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To Abdelghani Bellouquid, in memoriam

This issue is devoted to complex systems in life sciences. Some perspective ideas on
possible objectives of future research are extracted from the contents of this issue and
brought to the reader’s attention. The final ambitious aim is the development of a
mathematical theory for complex living systems.
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1. Introduction

The interest of applied mathematicians in the modeling, qualitative analysis, and
simulation of large systems of interacting living entities is rapidly growing, and is
witnessed by the recent literature appeared in top level journals in several fields,
both in fundamental and applied sciences, as biology, sociology, economy, and
medicine. Indeed, it appears that these systems can have a paramount importance
in understanding the complexity of life and social sciences.

In addition to the motivations generated by applications, mathematicians are
also attracted by the challenging theoretical and computational problems gener-
ated by this new frontier of mathematical sciences, which has promoted already an
intense quest toward new analytic and computational tools.
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The journal M3AS has already captured the aforementioned hints by publishing
several special issues appeared in recent years.9,12,28 This present issue contributes
to the research activity in the field by new contributions and authors. Section 2
deals with some discussions on the interactions between mathematical sciences and
complex systems, while Sec. 3 presents the contents of the issue and looks ahead to
research perspectives.

2. Toward a Mathematical Theory of Large Living Systems

Before dealing with the specific contents of this special issue let us take a look at
the panorama of the scientific literature on the subject, in a very personal quest for
some basic ideas on the interpretation of complex systems by eminent scientists. It
is not surprising that the philosopher Immanuel Kant (1724–1804) already provided
a definition of organisms viewed as “living matter”31:

An organized product of nature is that in which everything is an end and
reciprocally a means as well.

The concept that living entities have a purpose, which distinguish them from the
inert matter, was therefore introduced long time ago. This concept was made more
precise in survey paper by Hartwell et al.26:

Although living systems obey the laws of physics and chemistry, the notion
of function or purpose differentiates biology from other natural sciences.
Organisms exist to reproduce, whereas, outside religious belief, rocks and
stars have no purpose. Selection for function has produced the living cell,
with a unique set of properties that distinguish it from inanimate systems
of interacting molecules.

This forces mathematicians to invent new mathematical tools, possibly a new math-
ematical theory. In a similar spirit, we already learned from Schrödinger that living
systems operate far from equilibrium,45 and that they evolve in time35,36 by a
Darwinian-type dynamics.

A statement by Jona-Lasinio30 (here translated into English from the Italian
original version) captures the need of an evolutionary description:

Life represents an advanced stage of an evolutive and selective process. To
me it seems difficult to understand living entities without considering their
historical evolution. Population dynamics should explain the emergence of
individual living entities by selection.

The invention of a mathematical theory goes through the search for new mathe-
matical structures. Indeed, as observed by Gromov in Ref. 25:

Mathematics is about “interesting structures”. What makes a structure
interesting is an abundance of interesting problems; we study a structure
by solving these problems. The worlds of science, as well as of mathematics
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itself, is abundant with gems (germs?) of simple beautiful ideas. When and
how many of these ideas direct you toward beautiful mathematics?

The statement,26 which represents the viewpoint of a biologist, motivates the
search of new mathematical tools suitable to understand the complexity of biological
systems. Therefore, mathematicians should go beyond traditional methods used for
the inert matter, which definitely fails in the case of living entities, and introduce
new ideas that can establish new frontiers for mathematics.

Moreover, the statement25 indicates how the quest for new methods should end
up with the design of mathematical structures suitable to become the background
for developments important in applications. In fact, it indicates that a structure
might even be richer than what is needed for a specific modeling project. Therefore,
mathematicians are motivated to investigate all properties of the new structures
looking for their complete predictive ability.

This historic-philosophical introduction suggests a key question, that we should
pose to ourselves: How mathematical sciences can contribute to a theory of living
systems?

Obviously, we cannot naively expect to provide, today, an exhaustive answer to
such a question. But many scientists are actively working toward this target, and
several new promising mathematical theories have already been developed.

The first field to be mentioned, in this framework, is the development of evolu-
tionary game theory, which provides an important conceptual contribution to the
modeling of complex systems. This topic is critically analyzed in the survey paper,29

where the authors emphasize the substantial differences with respect to the classical
game theory.37,38 Namely rather than dealing with players involved in the game
with strategies that attempt to maximize their own payoff, in evolutionary game
theory we have a whole population that is pursuing an individual or collective well-
being. This concept is well expressed by the following quotation extracted from
Ref. 29:

Evolutionary game theory deals with entire populations of players, all pro-
grammed to use the same strategy (or type of behavior). Strategies with
higher payoff will spread within the population (this can be achieved by
learning, by copying or inheriting strategies, or even by infection. The pay-
offs depend on the actions of the coplayers and hence on the frequencies of
the strategies within the population).

In particular the authors clearly state29 that tools of game theory must include
the aforementioned features of evolution and learning dynamics. Indeed the litera-
ture in the field shows that complexity features of living systems can be taken into
account by suitable developments of evolutionary game theory as in Refs. 24, 39
and 43, and of mean field games.33 Recent developments involve games on graphs,2

and interactions between probability distributions.16
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However, modeling the dynamics of the behavioral and complexity features
needs the design of a differential framework. For instance, suitable developments
of methods of statistical mechanics,27,42 kinetic theory40 and the so-called kinetic
theory of active particles,16 which combines methods of the classical kinetic theory
and the aforementioned theoretical tools of game theory. These somehow different
approaches should possibly be unified into a common framework.

