. Here too it is very important to point out that the inclusions (3.77),
(3.79) and (3.82) are (in a sense) also practical, and not only theoretical. By this,
more specifically, we mean that: given the degrees of freedom of a ¢ € V} | we can
compute the corresponding degrees of freedom of Vg in V;$; and given the degrees of
freedom of a v € V{ we can compute the corresponding degrees of freedom of curlwv
in V{_; finally (and this is almost obvious) from the degrees of freedom of a w € V}!_,
we can compute its divergence in each element and obtain an element in V.

3.6. Scalar products for VEM spaces in 3D. From the local scalar products
in V2(P) we can also define a scalar product in V)¢ in the obvious way

(3.83) [, We =Y [0, w]ep
PETh

and we note that for some constants a, and a* independent of h
(3.84) apio(v,v)0,0 < [v,0]e,, < a*pi(v,v)0.0 Yo e Vi,

It is also important to point out that, using (3.48) we have

(3.85) [v,ple, = (uv, o = / pIv - pdQ Vo € VE, Vp piecewise in (P)?.
Q

From (3.56) we can also define a scalar product in V){ | in the obvious way

(3.86) v, wly; = > [, wlve @)
PeTh

and we note that, for some constants a; and as independent of h
(3.87) a1(v,v)p,0 < ['v,'u}ka_1 < az(v,v),0 Yo € V,f_l.

Note also that, using (3.58) we have

(3.88) [’U,P]ka L= (v,P)o.a = / v-pdQ Yo € Vi |, Vp piecewise in (Pj_1).
- Q

4. The discrete problem and error estimates.

4.1. The discrete problem. Given j € Hy(div; Q) with divj = 0, we construct
its interpolant j; € V;f_; that matches all the degrees of freedom (3.74)—(3.76):

(4.1) o Vf: [((G—3p) m)pe—1df =0pr_1 € Pr_s(f),
(4.2) o VP: [,(j —j;)-gradpy_1dP = 0Vpy_y € Pr_1(P),k > 1
(4.3) o VP: [L(j —d;) - (zp Apr)dP = 0Ypy, € [P(P)]°.

Then we can introduce the discretization of (3.1):
find Hj, € Vi and p, € V} | such that:
(4.4) [curth,curl’v]vlf_1 + [Vpn, Ve, = (915 curl’v]ka_1 Yo € V¢
[‘7Q7IIhLzu =0 Vge Vg;l.
We point out that both curlHj, and curlv (as well as j;) are face Virtual Elements
in VI (P) in each polyhedron P, so that (taking also into account Remark 3.10)
their face scalar products are computable as in (3.86). Similarly, from the degrees of

freedom of a ¢ € V', | we can compute the degrees of freedom of Vg, as an element
of V¢, so that the two edge-scalar products in (4.4) are computable as in (3.83).
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Proposition 4.1. Problem (4.4) has a unique solution (Hp, py), and p, = 0.

Proof. Taking v = Vpy, (as we did for the continuous problem (3.1)) in the
first equation, and using (3.84) we easily obtain p, = 0 for (4.4) as well. To prove
uniqueness of Hj, set j; = 0, and let H}, be the solution of the homogeneous problem.
From the first equation we deduce that curl H, = 0. Hence, from (3.78) we have
H), = Vg, for some gj € V", ;. The second equation and (3.84) give then Hj, = 0.0

In order to study the discretization error between (3.1) and (4.4) we need the
interpolant H; € V¢ of H, defined through the degrees of freedom (3.68)-(3.72):

Ve: [((H—-Hy) t)prds=0 VYpg € Pi(e),

V£ fproty(H — Hp)py_ydf =0 Vp 4 € P (f) (for k> 1),
v f with B 20 [((H = H1)" - ag)ps, df =0 Vpg, € Py, (f),
VP: [[(H—-Hj) xp)pi—1 dP =0 Vpr_1 € Pr_1(P),

VP: [pcurl(H — Hy) - (zp Api) AP =0 Vpi € [Px(P)]°.

AAAA/—\

o

© o N o >

222
°

We have the following result.
Proposition 4.2. With the choices (4.1)-(4.3) and (4.5)-(4.9) we have

(4.10) curl(H;) = (curlH); = j,.

Proof. We should show that the face degrees of freedom (3.74)-(3.76) of the dif-
ference curlH; — j; are zero, that is:

(411) oV f: ff((CIII'lH] - JI) : n)pk_l df =0 Vpg_—1 EPk_l(f),
(4.12) o VP: [ (curlH; —j;) gradp,_1dP =0 Vpr_1€Pr_1(P),
(4.13) o VP: [L(curlH; —j;)- (xp Apr)dP =0 Vpie[Py(P)>.

