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We extend the mimetic finite difference (MFD) method to the numerical treatment of mag-
netostatic fields problems in mixed div–curl form for the divergence-free magnetic vector
potential. To accomplish this task, we introduce three sets of degrees of freedom that are
attached to the vertices, the edges, and the faces of the mesh, and two discrete operators
mimicking the curl and the gradient operator of the differential setting. Then, we present
the construction of two suitable quadrature rules for the numerical discretization of the
domain integrals of the div–curl variational formulation of the magnetostatic equations.
This construction is based on an algebraic consistency condition that generalizes the usual
construction of the inner products of the MFD method. We also discuss the linear algebraic
form of the resulting MFD scheme, its practical implementation, and discuss existence and
uniqueness of the numerical solution by generalizing the concept of logically rectangular or
cubic meshes by Hyman and Shashkov to the case of unstructured polyhedral meshes. The
accuracy of the method is illustrated by solving numerically a set of academic problems
and a realistic engineering problem.

Published by Elsevier Inc.
1. Introduction

Mimetic discretizations for the numerical resolution of Partial Differential Equations (PDE) have been proposed to the
research community since the beginning of the eighties. These methods were originally aimed at preserving the fundamental
properties of physical and mathematical models such as conservation laws, solution symmetries and positivity, as well as
some fundamental identities and theorems of vector and tensor calculus, e.g., Gauss–Green’s identities. Among major advan-
tages that mimetic formulations offer is the possibility of using polyhedral meshes, which may be more efficient in partition-
ing the computational domain. In fact, a complex three-dimensional (3D) geometry is easily modeled with mixed types of
mesh elements such as pentahedrons, prisms and tetrahedrons that can be obtained by collapsing some of the elements
of a structured hexahedral or prismatic mesh to conform and adapt it to the physical domain. Polyhedral meshes appear
often in numerical applications using Lagrangian meshes, moving mesh methods, and mesh reconnection methods, where
elements may develop non-convex shapes and have non-planar faces due to the specifics of the flow dynamics and adaptive
mesh refinement. The use of polyhedral meshes relaxes the requirement of maintaining the mesh conformity, which may
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result in an excessive refinement, and of treating possible hanging nodes in some special way. In fact, locally refined meshes
and non-matching meshes can be treated as conformal polyhedral meshes with degenerate elements, i.e., elements with a
zero angle between adjacent edges or faces.

These issues motivate the development of discretization methods in variational form like finite elements (FE) suited to
general polygonal and polyhedral meshes. Various approaches to extend FE methods to non-traditional elements (pyramids,
polyhedrons, etc.) have been developed over the last decade, see, e.g., [25,33,35,46,47]). A straightforward approach is the
construction of a set of basis functions for a general polygonal element. However, this approach may be difficult to be pur-
sued as it requires an extensive geometrical analysis. For instance, in [33] an auxiliary simplicial partition is used in each
polygonal element to simplify the construction of the FE basis functions.

The mimetic finite difference (MFD) method presented, analyzed and tested in [44,31,12–14,10] combines the analytical
power of FE methods with the flexibility provided by polygonal and polyhedral meshes. The MFD method uses a suitable
discrete version of the Gauss–Green relations, i.e., a discrete integration by parts formula, to build the stiffness and mass
matrices for the scheme’s unknowns. Since no explicit representation of the approximate solution through basis functions
is required inside mesh elements, practical implementation of the MFD method is relatively simple for polygonal and poly-
hedral meshes. The MFD method has been successfully employed in the numerical solution of linear diffusion problems
[10,13,29], convection–diffusion equations [17], electromagnetic problems [29], linear elasticity equation [3] and for mod-
eling fluid flows [1,15,36]. The original MFD method is a low-order method, but miscellaneous approaches were developed
towards higher-order methods; cf. [43,6,26,4]. We also mention the development of a posteriori estimators for diffusion
problems [2,5] and the post-processing methodology analyzed and tested in [16].

Other successful approaches for elliptic problems on unstructured polygonal and polyhedral meshes that are related to the
mimetic methodology are in the large family of finite volume techniques. For example, the Discrete Duality Finite Volume
(DDFV) formulation [27,19,20] uses definitions of discrete operators on staggered meshes that are connected by duality rela-
tions. We also mention the gradient type scheme of [24] and the mixed-finite volume scheme proposed in [22] The connection
between these methods and the MFD method for diffusion problem in mixed form is investigated in [23].

