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Abstract

In the present paper we study a finite element method for the incompressible Stokes problem with a boundary immersed in
the domain on which essential constraints are imposed. Such type of methods may be useful to tackle problems with complex
geometries, interfaces such as multiphase flow and fluid–structure interaction. The method we study herein consists in locally
refining elements crossed by the immersed boundary such that newly added elements, called subelements, fit the immersed
boundary. In this sense, this approach is of a fitted type, but with an original mesh given independently of the location of the
immersed boundary. We use such a subdivision technique to build a new finite element basis, which enables us to represent
accurately the immersed boundary and to impose strongly Dirichlet boundary conditions on it. However, the subdivision process
may imply the generation of anisotropic elements, which, for the incompressible Stokes problem, may result in the loss of inf–sup
stability even for well-known stable element schemes. We therefore use a finite element approximation, which appears stable also
on anisotropic elements. We perform numerical tests to check stability of the chosen finite elements. Several numerical experiments
are finally presented to illustrate the capabilities of the method. The method is presented for two-dimensional problems.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

One of the key ingredients of the success of the finite element method is its flexibility in the representation of the
geometry on which the problem is defined. However, for several applications with highly complex geometries or very
localized singularities (such as interfaces and cracks), generating a correct geometry representation is a difficult task.

In this paper we study an alternative approach, that consists in using a mesh which does not fit a priori the geometry,
or the singularities, of the problem. For this reason, we refer to such class of approaches as immersed boundary
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methods. In the literature, these methods may be found under several names such as embedded, unfitted and fictitious
domain.

Many immersed boundary methods do not take into account explicitly the existence of the boundary and, as a
consequence, they experience loss of accuracy. A possible solution consists in enriching the finite element basis on
the elements that are crossed by the immersed boundary, such that the irregularity of the solution is taken into account.
An example of methods using local enrichments are the so-called eXtended Finite Element Method (XFEM) (see the
work of [1] for a presentation of the XFEM in the context considered in the present article, or [2] for a general
overview of the method).

First difficulty of the XFEM is that classical enriched functions might not be smooth inside an element, which
leads to one of the major issues associated with such a methodology, i.e., a correct integration on elements that con-
tain discontinuous functions. Nevertheless, the enriched functions are piecewisely smooth and, since the boundaries
or the singularities are codimension 1 with respect to the geometry of the problem, we may construct “subelements”
on which we can use standard quadrature rules. It follows that an important work is required to compute geometric
structures to integrate.

Second difficulty is the imposition of essential constraints since the finite element basis may not be interpolatory
on the immersed boundary. A possible solution consists in weakly enforcing constraints inside elements. However,
such a strategy is not an easy solution (see for instance [3] and references therein).

In [4] an alternative approach is proposed. The method consists in reconstructing standard shape functions on the
previously described subelements. Such an operation is an easy task with respect to the computational work required
to obtain a geometric representation of the subelements. Their strategy is to use a stabilized low order finite element
scheme such that newly added degrees of freedom, resulting from the reconstruction of the mesh, may be eliminated,
with the advantage of a direct impact on the size of the system to solve. Drawbacks of the method are twofold. Firstly,
only low order elements can be used such that there are no additional degrees of freedom and a stabilized finite element
scheme is needed to ensure stability. Secondly, low order elements have a poor representation of the geometry and
higher order elements may be preferred.

In the present paper, we propose an approach similar to the one proposed by [4], but with higher order elements,
starting from the Hood–Taylor. This approach is also similar to Octree and Delaunay mesh generation with boundary
recovery (see, e.g., [5] or [6] and references therein). In a similar framework as proposed here, in [7,8] higher order
elements are used for a fluid dynamics problem. However, both of these works employ a “smoothing” procedure
in order to ensure a “good” shape of the refined elements. In particular, in [8] a geometric parameter is introduced
to enforce well shaped elements. However, here we prefer not to use a smoothing procedure such that there is no
change in the distribution of the vertices of the original mesh. An important consequence of such a choice is that
the subdivision process generates highly anisotropic elements. A possible effect of the distortion of the elements for
the Stokes problem is a loss in the inf–sup stability, even for well known stable elements. In [9], it has been noted
that the Hood–Taylor may lack of inf–sup stability on stretched meshes. They provide five numerical tests and the
Hood–Taylor element fails three of them. They also showed that adding an extra bubble to the velocity field stabilizes
the element for all tests provided. Since our application may generate different structures for the anisotropic elements,
we propose a test inspired by the presented immersed approach to stress the stability of both finite element scheme by
computing a Smallest Generalized Eigenvalue (SGE) test. We effectively show that P2/P1 may be unstable, whereas
P+

2 /P1 (i.e., P2/P1 with a cubic bubble on the velocity field) passes all SGE-tests. Additionally, we show with the
SGE-test that the loss of stability of P2/P1 may occur within small triangles in corners for which both edges are
constrained by a Dirichlet boundary condition. We then present more complex cases from real applications to check
the results from the SGE-tests. We present a test for which no elements are constrained in a corner and we find that
both schemes are stable. Hence, it appears that P2/P1 may be stable for a wide class of applications, but not for all,
as we present two other problems where instability arises, as guessed from the SGE-test results. On the contrary, the
inf–sup stability of P+

2 /P1 element is always obtained.
The outline of the paper is as follows. In Section 2 we present the geometric aspects of the method, that is, the

immersed boundary construction and the mesh representation. In Section 3 we first present the incompressible Stokes
model and then a fundamental difficulty of a classical immersed method in imposing essential constraints; we then
introduce the proposed method along with its subdivision process. In Section 4 we review the inf–sup condition and its
implications in the case of anisotropic elements. We also present a numerical method to compute the inf–sup constants
for the adopted finite element schemes, i.e., the SGE-test. In Section 5 we apply the SGE-test to three problems to
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(a) Physical domain. (b) Fitted grid. (c) Unfitted grid.

Fig. 1. Fitted and unfitted discretizations of the physical region Ω : Ωi is the interior (non physical) domain, Γ is the immersed boundary, Σ = ∂Ω̂

is the external boundary, and Ω̂ := Ω ∪ Ωi ∪ Γ is the discretized domain.

(a) Immersed boundary and a triangulation
of Ω̂ .

(b) Interface reconstruction (in green) and
integration domain (in blue).