From the interpolation formulas (4.1)-(4.3) we see that in (4.11)-(4.13) we can replace
J; with j (that in turn is equal to curlH). Hence (4.11)-(4.13) become

(4.14) oVf: ff curl(H; — H) -npg_1df =0Vpr_1 € Pr_1(f),
(4.15) oVVP: [, curl(H; — H) - gradp,_1dP = 0 Vpy_1 € Pr_1(P),
(4.16) oVP: [,curl(H; — H) - (xp Api)dP = 0Vp; € [Py (P)]3.

Observing that (4.5) and (4.6) imply that
/ I‘Otf(H — H])Tpk_l df =0 Vpr_1 € Pk—l(f),
f

and recalling that on each f the normal component of curl(H; — H) is equal to the
rot of the tangential components (H; — H)", we deduce

/curl(H;—H)-npk,ldfE/rotf(H[—H)Tpk,ldfzo.
f f

Hence, (4.14) is satisfied. Next, we note that, having already (4.14) on each face, the
equation (4.15) follows immediately with an integration by parts on P. Finally, (4.16)
is the same as (4.9), and the proof is concluded. d
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We observe now that, once we know that p, = 0, the first equation of (4.4) reads

(4.17) [curth,curlv]ka_1 =1[js, curl’u]ka_1 Yo e Vi,

that in view of (4.10) becomes

(4.18) [curlH ), — curlH/, curlv]kai1 =0 YveV;.
Using v = H;, — H; and (3.87), this easily implies

(4.19) curlH;, = curlH| = j;,.

4.2. Commuting diagrams. Formula (4.10) represents, for H smooth, a com-
muting diagram property. Similar properties can be established also for the nodal
and face interpolants. For a smooth function ¢, let g; be its nodal interpolant in
Vit 1 (P) defined through the degrees of freedom (3.49)-(3.52), and let (Vq)r be the
interpolant of Vg in V,°(P) defined through the degrees of freedom (3.37)-(3.41). Since
Vaqr € V2(P), to prove that V¢; = (Vq); amounts to prove that the vector Vg — Vg
verifies

Vedgee: [[V(g—qr) -teprds =0 Vpp € Prle),

V face f with 8y >0: ffV(q —qr) -xppg, df =0 Vpg, € P, (f),

Y face f: ff rot;V(g—qr) pl_,df =0 Vpl_, €PY_,(f) (for k>1),
fp(v(q —qr) - xp)pp—1 dP =0 Vpi_1 € Pr_1(P),

Jp(curlV(g —qr)) - (xp Api) dP =0 Vpy, € [Pr(P)]3.

~ o~~~
=~
[\
DO
D O = =
[ ]

Conditions (4.21)—(4.24) are automatically verified. The only non-immediate condi-
tion is (4.20) which, integrating by parts and using (3.49)-(3.50), gives

/V(q—qf)-tepdeZ —/(q—qz)Vpk~teds=0-

For the face interpolant it is even much easier. Looking at the degrees of freedom
(3.74) and (3.76) we immediately see that: for every smooth enough vector field w,
denoting by wy its interpolant in V{_ | (P) we have

/ le(’w — wI)pk,l dP =0 Vpk,1 S Pkfl(P)
P

which immediately implies
(4.25) 9, divw = div(wy)

that, in turn, can be interpreted as a commuting diagram if we consider II) | as the
interpolator from L?(P) to Py_;(P).

4.3. Error estimates. Let us bound the error H — H}, in terms of approxima-
tion errors for H. From (4.19) we have

(4.26) curl(H; — Hy) =0,
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and therefore, from (3.35),

(4.27) H; - Hj = Vg, for some ¢; € V' ;.