In this work, we propose and investigate how to extend the MFD method to the numerical treatment of magnetostatic
field problems. To this purpose, Maxwell’s equations for the steady magnetic field are reformulated in the div–curl mixed
form through the introduction of the magnetic vector potential u satisfying the Coulomb gauge, i.e., the solenoidal condition
divðuÞ ¼ 0 [34, Chapter IV]. As pointed out in [9], the mimetic discretizations are intimately connected to the geometric
structure of Maxwell’s equations. Several other papers in the literature investigate this concept. It is worth mentioning
the pioneering work on mimetic discretizations that was carried out in [29–32] in the framework of logically rectangular
and logically cubic meshes. In the finite element context, the seminal paper is surely that on Whitney forms [8]. As an exten-
sive overview of the results presented in the literature is beyond the scope of the present work, we refer the interested read-
er to [38] for a detailed treatment of such topics. A significant contribution to the numerical discretizations based on the
mimetic approach and the geometric structure of differential forms is found in [9]. In this work, the mimetic degrees of free-
dom are a discretization of co-chains, and inner products are derived from the introduction of a lifting operator into a discrete
consistency condition that yields a numerical integration by parts formula. The papers [7,37] are significant contributions to
the literature based on algebraic topology concepts towards a unified formulation of finite element, finite difference and
finite volume methods. It is also worth mentioning the seminal paper [49], which is a central-difference scheme in space
and time originally devised for time-dependent Maxwell equations, and the covolume methods developed in [40–42] for
div–curl systems. A proof of the second-order convergence is given that does not rely on connections to variational formu-
lations. These covolume methods require two orthogonal meshes to approximate the electric and magnetic fields. To this
purpose, the dual Delaunay–Voronoi diagram is a natural choice; for example, in three dimensions, every edge of a Voronoi
diagram is orthogonal to the correspondent face of the Delaunay triangulation, and vice verse. A recent extension to arbitrary
two-dimensional (2D) meshes, which is based on the DDFV approach and does not require any orthogonality property be-
tween the primal and the dual mesh, is found in [21]. We finally point out that, on tetrahedral or on hexahedral grids the
mixed finite element approach, based on the Nédélec edge elements [39], will surely be one of the many possible variants
allowed in our approach, in the spirit of [28]; but the extension of mixed finite elements to a general decomposition is def-
initely cumbersome.

In the above works, we can find many of the ideas also considered in our approach. More precisely, the mimetic formu-
lation that we investigate in this paper relies upon a set of degrees of freedom that are topologically attached to the vertices,
the edges, and the faces of a mesh. Then, we define two discrete operators mimicking curl and gradient that act on edge and
node degrees of freedom, respectively. The next ingredient is provided by two suitable quadrature rules for the numerical
discretization of volume integrals on the computational domain, which make use of edge and face degrees of freedom. Using
the discrete curl and gradient operators and these quadrature rules, we provide a numerical discretization of the bilinear
forms in the variational formulation of magnetostatic equations that can be seen as a variant of the one proposed in [9].
The derivation of the quadrature rules that are mentioned above is, thus, the crucial step in the formulation of this scheme
and is discussed in detail in the paper. This derivation is based on an algebraic consistency condition that generalizes the usual
construction of the inner products in the MFD methods. When this condition is satisfied, each quadrature rule takes the form
of a vector–matrix–vector multiplication for the vectors of degrees of freedom, where the matrix is given by formulas pro-
vided in the paper. We also mention the paper [48], where an algebraic consistency of mimetic [44] and covolume methods
on triangular meshes is introduced and analyzed.
Please cite this article in press as: K. Lipnikov et al., The mimetic finite difference method for the 3D magnetostatic field problems on poly-
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We also present the linear algebraic form of the MFD method and demonstrate theoretically its well-posedness, i.e., exis-
tence and uniqueness of the numerical solution. Finally, we illustrate the performance of the method through numerical
experiments that show the accuracy of the approximate solution on a set of academic problems and present the application
of the method to a realistic engineering problem.

The paper is organized as follows. In Section 2, we discuss the variational form of the magnetostatic field problem. In Sec-
tion 3, we discuss the derivation of this MFD method. In Section 4, we analyze the well-posedness of the discretization. In
Section 5, we present the results of our numerical experiments. In Section 6, we offer final remarks and discuss the perspec-
tive for future work.

2. 3D magnetostatic field problem

We are interested in solving the magnetostatic problem
Please
hedra
curlðHÞ ¼ J in X; ð1Þ
divðlHÞ ¼ 0 in X; ð2Þ
H � n ¼ g0 on C ð3Þ
for the unknown vector variable H, the magnetic field intensity. We assume that J, the divergence-free current density, l, the
magnetic permeability tensor, and g0, a vector-valued boundary function, are given. From a physical standpoint, the domain
X should be the whole space R3, and the magnetic field should satisfy a radiation condition like H ! 0 at infinity instead of
(3). In practice, we assume that X is a bounded, simply-connected domain in R3 with the Lipschitz boundary C, and replace
the radiation condition by the boundary condition (3), where n is the unit vector orthogonal to C. The tensor coefficient l
may be discontinuous. However, the tangential component of H and the normal component of lH are continuous across the
possible interfaces of discontinuity of l.