Fig. 2. Description of the interface reconstruction process. The immersed boundary is denoted by Γ and the linear reconstruction of the immersed
boundary, with respect to the background mesh, is denoted by Γh . In the remainder of the paper we also consider the integration domain Ωh (in
blue), defined such that ∂Ωh = Σ ∪ Γh . (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

assess the stability of the P2/P1 and P+

2 /P1 elements, and we test the method on three real flow problems. Finally,
we draw our conclusions in Section 6.

2. Geometry

In this section we consider the geometric aspects of the method, i.e., the problem of the construction of a mesh
conveniently discretizing the considered physical domain. Two strategies are possible: “fitted” or “unfitted” (cf. Fig. 1).

In the fitted approach the discretized domain fits the boundary of the problem, while in the unfitted approach the
physical domain is a subset of the discretization. More precisely, in the unfitted case, we consider a problem defined
on Ω ⊂ R2 such that a part of the boundary of ∂Ω , denoted by Γ (named immersed boundary), is not fitted a priori
by the triangulation of Ω̂ , with Ω ⊂ Ω̂ . The part of the boundary ∂Ω that is fitted by the triangulation of Ω̂ is denoted
by Σ .

We illustrate the problem in Fig. 1(c). To avoid the difficulties and the costs connected with the generation of fitted
meshes in complicated situations, we propose to start with a regular unfitted mesh Ω̂ and to represent Γ by a linear
reconstruction on such a triangulation, as illustrated in Fig. 2. The reconstruction procedure is presented in detail in
the next section.
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2.1. Interface reconstruction

We assume that a regular triangulation T̂ of Ω̂ (named background mesh) and the interface Γ satisfy the conditions
presented in [10], that is the boundary Γ crosses once two triangle edges. We note that there always exists a sufficiently
fine triangulation of Ω̂ such that the conditions are fulfilled for any smooth immersed boundary. The reconstructed
boundary of Γ is denoted Γh and it is the linear interpolation of all intersections with the background mesh edges.
It follows that the reconstructed interface is a segment in each intersected element, and it defines a new domain Ωh
such that ∂Ωh = Σ ∪ Γh (cf. Fig. 2). Domain Ωh is referred to as integration domain. We point out that the linear
reconstruction of Γ is not a limitation of the method we propose and that, in a case with a curved immersed boundary,
isoparametric elements may be used, as well as more complex algorithms, to describe the boundary.

We consider such types of methods as belonging to an “intersection class” of methods, since they require to
compute intersection points between the immersed boundary and the mesh. On the contrary, for instance, the Finite
Cell Method (see [11]) or the approach recently proposed in [12] does not belong to this class of methods. Knowing
intersection points allows a subdivision of the mesh, which may be used for integration, construction of shape
functions, etc. We point out that computing the intersection points is very demanding in terms of computational
cost, and it is a fundamental part of all codes using such an approach.

3. Model problem: Incompressible Stokes

Let Σ = ΣD ∪ ΣN where ΣD denotes the part of the external boundary on which we impose a Dirichlet boundary
condition and ΣN the part on which we impose a Neumann boundary condition, whose value is assumed to be
zero without loss of generality. On the other hand, we consider homogeneous Dirichlet boundary conditions on Γ
but non homogeneous Dirichlet boundary conditions can be applied as well. Neumann boundary conditions are not
considered here because they can be enforced “naturally” in the variational formulation, and as a consequence, they
are easier to tackle. The model problem we consider in this paper is given by the following standard weak form of the
incompressible Stokes equation:

Problem 1. Find (u, p) ∈ V(Ω) × Q(Ω) such that ∀(v, q) ∈ V0(Ω) × Q(Ω):

Ω

∇u : ∇v dΩ −


Ω

p div(v) dΩ =


Ω

f · v dΩ ,
Ω

q div(u) dΩ = 0,

(1)

where
V(Ω) := {v ∈ [H1(Ω)]2

; v|ΣD = uD and v|Γ = 0},

V0(Ω) := {v ∈ [H1(Ω)]2
; v|ΣD = 0 and v|Γ = 0},

Q(Ω) := L2(Ω).

Remark 1. The constraint u|Γ = 0 is strongly enforced since it is imposed in the trial and test spaces. On the con-
trary, the incompressibility constraint is enforced weakly in the formulation and the pressure p is the corresponding
Lagrange multiplier. We note, that since a weak imposition of a constraint with a Lagrange multiplier results in a sad-
dle point problem, we have to choose a stable pair of elements for the velocity and the pressure satisfying an inf–sup
condition (see, e.g., [13]). This issue is discussed further in Section 4. We note that in the case ΣN is empty then
Q(Ω) := L2(Ω)/R.

3.1. A fundamental problem of unfitted methods

In this section we present a classical unfitted method (see the example in [14]) which consists in using the trian-
gulation T̂ to build the finite element spaces and we point out its difficulties. We present the discretized problem with
classical Hood–Taylor P2/P1 finite elements (but the method may be generalized). The considered problem reads:
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(a) Two internal constraints are
satisfied since two “free” nodes are
associated with it.

(b) The problem is overconstrained
since only one “free” node is
associated with the two internal
constraints.

(c) This generic macro-element
shows that the internal constraints
cannot be imposed and thus
locking occurs.

Fig. 3. In this example we consider a single field problem. The elements are P1 and the physical domain is depicted in blue. It follows that the
diamonds are “free” nodes (i.e., their values have no physical relevance) while the dots are physical nodes. We want to illustrate the difficulty of
imposing the internal constraint u = 0 on the red squares. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Problem 2. Find (uh, ph) ∈ Vh
× Qh such that ∀(vh, qh) ∈ Vh

0 × Qh :

Ωh

∇uh : ∇vh dΩh −


Ωh

ph div(vh) dΩh =


Ωh

f · vh dΩh,
Ωh

qh div(uh) dΩh = 0,

(2)

where
Vh

:= {v ∈ C0(Ω̂); v|T ∈ [P2]
2, v

|Σ h
D

= uD and v|Γ h = 0, ∀T ∈ T̂ } ⊂ V(Ω̂),

Vh
0 := {v ∈ C0(Ω̂); v|T ∈ [P2]

2, v
|Σ h

D
= 0 and v|Γ h = 0, ∀T ∈ T̂ } ⊂ V0(Ω̂),

Qh
:= {q ∈ C0(Ω̂); q|T ∈ [P1], ∀T ∈ T̂ } ⊂ L2(Ω̂),

where T̂ is a triangulation of Ω̂ , Pk is the space of polynomials of degree k, and Σ h
D is the discrete external Dirichlet

boundary.