On the other hand, using (3.84) we have

(4.28) ol Hr — Hyll3 o < [Hr — Hp, Hr — Hple e
Then:

Qs ol H 1 _HhHosz (H; —Hp, H; — Hy).,

use (4.27)) [Hr — Hp, Vapleun

use the second of (4.4)) [Hy, Ve,

=(
(
(add and subtract I\ H) [H; — 00 H,Vq}]e, + [V H, Ve,
(use (3.85)) [H; — I H,Vaile, + (H, ulV ;)0

(

use the 2°% of (3.1)) [Hy — IIRH, Vg; e, + (I H, ulRVa; oo — (H, 1Vq;)o0

I I
For the first term we use (3.47) to get
(4.29) I<ma*|Hyp—

Next, following arguments similar to [11] (Lemma 5.3), we obtain:
11 = (IRH, ulI}Vg;)o.o—(H, pVa; oo+ (H, pl}Va;)oo — (H, il Voo
= (IRH — H, ulI}Vq;)o.0 + (1H, I}V q; — Vo
(4.30) = (I}H — HquQVQZ)o,Q + (pH — IRuH TV g, — Vi )os

< ||H°

<

Inserting (4.29)—(4.30) in the above estimate we deduce
ol Hr — Hallg o <

(o~

I0QH — Hljo.0 + |1H — uH]o.0)
that implies immediately (since a* > 1)

|H;—Hploo < 'Zl

(|l T H o o+ I H Ho0) + —— i =T o .

Summarizing:

Theorem 4.3. Problem (4.4) has a unique solution, and we have
(431) ||H ~ Hyllo < C (| H ~ Hy oo+ [IH — Hoo+ |[pH ~ T(H) o),
with C a constant depending on p but independent of the mesh size. Moreover,

(4.32) |lcurl(H — H},)

0.0 = [l3 = Jrllo.c-
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Remark 4.4. The error bounds in (4.31) and (4.32) imply that the approximation
error is of the same order (up to a multiplicative constant independent of h) of the
interpolation error. The last two terms of (4.31) can be bounded using classical
polynomial approximation properties. In particular, if the data p and the solution
H are sufficiently regular, one has that the projection errors (namely, the last two
terms in (4.31)) can be estimated by

(4.33)  [|H 1 Hjoq + [|pH TR (pH)|loo < Ch°[|H|s o 0<s<k+1,

where the constant C' depends only on the polynomial degree k, the mesh regularity
parameter v, and [|p|[yr+1.50(q,)- On the other hand, interpolation estimates for
3d vector valued VEMs are still in fieri, as far as we know, in the international VEM
community. However, a widely shared educated guess is that an estimate like (4.33)
would also hold for ||H — Hy|oq, taking also into account that our local spaces
contain all polynomials of degree k. The proof should be obtainable by tools similar
to those already developed and used so far for VEMs (see, e.g., [16, 14, 38, 19, 18, 23]).
The main difficulty, apparently, lies in the great variety of vector valued VEM spaces
(splitting the proofs in zillions of different rivulets, each dealing with a very particular
case) as well as in the great variety of possible geometric properties of the polyhedral
elements used in the decomposition. Such a proof goes way beyond the scopes of the
present paper, and we decided to stick on (4.31) that can still be seen as an "optimality
result”.

The same is true for the error (4.32), which is already an interpolation error.
Note however that here we are dealing with spaces similar to Nedéléc second types
elements, where the order of approximation of the H field is one level higher than
that of its curl, so that in a possible estimate of the error in the H (curl; Q2)-norm the
error would be dominated by the curl part, that however is the less crucial of the two,
since it deals with the approximation of a known datum and not of the (unknown)
solution of the system of equations. O

Remark 4.5. By inspecting the proof of Theorem 4.3 we notice that, for this
particular problem, the consistency property (3.88) for the space Vi{ | is never used.
Since only property (3.87) is needed, in ka—1 we could simply take, for instance, as
scalar product in V;f_, the one (much cheaper to compute) associated to the norm

(434) ol = 3 (dofi(v))?.

K2

where dof; are the degrees of freedom in Vf_,| properly scaled.

5. Numerical Results. In this section we numerically validate the proposed
VEM approach. More precisely, we will focus on two main aspects of this method.
We will first show that we recover the theoretical convergence rate for standard and
serendipity VEM, then we compare these two approaches in terms of number of degrees
of freedom. For the present study we consider the cases k = 1 and k = 2. A lowest
order case (not belonging to the present family) has been already discussed in [6].