Condition (2) allows us to introduce the vector potential u such that curlðuÞ ¼ lH. The choice of u is not unique as we can
always add the gradient of a scalar function to the vector potential u and leave the relation with H unaltered. To obtain a
weak formulation that admits a unique solution we consider the Coulomb gauge, which leads to a divergence-free vector po-
tential. More precisely, we require the vector field u to be the solution of the set of equations:
curlðl�1curlðuÞÞ ¼ J in X; ð4Þ
divðuÞ ¼ 0 in X; ð5Þ
u� n ¼ g in C: ð6Þ
We derive the variational formulation for this problem in the following steps. First, we introduce the vector Sobolev space
Hðcurl;XÞ ¼ v 2 ðL2ðXÞÞ3 such that curlðvÞ 2 ðL2ðXÞÞ3
n o

: ð7Þ
The class of admissible weak solutions for the vector potential is given by
Hgðcurl;XÞ ¼ v 2 Hðcurl;XÞ such that v � n ¼ g on Cf g; ð8Þ
while vector-valued test functions will be taken in space H0ðcurl;XÞ that is defined by setting g ¼ 0 in (8). We do not explic-
itly require the vector fields in Hgðcurl;XÞ to be divergence-free. Instead, we will take into account the solenoidal constraint
(5) through the introduction of the Lagrangian multiplier p, which belongs to the scalar Sobolev space
H1
0ðXÞ ¼ q 2 L2ðXÞ;rq 2 ðL2ðXÞÞ3; with q ¼ 0 on C

n o
: ð9Þ
Next, we define the bilinear forms
8u;v 2 Hðcurl;XÞ : Aðu;vÞ :¼
Z

X
l�1curlðuÞ � curlðvÞdV ; ð10Þ

8v 2 Hðcurl;XÞ; 8q 2 H1
0ðXÞ : Bðv ; qÞ :¼

Z
X

v � rqdV ð11Þ
and denote the L2 inner product between vector fields by:
8u;v 2 ðL2ðXÞÞ3 : ðu;vÞ :¼
Z

X
u � v dV : ð12Þ
It is not difficult to see that the following variational problem:
Find ðu; pÞ 2 Hgðcurl;XÞ � H1
0ðXÞ such that :

Aðu;vÞ þ Bðv; pÞ ¼ ðJ;vÞ 8v 2 H0ðcurl;XÞ; ð13Þ
Bðu; qÞ ¼ 0 8q 2 H1

0ðXÞ: ð14Þ
cite this article in press as: K. Lipnikov et al., The mimetic finite difference method for the 3D magnetostatic field problems on poly-
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is a variational formulation problem (4)–(6). Indeed, under suitable assumptions on the regularity of l, the well-posedness of
(13) and (14) can be proved in the framework of the classical theory for saddle-point problems [11]. Moreover, if
ðu; pÞ 2 Hgðcurl;XÞ � H1

0ðXÞ is the solution of (13) and (14), choosing v ¼ rp 2 H0ðcurl;XÞ in (13) we have that
Aðu;rpÞ ¼ 0 due to the differential identity curl � r ¼ 0 and therefore,
Please
hedra
Z
X

J � rpdV ¼ �
Z

X
pdivðJÞdV þ

Z
C

pn � J dS ¼ 0 ð15Þ
since J is a divergence-free field and p is zero on the boundary C. Thus, Eq. (13) becomes:
Bðrp;pÞ ¼
Z

X
jrpj2dV ¼ 0
from which it easily follows that p ¼ 0 in X, using the homogeneous Dirichlet condition pjC ¼ 0.
3. Mimetic discretization

Let T h be a partition of the computational domain X into mP polyhedra, mF planar faces, mE straight edges and mN nodes
(also called ‘‘vertices”). We denote: the set of faces by F, a face by f and its area by jfj; the set of edges by E, an edge by e and
its length by jej; the set of vertices by V and a vertex by v. Consistently with this notation, if P is a polyhedron of T h, its vol-
ume is denoted by jPj. The sub-index h, which labels the mesh T h, is the mesh size, i.e., the characteristic length of the mesh,
and is defined, as h ¼maxe2Ejej.

Each face and each edge in the mesh is endowed with orientation, fixed once and for all by prescribing a unit tangent
vector te to the edge e and a unit normal vector nf to the face f. The mutual orientation of the edge e with respect to the face
f is reflected via the number rf;e ¼ �1. The positive sign corresponds to a counterclockwise orientation of the edge e when an
observer is located at the tip of the vector nf .