It is important to note that in Problem 2 the integration is performed on Ωh and not on Ω̂ (see Section 3.2.1 for
a subdivision strategy of Ω̂ to perform the quadrature). Indeed, as discussed in [15] one cannot hope to obtain an
optimal rate of convergence if the integration is performed on Ω̂ . This result is independent of how the constraint
u = 0 on Γ is imposed.

For the considered problem, it is not possible to obtain the optimal rate of convergence because the spaces Vh

and Vh
0 are not rich enough (see [14] for more details). We illustrate this issue in Fig. 3. Indeed, for a general set of

elements there are more constraints on the immersed boundary (i.e., at the intersection of the immersed boundary with
the background mesh element edges) than nodes of the intersected elements that do not belong to the physical domain
(named “free nodes”). As a consequence, the system is overconstrained and locking may occur. For example, in [16]
an algorithm is presented such that two degrees of freedom are uniquely associated with an interface constraint. But,
one of the drawbacks of the approach is that it weakens the imposition of the Dirichlet boundary constraint on the
immersed boundary.

We point out that since it is not possible to strongly impose the condition u = 0 on Γh in order to obtain the optimal
rate of convergence, weak imposition of the Dirichlet condition is often used. A weak imposition can be performed,
for instance, with a Lagrange multiplier (but checking the inf–sup condition for such a method is not an easy task,
see [16] and references therein) or the Nitsche method which requires additional user parameters. Weak imposition
of essential boundary conditions is still an active area of research (see for instance [17] for an example of the Nitsche
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(a) Non unicity of the quadrilateral subdivision. The pair of triangles
giving the smallest element ratios is selected (i.e., the pair on the left in
this example).

(b) The diameters of the
circumscribed and inscribed
circles are denoted h and d ,
respectively.

Fig. 4. Selection of the quadrilateral subdivision in subtriangles and description of the element ratio.

method for the Stokes problem or alternative approaches in [18] and [19]). The method we propose in the following
avoids the use of complex strategies for weakly imposing essential boundary conditions. It consists in building a finite
element basis that is interpolatory on the intersection points of the immersed boundary and the background mesh
edges in order to impose Dirichlet boundary conditions strongly.

3.2. A method by a locally anisotropic remeshing

In the following, we propose a method that considers a special local remeshing using a subdivision of elements
cut by the immersed boundary. The method differs from the classical one presented in Problem 2, which uses the
triangulation T̂ to build the finite elements. The proposed method consists in refining all elements cut by the immersed
boundary such that a locally fitting mesh may be built. In particular, we show that such a subdivision process may not
lead to a unique subdivision into triangles and we present a strategy to select the best subdivision.

3.2.1. Subdivision
For triangles cut by the immersed boundary we consider the two cases, depending on if the subelement belonging

to Ωh is: (a) a triangle, or (b) a quadrilateral.
In the present work we consider finite elements only on triangles and thus in case (b) we have to subdivide the

quadrilateral into two triangles. As depicted in Fig. 4(a), the subdivision into triangles of a quadrilateral is not unique,
and therefore we propose a strategy to choose the best subdivision. The selection method for the subdivision of the
quadrilateral into triangles is based on selecting the best element ratio pair, with the element ratio defined by

σ =
h

d
,

where h and d are the diameters of the circumscribed and inscribed circles, respectively (see Fig. 4(b)).

Remark 2. It is clear that the subdivision may imply anisotropic elements. In two famous independent papers,
([20,21]) the minimum angle condition for triangles is introduced. The condition requires that the smallest angle
of a triangle has to be bounded from below by a strictly positive real. The minimum angle condition is a sufficient (but
not necessary) condition to guarantee the convergence of the finite element method. In [22,23] the maximum angle
condition is introduced, which stipulates that the largest angle of a triangle has to be bounded above by a real strictly
lower than π . Again the condition is sufficient to guarantee the optimal convergence of the finite element method.
However, it has been noted in [24] that the maximum angle condition is not necessary and the finite element method
for 2D problems may converge optimally without a maximum angle condition satisfied. Moreover, since we consider
a saddle point problem, an inf–sup condition has to be satisfied as well, and finite element schemes that are stable on
well shaped elements may not be stable on anisotropic ones. We discuss further this issue in Section 4.

Accordingly, in the following sections, we consider a triangulation Tr built as follows. Given a shape regular
triangulation T̂ of Ω̂ (i.e., the background mesh), we denote by TΓ the triangulation of all elements that are crossed
by Γ . As previously explained it is possible to build a subtriangulation T ′

Γ |T on every T ∈ TΓ such that T ′

Γ fits Γ ,
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(a) Original mesh T̂ . (b) Refined mesh Tr .

Fig. 5. Subdivision operation of T̂ into Tr .

with respect to the linear reconstruction of Γ . Then, we consider the triangulation Tr made of all elements in T̂ that are
entirely in Ωh and all elements of T ′

Γ that are in Ωh . The operation is illustrated in Fig. 5 for the case of an immersed
disk.

3.2.2. Application to the incompressible Stokes problem
In the following we give an example of the discretized Stokes problem using the locally anisotropic remeshing

with the P2/P1 finite element scheme:

Problem 3. Find (uh, ph) ∈ Wh
× Rh such that ∀(vh, qh) ∈ Wh

0 × Rh :

Ωh

∇uh : ∇vh dΩh −


Ωh

ph div(vh) dΩh =


Ωh

f · vh dΩh,
Ωh

qh div(uh) dΩh = 0,

(3)

where
Wh

:= {v ∈ C0(Ωh); v|T ∈ [P2]
2, v

|Σ h
D

= uD and v|Γ h = 0, ∀T ∈ Tr } ⊂ V(Ωh),

Wh
0 := {v ∈ C0(Ωh); v|T ∈ [P2]

2, v
|Σ h

D
= 0 and v|Γ h = 0, ∀T ∈ Tr } ⊂ V0(Ωh),

Rh
:= {q ∈ C0(Ωh); q|T ∈ [P1], ∀T ∈ Tr } ⊂ L2(Ωh).