In the following two tests we use four different types of decompositions of [0, 1]3:

e Cube, a mesh composed by cubes;

e Nine, a regular mesh composed by 9-faced polyhedrons in accordance with
a periodic pattern;

e CVT, a Voronoi tessellation obtained by a standard Lloyd algorithm [32];
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577 e Random, a Voronoi tessellation associated with a set of seeds randomly
578 distributed inside €.
579 Note that the meshes taken into account are of increasing complexity; in particular,
580 the meshes CVT and Random have polyhedra with small faces and edges.
All discretizations have been generated with the c++ library voro++ [42] and we
exploit the software PARDISO [41, 40] to solve the resulting linear systems. In order to
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N\ ﬁ%

CvT Random

FIGURE 1. A sample of the used meshes.

study the error convergence rate, for each type of mesh we consider a sequence of three
progressive refinements composed by approximately 27, 125 and 1000 polyhedrons.
Then, we associate with each mesh a mesh-size

1 e
h:=— h
NP; P

581 where Np is the number of polyhedrons P in the mesh and hp is the diameter of P.
Since H, is virtual, we use its projection II9 H}, to compute the L2-error, i.e.,
the following quantity is used as an indicator of the L2-error:

||[H — 1) H}||o.0
[[H 0,0

582 The expected convergence rate is O(h*+1).
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Test case 1: h-analysis
We consider a problem with a constant permeability p(x) = 1. We take as exact
solution
sin(7my) — sin(7z)
H(z,y, z):=— | sin(rz)—sin(rz) |,
sin(mx) — sin(mwy)
and chose right-hand side and boundary conditions accordingly.

In Figure 2 we show the convergence curves for each set of meshes. The error
behaves as expected (O(h?) and O(h?) for k = 1 and k = 2, respectively).

L?error k=1 L? error k =2
10° T 10° T
—P—Cube ——Cube
—E—Nine —E—Nine
—-©—-CVT —©—-CVT
10" | | ~€—Random 107! | |~€—Random

—4— Cube Serendipity
~¢—Nine Serendipity
—%— CVT Serendipity
2| |——Random Serendipity
—

—4— Cube Serendipity
~¢— Nine Serendipity
—%— CVT Serendipity
—4— Random Serendipity
——

L? error
=)
®

10 . .
102 107" 10° 102 107" 100
h h

FIGURE 2. Test case 1: L2-error for standard and serendipity approach: case k =1 and k = 2.

From Figure 2 we also observe that we get almost the same values when we
consider the standard or the serendipity approach. These two methods are equivalent
in terms of error, but the serendipity approach requires fewer degrees of freedom. To
better quantify the gain in terms of computational effort, we compute the quantity

#dofs — #dof}
#dofy

where #dof; and #dof f are the number of degrees of freedom on the faces in standard
and serendipity VEM, respectively. We underline that in this computation we do not
take into account the internal degrees of freedom since they can be removed via static
condensation. As we can see from the data in Table 1, the gain is remarkable (almost
50% of the face d.o.f.s). Note that this also reflects on a much better performance of
several solvers of the final linear system.

100%,

gain :=

gain
k=1 k=2
~ Np | Cube | Nine | CVT | Random | Cube | Nine | CVT | Random
27 56.6% | 51.0% | 50.2% | 50.3% | 56.4% | 52.0% | 49.9% | 50.4%
125 | 59.5% | 53.6% | 50.5% | 50.1% | 58.5% | 54.1% | 51.6% | 50.2%
1000 | 61.8% | 54.9% | 50.3% | 49.8% | 60.2% | 55.0% | 44.3% | 49.9%

TABLE 1
Test case 1: values of gain for each type of mesh taken into account.

If we compare the total number of degrees of freedom, i.e., including the internal
ones, the gain in percentage is obviously smaller, since we are applying serendipity
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only on faces. For instance, in the case of the 125 CVT mesh and k£ = 2 one gets
40.7% instead of 51.6% (and similarly in the other cases). We nevertheless remind
that, for the reasons explained above, counting only the degrees of freedom on faces
is a better estimation of the overall computational cost.

Test case 2: h-analysis with a variable u(x)
We consider now a problem with variable permeability u(x) given by

Wz, y, 2) =1+x+y+z

We take as exact solution

1 sin(7y)
H = i
)= (s | e |

and we choose again right-hand side and boundary conditions accordingly. In Figure 3
we provide the convergence curves for each set of meshes. The L2-error behaves again
as expected.

L?error k=1 L? error k=2
10° 100
P Cube ——Cube
5 Nine —F— Nine
—6-CVT —&-CvT
10! | |~@—Random 10" | |~ Random

—4— Cube Serendipity
—3¢— Nine Serendipity
—¥— CVT Serendipity

—4— Cube Serendipity
—3¢— Nine Serendipity
—%— CVT Serendipity

£ 102 | |—+—Random Serendipity g 102 b [—#—Random Serendipity
o o -
o h = [
1072 10°°
10 . 10 .
102 107 10° 102 107!

h h

FIGURE 3. Test case 2 - L%-error for standard and serendipity approach: case k =1 and k = 2.
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