Moreover, it is worth stressing that game theory can contribute to detect early
signals of sudden changes44 looking for the “black swan”15 (where the expression
“black swan” was coined by Taleb,47 who used it as a metaphor for highly improba-
ble events). The extreme rareness of these events makes them difficult to incorporate
into a scientific theory, yet they can have a very large impact.

3. Contents and Critical Analysis

The papers published in this special issue cover a variety of topics mainly focused,
with two exceptions, on modeling and qualitative analysis of swarming phenomena.
In more detail, the first of the six papers shows how diffusion can occur over net-
works, while the second paper deals with the derivation of macroscopic models from
a description given by the kinetic theory approach, while the other four papers are
focused on different aspects of swarming dynamics.

Paper5 proposes a macroscopic model which describes a meta-population
consisting of several sub-populations connected through a network. These sub-
populations interact with each other, and the rules of interactions are given by a
system of ordinary differential equations. Each sub-population has its own structure
and dynamics and occupies an edge of a graph. Its dynamics is driven, according to
different cases, by diffusion or by transport along the edge. The analytic properties
of these multiscale models are studied in detail and referred to a “systems biology”
approach.

The derivation of macroscopic equations from the underlying description at the
microscopic scale is treated in Ref. 17. The authors focus on fractional Keller–
Segel’s-type models. A new class of models, with respect to those reviewed in
Secs. 5–7 of Ref. 11, is proposed and brought to the attention of applied math-
ematicians for further studies concerning both analytic problems and applications.
Indeed, fractional models appear to be of special interest in biology. Recently, the
micro–macro general approach has been also applied to derive hydrodynamics for
multi-agent systems.9,10

Paper20 proposes an individual-based model for fiber elements having the ability
to cross-link or unlink each other and to align with each other at the cross links.
The authors first formally derive a kinetic model for the fiber and for the cross-
links distribution functions, and subsequently consider the fast linking/unlinking
regime in which the model can be reduced to the fiber distribution function only,
and investigate its diffusion limit. The authors then discuss the use of this model
in various applications.
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A two-species system of nonlocal interaction PDEs modeling the swarming
dynamics of predators and prey is presented in Ref. 21. All agents interact through
attractive/repulsive forces of gradient type. The model has a particle-based discrete
(ODE) version and a continuum PDE version. The authors investigate the structure
of the particle stationary solution and their stability in the ODE system.

Paper34 presents a detailed study of emerging behaviors delivered by the
Kuramoto model under the effect of frustration and inertia corresponding to some
possible initial configurations. The authors prove a variety of stability and synchro-
nization properties, which definitely contribute to a deeper understanding of the
model.

Social dynamics and collective migration of animals in a cohesive group are
studied in Ref. 41. The authors consider a group of agents able to align their
velocities to a global target velocity, or to follow the group via interaction with the
other agents. The balance between these two attractive forces is the control acting
on each agent to drive the group to consensus at the target velocity. It is shown
that the optimal control strategies in the case of final and integral costs consist in
controlling the agents whose velocities are the furthest from the target one: these
agents sense only the target velocity and become leaders, while the uncontrolled
ones sense only the group, and become followers.

Papers5 and Ref. 17 lead to the idea that the study of living systems always
needs a multiscale approach, where the first step is the selection of the observa-
tion scale and of the related representation by mathematical variables and equa-
tions, while the second step is the search of the mathematical links between the
various scales used to construct the model. For instance, macroscopic equations
should not be postulated a priori, but related to the underlying scale of individu-
als. When this approach is applied, the result generally leads to a variety of models
at the macroscopic scale which were not foreseen by the purely phenomenological
derivation.

The other papers definitely improve the knowledge of the mathematics of swarm-
ing phenomena, where applied mathematicians are hunting for a general theory
suitable to support the derivation of specific models. Control theory applied to
swarming dynamics was already treated in special issues,18,19 where an interesting
interaction appears between swarming models and economics.1

Finally, let us stress that several concepts discussed in the previous section can
be extended to social and economical systems as well. In fact, this is connected to a
radical philosophical change that is taking place in social and economic disciplines,
characterizing the interplay among Economics, Psychology, and Sociology in a new
framework, where the traditional assumption of “rational socio-economic beha-
vior” is abandoned. The new viewpoint, that looks at these disciplines as highly
affected by individual (rational or irrational) behaviors, reactions, and interactions,
is becoming more and more widely accepted, see for instance Refs. 4, 7, 8, 32 and
46. Although this topic is not directly treated in the present special issue, we believe
it to be a very important direction of research, where a milestone in the modeling
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approach would consist in understanding the complexity features of living systems
and of their social interactions, and then in developing mathematical methods suit-
able to capture, as well as possible, all these features.

Mathematicians are chasing a unified modeling approach, and possibly for a
new mathematical theory. However, the literature in the field, as well as this spe-
cial issue, indicate that, despite valuable efforts, this challenging objective has not
yet been achieved. Waiting for it, we can observe that the consensus toward some
common computational tools is still growing. We refer in particular to Monte Carlo
particle methods, either semi-regular3 or stochastic.22,40 The basic idea of stochastic
methods consists in representing the distribution functions by a number of compu-
tational particles which move in the computational domain and collide according
to stochastic rules which can be directly related to the dynamics of interaction
of the specific model under consideration. Macroscopic flow properties are usually
obtained by time averaging particle properties, see also the recent applications in
Refs. 6, 14 and 23, as well as the various applications in social dynamics treated in
Ref. 40.
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