As we shall see later, such a scheme might not be a good choice for our method due to the instability of the
Hood–Taylor element on anisotropic meshes. Therefore, we also consider the so-called P+

2 /P1 element, whose finite
element space, for our application, is defined by

Wh
:= {v ∈ C0(Ωh); v|T ∈ [P2 ⊕ B3]

2, v
|Σ h

D
= uD and v|Γ h = 0, ∀T ∈ Tr }, (4)

Wh
0 := {v ∈ C0(Ωh); v|T ∈ [P2 ⊕ B3]

2, v
|Σ h

D
= 0 and v|Γ h = 0, ∀T ∈ Tr }, (5)

where B3 denotes the space of cubic bubble functions (see, e.g., [13] for more details).

Remark 3. As presented in Eq. (4) the bubbles are used on all elements of the mesh Tr . In practice, we add the bubble
only on subtriangles.

In Fig. 6 we compare the methods presented with Problem 2 and Problem 3. We note that the present method has more
degrees of freedom than the original described method. In [4], which is based on a stabilized P1/P0 scheme, added
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P2/P1

P+
2/P1

Fig. 6. Comparison between original P2/P1 (Problem 2) and locally refined P+

2 /P1 (Problem 3). The black dots are common degrees of freedom
in both approaches, white dots are eliminated degrees of freedom (i.e., the nodes that are present in the original method which are not present in the
locally refined method), red squares are added degrees of freedom, and triangles are bubble degrees of freedom. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

discontinuous pressure degrees of freedom are eliminated by static condensation, while the new velocity degrees of
freedom are actually Dirichlet boundary nodes.

4. The inf–sup condition on anisotropic elements

Given the approximations uh =
n

i=1 Ni ûi and ph =
m

i=1 Mi p̂i , where Ni and Mi are the finite element bases
for Wh and Rh (with n and m the number of degrees of freedom for the velocity and pressure fields, respectively) the
discrete incompressible Stokes problem in matrix form reads

A BT

B 0

 
û
p̂


=


f̂
ĝ


, (6)

where
A|i j =


Ωh

∇Ni : ∇N j dΩh ∀(i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , n},

B|i j = −


Ωh

Mi div(N j ) dΩh ∀(i, j) ∈ {1, 2, . . . , m} × {1, 2, . . . , n}.

Let n + 1, . . . , n + nD be the eliminated degrees of freedom lying on ΣD , the right hand side readsf̂|i =


Ωh

fh · Ni dΩh − (ĀûD)|i ∀i ∈ {1, 2, . . . , n},

ĝ|i = −(B̄ûD)|i ∀i ∈ {1, 2, . . . , m},
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where
Ā|i j =


Ωh

∇Ni : ∇N j dΩh ∀(i, j) ∈ {1, 2, . . . , n} × {n + 1, n + 2, . . . , n + nD},

B̄|i j = −


Ωh

Mi div(N j ) dΩh ∀(i, j) ∈ {1, 2, . . . , m} × {n + 1, n + 2, . . . , n + nD},

and ûD are the nodal boundary values of uD .
In the following we also use the pressure mass matrix defined by

M|i j =


Ωh

Mi M j dΩh ∀(i, j) ∈ {1, 2, . . . , m} × {1, 2, . . . , m}. (7)

The euclidean norm is given by ∥v̂∥
2
0 = v̂T v̂ with v̂ ∈ Rn . We also consider the norm defined by the stiffness

matrix A, that is ∥v̂∥
2
A = v̂T AT v̂ and its associated dual norm given by ∥v̂∥

2
A′ = v̂T A−T v̂. Let q̂ ∈ Rm , then the norm

used for the pressure field is given by ∥q̂∥
2
M = q̂T MT q̂ and its associated dual norm by ∥q̂∥

2
M ′ = q̂T M−T q̂, where

M is defined in Eq. (7).
It is well known that a key component for Eq. (6) to have a unique solution is the satisfaction of the following

condition (see, e.g., [13]):

Inf–sup: ∃βh > 0 (independent of h) such that

max
v̂∈Rn\{0}

v̂T BT q̂
|| v̂ | |A

≥ βh || q̂ | |M ∀q̂ ∈ Rm . (8)

Being ûI and p̂I the vectors of analytical solutions at the nodes for the velocity and the pressure, respectively, an
error estimate is given by (see, e.g., [13]):

∥ûI
− û∥A ≤ C


∥f̂∥A′ + β−1

h ∥ĝ∥M ′


, (9)

∥p̂I
− p̂∥M ≤ C


β−1

h ∥f̂∥A′ + β−2
h ∥ĝ∥M ′


, (10)

where C denotes a general constant independent of h and βh .
We clearly can see from Eqs. (9) and (10) that if βh → 0 as σ → ∞ then the error for the pressure may not be

bounded and it depends on 1/β2
h , while the velocity field may also not be bounded but it depends only on 1/βh .

We equip the space V and Q (see Eqs. (1)) with the norms
∥v∥

2
V =


Ω

∇v : ∇vdΩ ,

∥q∥
2
Q =


Ω

q2dΩ ,

where v ∈ V(Ω) and q ∈ Q(Ω). Given that uI
=


i ûI

i Ni and q I
=


i q̂ I

i Mi are the interpolant of the analytical
solution using the finite element basis, it can be shown that (see [25])

∥ûI
− û∥A ≤ C


β−1

h ∥uI
− uh∥V + ∥p I

− ph∥Q


, (11)

∥p̂I
− p̂∥M ≤ C


β−2

h ∥uI
− uh∥V + β−1

h ∥p I
− ph∥Q


. (12)

To conclude, it is very important that for the chosen finite element βh remains bounded from below as σ increases.
In other words, we would like βh to be independent of σ .

4.1. Numerical methods to measure the inf–sup condition (the Smallest Generalized Eigenvalue test)

In order to test if our finite element scheme of choice remains stable as σ increases, we compute numerically the
inf–sup constant.
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It can be proven that (see, e.g., [26]) the inf–sup constant βh is given by the square root of the lowest positive
eigenvalue of the following generalized eigensystem:

BA−1BT q = λMq, (13)

where BA−1BT is called the Schur complement.

Remark 4. In the case of an enclosed flow, the first eigenvalue is zero, since it represents the constant pressure mode.
In such a case βh is estimated by the square root of the second lowest eigenvalue. On the contrary, if the problem
admits a Neumann boundary condition then all eigenvalues are strictly positive.

5. Numerical tests

In this section we propose two kinds of numerical experiments, solved both with the P2/P1 and P+

2 /P1 schemes
described above. We recall that, when considering the P+

2 /P1 scheme, the bubbles are added only on the subtriangles.
On all other elements the P2/P1 scheme is used.

The first experiment is a test in which the “inflow” condition is applied on the immersed boundary. We then study
the solution of the problem on very simple meshes as the position of the immersed boundary varies. We consider
three cases for the SGE-test: a constant flow, a Poiseuille flow, and a colliding flow. Each SGE-test has an analytical
solution, which is presented in subsequent sections.

The second set of experiments explores three applications. The first problem is a Stokes flow around a disk, with
the disk boundary being the immersed boundary. The second problem is a flow against an “obstacle” that defines a
part of the boundary of the fluid domain. The third problem is a “surface” flow problem, where the surface is described
by an immersed boundary.

We also provide and discuss for some representative tests the condition number, denoted by κ , of Schur comple-
ment, see Eq. (13).

Remark 5. We point out that in all presented tests integration was performed exactly. However, further numerical
experiments showed that the use for P+

2 /P1 of the integration rule exact on P2/P1 (clearly leading to an under-
integration of the terms involving bubble shape functions) leads to practically identical results. This is in agreement
with what is expected from a theoretical point of view. It thus follows that P+

2 /P1 at a cost similar to P2/P1.

5.1. Smallest Generalized Eigenvalue test problems

The Smallest Generalized Eigenvalue test (SGE-test) is presented in Fig. 7. The background mesh is defined on
[−1, 1] × [−1, 1] and the mesh used for the SGE-test is shown in Fig. 8. The problem consists in varying the position
of an “immersed” boundary (depicted in red in Fig. 7) from −1 to 0, representing two tests:

• Test 1: a → 0 with inflow positions described in Table 1(a) (examples are given in Fig. 8(a)),
• Test 2: b → 0 with inflow positions described in Table 1(b) (examples are given in Fig. 8(b)).

The physical domain of the problem is on the right of the immersed boundary. We necessarily impose a Dirichlet
boundary condition on the immersed boundary, which are different for each cases: the constant flow, the Poiseuille
flow, and the colliding flow.

We note that in both tests the element ratio σ scales linearly. In the following, we report the numerical results
relative to the different flow conditions considered.

For the first two SGE-test cases, we evaluate the results in terms of the discrete L2-norm for both the velocity and
the pressure fields. More precisely given ûI

i = u(xi ) and p̂ I
i = p(xi ) the analytical solution of the velocity and the

pressure, respectively, at the node xi , the discrete L2 velocity error is defined by

ev =


(ûI − û)T (ûI − û) = ∥ûI

− û∥0,

and the discrete L2 pressure error is defined by

ep =


(p̂I − p̂)T (p̂I − p̂) = ∥p̂I

− p̂∥0.
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Fig. 7. Immersed boundary (dotted red), physical domain (in blue) geometric data for an SGE-test problem. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Geometric considerations for both tests. The highest element ratio
is denoted by σ .

(a) Test 1: a → 0.

a 1e−1 1e−2 1e−3 1e−4 1e−5
σ 9.6 99.6 1.0e3 1.0e4 1.0e5

(b) Test 2: b → 0.

b 1e−1 1e−2 1e−3 1e−4 1e−5
σ 13.1 140 1.4e3 1.4e4 1.4e5

5.1.1. Constant flow

The first case consists in imposing a constant inflow. The boundary conditions are ux = 1 and u y = 0 on x = a −1
for Test 1 and on x = −b for Test 2, respectively. On x = 1 and y ± 1 we apply the so-called “do-nothing” boundary
condition, that is ∇u · n − pn = 0, where n is the outward normal.

The analytical solution for the constant flow problem is given byux (x, y) = 1,

u y(x, y) = 0,

p(x, y) = 0.

For Tests 1 and 2, (see results in Tables 2 and 3, respectively) it is clear that both elements are stable as the numerical
inf–sup constant remains bounded from below. Moreover, as already pointed out, the element ratio increases linearly
for both tests and thus the condition that the element ratio remains bounded from above is not a necessary condition
for both finite element schemes.

The condition number of the Schur complement (see Eq. (13)) is denoted by κ . We can observe in Table 2 that for
Test 1 κ scales as a−1, while we see from Table 3 that for Test 2 it scales as b−2. We point out that for Test 1 the
smallest area of the triangles scales as a while for Test 2 it scales as b2, leading to the different conditioning rates of
the Schur complement between Test 1 and Test 2. Bounds for the conditioning of the Schur complement are provided,
e.g., in [13] or in Proposition 4.47 from [27] as function of the inf–sup constant and the condition number of the
pressure mass matrix. A bound for the mass matrix with anisotropic elements is provided, e.g., in [28]. The results are
consistent with the theory.
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(a) Test 1: Deformation of the refined elements as a tends to 0.

(b) Test 2: Deformation of the refined elements as b tends to 0.

Fig. 8. Mesh under consideration for the SGE-tests with different immersed boundary positions. The background domain is defined on
[−1, 1] × [−1, 1]. Smallest element ratios for the considered values in the two tests are depicted in Table 1.

Table 2
Constant flow Test 1: a → 0.

(a) P2/P1

a 1e−1 1e−2 1e−3 1e−4 1e−5
βh 0.505 0.500 0.500 0.500 0.500
κ 4.93e+02 5.01e+03 5.07e+04 5.02e+05 5.02e+06
ev 7.17e−15 1.41e−14 4.99e−13 1.11e−12 1.48e−12
ep 1.50e−14 8.42e−14 3.43e−12 7.71e−12 1.15e−11

(b) P+

2 /P1

a 1e−1 1e−2 1e−3 1e−4 1e−5
βh 0.667 0.636 0.633 0.632 0.632
κ 2.91e+02 3.11e+03 3.14e+04 3.14e+05 3.14e+06
ev 1.01e−14 8.38e−15 1.11e−13 3.27e−12 3.55e−11
ep 2.34e−14 2.76e−14 7.66e−13 2.00e−11 2.30e−10

5.1.2. Poiseuille flow

The second case consists in a viscous flow between two infinite plates positioned respectively on y ± 1. The
boundary conditions are ux = (1 − y2) and u y = 0 on x = a − 1 for Test 1 and x = −b for Test 2. On y = ±1
the so-called “no-slip” boundary condition is applied, that is u = 0. On x = 1 the do-nothing boundary condition is
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Table 3
Constant flow Test 2: b → 0.

(a) P2/P1

b 1e−1 1e−2 1e−3 1e−4 1e−5
βh 0.548 0.509 0.501 0.500 0.500
κ 2.26e+03 2.65e+05 2.76e+07 2.76e+09 2.76e+11
ev 1.79e−15 1.68e−15 1.55e−15 2.09e−15 1.73e−15
ep 7.77e−14 2.36e−13 2.99e−12 8.47e−11 3.87e−10

(b) P+

2 /P1

b 1e−1 1e−2 1e−3 1e−4 1e−5
βh 0.686 0.657 0.640 0.638 0.638
κ 1.23e+03 1.42e+05 1.46e+07 1.46e+09 1.47e+11
ev 2.09e−15 2.49e−15 1.82e−15 2.72e−15 3.17e−15
ep 2.44e−14 7.71e−13 5.76e−12 9.46e−11 1.35e−09

Table 4
Poiseuille flow Test 1: a → 0.

(a) P2/P1

a 1e−1 1e−2 1e−3 1e−4 1e−5
βh 0.360 0.354 0.354 0.354 0.354
κ 2.24e+02 1.70e+03 1.65e+04 1.64e+05 1.64e+06
ev 6.64e−16 2.66e−15 1.03e−13 2.20e−13 4.79e−12
ev 8.09e−15 3.49e−14 1.63e−12 3.46e−12 7.56e−11

(b) P+

2 /P1

a 1e−1 1e−2 1e−3 1e−4 1e−5
βh 0.405 0.393 0.392 0.392 0.392
κ 1.28e+02 1.06e+03 1.03e+04 1.03e+05 1.03e+06
ev 1.12e−15 4.46e−15 2.77e−14 1.77e−12 6.08e−12
ev 1.69e−14 4.29e−14 2.23e−13 1.46e−11 5.03e−11

applied. The analytical solution for the Poiseuille flow problem is given byux (x, y) = (1 − y2),

u y(x, y) = 0,

p(x, y) = 2 − 2x .

(14)

As for the constant flow, also in this case, both finite element schemes are stable for Test 1 (see Table 4).
However, for Test 2, the P2/P1 finite element is not stable anymore (see Table 5(a)), as the inf–sup constant

decreases sublinearly (with a rate of O(b1/2)) as b tends to 0. We remark that in case one uses a geometric tolerance
as employed in [8] or with the XFEM, this result points out the direct dependence of the inf–sup constant on such a
geometrical tolerance. The P+

2 /P1 scheme is instead stable. The main difference with the constant flow SGE-test is
the presence of Dirichlet boundary conditions on y = ±1. Further tests showed that the instability appears from the
upper left corner of the domain, where a small triangle, while well shaped, has an area that decreases as O(b2). We
point out that, to the best of the authors’ knowledge, a proof of stability of P+

2 /P1 for anisotropic meshes has not been
published.

We note that the solution for the constant flow and the Poiseuille flow is contained in the finite element spaces.
Therefore, even if the numerical inf–sup constant tends to zero, the solution remains close to zero (see error estimates
in Section 4).

Regarding the conditioning of the Schur complement we can observe in Table 5(a), i.e., in the case P2/P1 is inf–sup
unstable, that the condition number worsens since it does not scale as b−2 but as b−3. This result is consistent with
the theory.
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Table 5
Poiseuille flow Test 2: b → 0.

(a) P2/P1

b 1e−1 1e−2 1e−3 1e−4 1e−5
βh 0.198 0.066 0.021 0.007 0.002
κ 8.51e+03 7.40e+06 7.27e+09 7.26e+12 7.26e+15
ev 1.17e−15 8.58e−16 8.49e−16 8.64e−16 6.59e−16
ev 1.46e−13 9.11e−13 4.39e−10 2.12e−08 2.61e−06

(b) P+

2 /P1

b 1e−1 1e−2 1e−3 1e−4 1e−5
βh 0.435 0.380 0.370 0.369 0.368
κ 1.43e+03 2.00e+05 2.13e+07 2.15e+09 2.15e+11
ev 9.71e−16 9.51e−16 1.01e−15 1.35e−15 7.23e−16
ev 1.64e−14 2.80e−13 4.89e−12 6.00e−11 3.99e−10

Table 6
Colliding flow Test 1: a → 0.

(a) P2/P1

a 1e−1 1e−2 1e−3 1e−4 1e−5
βh 0.369 0.367 0.366 0.366 0.367
rev 3.90e−02 3.86e−02 3.86e−02 3.86e−02 3.86e−02
rep 7.82e−01 7.74e−01 7.75e−01 7.75e−01 7.75e−01

(b) P+

2 /P1

a 1e−1 1e−2 1e−3 1e−4 1e−5
βh 0.376 0.376 0.376 0.376 0.376
rev 4.05e−02 3.84e−02 3.83e−02 3.82e−02 3.82e−02
rep 7.58e−01 7.77e−01 7.80e−01 7.81e−01 7.81e−01

5.1.3. Colliding flow
The third case is a colliding flow problem. In this case, we impose Dirichlet boundary condition everywhere,

including the immersed boundary. They are given by the following, which is the analytical solution of the problem.
ux (x, y) = 20xy3,

u y(x, y) = 5x4
− 5y4,

p(x, y) = 60x2 y − 20y3
+ constant.

Since it is an enclosed flow problem, the following constraint on the pressure is added:
Ω

p dΩ = 0.

For SGE-test case 3, we use the relative error norm, that is

ev,r = ∥ûI
− û∥0/∥ûI

∥0,

and

ep,r = ∥p̂I
− p̂∥0/∥p̂I

∥0,

for the velocity and the pressure, respectively.
Again for Test 1 (see Table 6) both finite element schemes are stable and for Test 2 (see Table 7) the P2/P1 scheme

is not stable, on the contrary to the P+

2 /P1 scheme. In this case, the analytical solution is not contained anymore in
the finite element space and we can observe that, as the numerical inf–sup constant βh tends to 0 as b → 0 with a rate
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Table 7
Colliding flow Test 2: b → 0.

(a) P2/P1

b 1e−1 1e−2 1e−3 1e−4 1e−5
βh 0.197 0.066 0.021 0.007 0.002
rev 5.23e−02 6.23e−02 6.56e−02 6.60e−02 6.60e−02
rep 3.66e+00 5.03e+01 5.33e+02 5.37e+03 5.37e+04

(b) P+

2 /P1

b 1e−1 1e−2 1e−3 1e−4 1e−5
βh 0.360 0.335 0.328 0.327 0.327
rev 5.22e−02 6.22e−02 6.56e−02 6.60e−02 6.60e−02
rep 1.14 2.17 2.45 2.48 2.49

(a) Flow around a disk. (b) Flow against an obstacle. (c) Surface flow.

Fig. 9. Three flow problems. The striped zone is excluded from the fluid domain.

of O(b1/2), the relative pressure error explodes linearly, which is in accordance with the error estimates in Eq. (10).
On the contrary, the velocity error remains bounded, which is not expected from the error estimate in Eq. (9). More
precisely, we would expect the velocity error to increase with an order of O(b1/2). However, a good velocity field
with a bad pressure field is often seen, for example with the Q1/P0 scheme.

5.2. Applications

In this section, we present various possible applications as described in Fig. 9. For the first experiment (see
Fig. 9(a)), we compare a fitted and an unfitted solution. We also investigate some extreme cases, with very anisotropic
elements that can occur during simulations. We show that the P2/P1 is actually stable for that problem. Nevertheless,
we show that the solution using the P+

2 /P1 is smoother. Then, we present two additional applications (described
in Fig. 9(b) and (c)) for which the P2/P1 fails, while P+

2 /P1 is stable. For both failing cases, the culprit is a very
small triangle in corners for which Dirichlet boundary conditions are applied on both boundary edges, as found in the
SGE-tests. For all tests we do not present the results for the velocity field but the solution is in accordance with those
obtained with the SGE-tests, i.e., the accuracy of the velocity field remains very good even when highly anisotropic
elements are present.

5.2.1. Flow around a disk
We here consider a problem consisting of a flow around a cylinder between two plates. By symmetry, the problem

reduces to a 2D flow around a disk, whose boundary is defined as an immersed boundary (see Fig. 9(a)). The fluid
domain is defined on [−1, 1] × [−1, 1]. The inflow condition is a Poiseuille inflow and is given by Equation (14),
no-slip boundary conditions are prescribed on y = ±1 and a do-nothing boundary condition is applied on x = 1. The
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(a) Fitted mesh with 2884 elements. (b) Refined mesh with 2902 elements.

(c) Fitted mesh pressure. (d) Refined mesh pressure.

Fig. 10. Solution of the incompressible Stokes problem around a disk with the P2/P1 and a Poiseuille inflow. The radius of the disk is 0.3.

disk has a radius of 0.3 and a no-slip boundary condition is applied on its surface. A comparison between a standard
finite element solution and the proposed method is presented in Fig. 10 with the P2/P1 scheme for both methods. We
can observe that the solution is similar to a standard finite element solution, and thus the presented method provides
an accurate solution of the problem.

In the following we discuss in more details possible effects of anisotropic elements with the P2/P1 and the P+

2 /P1
elements. We present two cases with highly anisotropic elements. The first one with a background mesh of 11 × 11
quadrilaterals and the second with a background mesh of 23 × 23 quadrilaterals, then divided into triangles with their
diagonals such that x − y = constant. The results are presented in Fig. 11. We observe that the inf–sup constant
is identical (βh ≈ 0.18) for both finite element schemes on meshes with anisotropic elements, and thus indicating
stability of both schemes. However, we can see that the P+

2 /P1 solution is smoother than the pressure solution with
the P2/P1 element. Also, the oscillations appear to vanish as the mesh size is reduced. We point out that, in this
problem, none of the anisotropic elements are recessed in a corner with Dirichlet boundary conditions applied on both
corner sides. This situation occurs in the constant SGE-test problem for which both finite element schemes are stable
for all tests. Therefore, it is possible that for many practical applications the P2/P1 element is actually stable.

5.2.2. Flow against an obstacle
In this problem (depicted in Fig. 9(b)) we consider a flow problem against an “obstacle”. In this particular case the

immersed boundary is not closed and defines a part of the outer boundary of the fluid domain. The background fluid
domain is defined on a [−1, 1] × [−1, 1] discretized by a mesh of 43 × 43 quadrilaterals subdivided into triangles
with their diagonals such that x + y = constant and the immersed boundary as described on Fig. 9(b). For the present
test we set a = −0.333 and b = 0.3333.
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(a) Locally refined with a background
mesh 11 × 11.

(b) Locally refined with a background
mesh 23 × 23.

(c) Pressure field P2/P1;
βh ≈ 0.183.

(d) Pressure field P2/P1;
βh ≈ 0.182.

(e) Pressure field P+

2 /P1;
βh ≈ 0.183.

(f) Pressure field P+

2 /P1;
βh ≈ 0.182.

Fig. 11. Effects of anisotropic elements for two different meshes (11 × 11) and (23 × 23). The immersed boundary has a radius of 0.3 and it is
discretized with 89 linear elements.

The boundary conditions are applied as follows. On x = −1 the Poiseuille inflow is applied (see Eq. (14)). On
y = 1, x = 1, and Γ , no-slip boundary conditions are applied. On y = −1 we impose the do-nothing boundary
condition.

Computations show (see Fig. 12) that the numerical inf–sup constant is smaller for the P2/P1 element with
βh ≈ 0.054 than for the P+

2 /P1 with βh ≈ 0.265. The numerical inf–sup constant for the P+

2 /P1 is in the range of
the stable cases presented in the SGE-tests (see Section 5.1), while for the P2/P1 scheme it is an order of magnitude
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(a) Mesh of 43 × 43 on
[−1, 1] × [−1, 1].

(b) Zoom.

(c) Pressure solution for P2/P1;
βh ≈ 0.054.

(d) Zoom on locking
effect for the P2/P1
element.

(e) Pressure solution for P+

2 /P1;
βh ≈ 0.265.

(f) Zoom where no
locking effects are visible
with the P+

2 /P1 element.

Fig. 12. Presentation of the “obstacle” problem and results. In particular, locking effects are present for the P2/P1 element. We note that it occurs
in a small triangle in the corner (see zoom 12(d)) with Dirichlet boundary condition, as in the Poiseuille SGE-test.

smaller than stable values. We can observe the effect of locking in Fig. 12(d) and absence of locking for the P+

2 /P1
element in Fig. 12(f). The culprit is due to a small triangle recessed in the upper right corner (see Fig. 12(a) and
(b)). The locking effect is observed only on a triangle in a small corner with Dirichlet boundary conditions on both
edges, thus reflecting the results obtained in the Poiseuille and colliding SGE-tests. In that situation the P2/P1 element
is unstable for the Poiseuille and colliding Test 2. However, the locking effects are quite small as it can be seen by
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(a) Background mesh with subdivided
elements defined by Γ .

(b) Zoom: a small triangle in the corner
with Dirichlet boundary as in the
Poiseuille SGE-test.

(c) Pressure solution for P2/P1; βh ≈ 0.064. (d) Zoom on locking effect for the P2/P1 element.

(e) Pressure solution for P+

2 /P1; βh ≈ 0.208. (f) Zoom where no locking effects are visible with
the P+

2 /P1 element.

Fig. 13. Presentation of the mesh and results for the “free surface” flow problem. Locking effects are visible (wrong value (−80) of the pressure
on the upper left corner triangle) for the P2/P1 scheme and absent for the P+

2 /P1 scheme.

comparing Fig. 12(c) with Fig. 12(e). We point out that the peak of pressure for both elements is due to the irregularity
of the solution resulting from the L-shaped immersed boundary.

5.2.3. A “surface” flow problem
In this problem (represented in Fig. 9(c)) we consider a “surface” flow, where the surface is described as an im-

mersed boundary. The background mesh is defined on a [−1, 1] × [−1, 1] discretized by a mesh of 43 × 43 quadri-
laterals subdivided in triangles with their diagonals such that x + y = constant. The surface Γ is represented by
y = 0.03 − (1/11) sin(4πx) and it is discretized by 1001 segments. On x = −1 and y = [−1, 0.03] we impose
u = {(0.03 − x)(1 + x), 0}

T . On y = −1 and Γ a no-slip boundary condition and on x = 1 and y = [−1, 0.03] a
do-nothing boundary conditions are applied.

For this problem similar results as with the obstacle problem are obtained, that is, a much lower numerical inf–sup
constant (βh ≈ 0.064) is obtained for the P2/P1 element than for the P+

2 /P1 element (βh ≈ 0.208). The inf–sup
values suggest a possible locking effect with the P2/P1 element. Indeed, looking at Fig. 13(c) a very low pressure
value is present (around −80), while such a low pressure is absent in the pressure field with the P+

2 /P1 element (see
Fig. 13(e)). Looking at the zooms (Fig. 13(d) and (f)), we can observe that the very low pressure value for the P2/P1
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element arises on the upper (small) triangle (see Fig. 13(b)), for which, on two of its edges we impose a Dirichlet
boundary condition. On the contrary, for the P+

2 /P1 we obtain a satisfactory value.

6. Conclusions

In this paper we presented an immersed grid method, in which the immersed boundary was reconstructed linearly
(but the linear reconstruction of the interface is not a restriction of the method). The reconstruction was performed
locally (i.e., at the element level) which requires the computation of intersection points with the background mesh.
The previously described steps are common to most eXtended Finite Element Method (XFEM) implementations. The
presented method differs from XFEM since each element intersected by the immersed boundary were subdivided
into subelements on which we reconstructed a finite element basis, as in a refined approach. Advantages are twofold.
Firstly, we obtain an accurate representation of the immersed boundary. Secondly, it is very easy to impose Dirichlet
boundary condition on the immersed boundary. However, the subdivision may induce highly anisotropic elements.
In this paper, we focused on the case of the P2/P1 element and pointed out its defects; in particular, we show that
for our application the P2/P1 scheme may not be inf–sup stable when elements are highly anisotropic. Numerical
investigations showed that locking effects may occur on anisotropic elements in corners for which Dirichlet boundary
conditions are imposed on both edges. Therefore, the stability of the element may be guaranteed for a large class of
problems, but not for all as showed. Nevertheless, we presented a solution which consists in enriching the velocity
space with a bubble (named herein P+

2 /P1). It was shown numerically that such a finite element scheme is inf–sup
stable in all presented tests.

Two relevant issues have not been addressed by this work, i.e., the influence of the conditioning of the various
matrices with anisotropic elements and the extension of the refinement strategy to 3D. Both problems will be the
subject of future works. In particular, the conditioning issue may have an important impact in situations such as
transient problems (see, e.g., Remark 4.48(ii) in [27]). About the extension to 3D, we have to note that the subdivision
of tetrahedra leads to sliver tetrahedra and results on 2D anisotropic meshes cannot be, in general, straightforwardly
extended to 3D. For instance, in [29] it is discussed an analogue of the maximal angle condition for triangles to linear
tetrahedra. Inf–sup stability in such cases remains a difficult problem. Nevertheless, our envisioned solution is to use
a recently developed numerical method named the Virtual Element Method (VEM) (see, e.g., [30,31]). This approach
has two important properties that could be employed in the framework discussed in this article: it allows elements
to be arbitrary polytopes (and thus we can avoid the subdivision process) and it is robust when elements are highly
anisotropic.
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Jönköping University, 2011.
[18] J. Baiges, R. Codina, F. Henke, S. Shahmiri, W. Wall, A symmetric method for weakly imposing dirichlet boundary conditions in embedded

finite element meshes, Int. J. Numer. Meth. Engng (2012).
[19] S. Court, M. Fournier, A. Lozinski, A fictitious domain approach for the stokes problem based on the extended finite element method, Int. J.

Numer. Meth. Fluids 74 (2014) 73–99.
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[22] I. Babuška, A. Aziz, On the angle condition in the finite element method, SIAM J. Numer. Anal. 13 (2) (1976) 214–226.
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