The mimetic finite difference method that we aim to develop in this section is formulated for a family of meshes fT hgh

with decreasing h. The meshes in fT hgh may contain very general shaped elements and even non-convex elements are
admissible. Nonetheless, a few minimal assumptions are usually imposed on elemental shape to avoid some pathological
situations. We assume that each partition in fT hgh is conformal, i.e., intersection of any two distinct elements P1 and P2

of a given T h is either empty, or a few mesh points, or a few mesh edges, or a few mesh faces (two adjacent elements
may share more than one edge or more than one face). Following [10], we assume that for each mesh T h there exists a
sub-partition obtained by decomposing each polyhedron in a uniformly bounded number of tetrahedra, whose union is a
conformal and regular mesh in the sense of Ciarlet [18]. We point out that this last assumption only requires to know that
such a sub-mesh exists, a fact that can be easily verified in most cases, but not to construct it in practical implementations.
According to these assumptions, the MFD method can be applied on a wide range of meshes. Finally, we approximate the
coefficient l�1 by a constant tensor inside each mesh element.

Let us briefly describe the formal construction of our mimetic discretization. The numerical approximation to problem
(13) and (14) requires to discretize scalar and vector functions, which are, respectively, elements of H1

0ðXÞ and Hðcurl;XÞ,
the bilinear forms Aðu;vÞ and Bðu;vÞ, and the right-hand side integral ðJ;vÞ of Eq. (13). The bilinear forms Aðu;vÞ and
Bðu;vÞ involve two differential operators, curl and gradient, for which a mimetic discretization is to be provided.

We begin by introducing the degrees of freedom of our mimetic discretization. Even if we discretize two types of fields,
i.e., scalar and vector fields, for a reason that will be clear throughout this section we consider three different types of grid
functions (see Fig. 1):

� node functions, defined by one number per mesh vertex;
� edge functions, defined by one number per mesh edge;
� face functions, defined by one number per mesh face.

A node function can be interpreted as the collection of the values of a scalar function at mesh vertices. An edge function can
be interpreted as the collection of the values of the tangential component of a vector function averaged along mesh edges. A face
function can be interpreted as the collection of values of the normal component of a vector function averaged over mesh faces.
Therefore, node functions are discrete representations of scalar fields, while edge and face functions are discrete represen-
tations of vector fields. We will make this last statement formally precise throughout the rest of this section. Node, edge, and
face functions are at the same time grid functions, since they uniquely map grid items like nodes, edges, and faces to real
numbers, and algebraic vectors, since linear algebraic operations such as matrix–vector multiplication can be performed
on them. For example, any q 2 N can be interpreted as a discrete scalar field as well as a linear algebraic vector.

For simplicity of notation, we denote continuous and discrete scalar fields by letters in normal font, and continuous and
discrete vector fields by letters in bold font. Therefore, at the notational level, we make no distinction between fields in the
continuum and discrete fields as the nature of these quantities can be determined contextually without any ambiguity. Thus,
the symbol q may denote either a spatially dependent scalar function defined on x 2 X, or an algebraic vector of degrees-of-
freedom associated to mesh items like vertices, edges or faces. Likewise, the symbol v may denote either a spatially
cite this article in press as: K. Lipnikov et al., The mimetic finite difference method for the 3D magnetostatic field problems on poly-
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Fig. 1. Restrictions of the degrees of freedom of a grid function in (a) VjP , (b) EjP , (c) FjP for a (cubic) polyhedron P (the edge orientation in (b) is arbitrary).

K. Lipnikov et al. / Journal of Computational Physics xxx (2010) xxx–xxx 5
dependent vector-valued function defined on x 2 X, or an algebraic vector of degrees of freedom associated to mesh items
like vertices, edges or faces. However, we will denote the scalar product between vectors by ‘‘u � v” when u and v are vector
fields in the continuum, and by ‘‘uTv” when u and v are algebraic vectors of degrees of freedom.

We denote the linear space of all possible node functions by N . Let q 2 H1ðXÞ \ C0ð�XÞ. Its degrees of freedom in N , de-
noted by qN , are the values taken by q at the mesh vertices, i.e., for any v 2 V we have that qNjv ¼ qðxvÞ, where xv is the position
vector of the vertex v. It is also convenient to consider the linear subspace N 0 � N which is formed by all the node functions
whose value is zero at the boundary nodes.

We denote the linear space of edge functions by E. Let v 2 Hðcurl;XÞ \ ðC0ð�XÞÞ3. Its degrees of freedom in E, denoted by
vE ¼ ðvEjeÞe, are given by
Please
hedra
8e 2 E : vEje ¼
1
jej

Z
e

v � te dL: ð16Þ
As for node functions, we will find it convenient to consider the linear subspace Eg formed by all the functions v 2 E such
that for every boundary edge e � C the corresponding value ve equals the average on e of the tangential component of
the vector g. The linear subspace E0 is immediately derived by setting g ¼ 0.

We denote the linear space of face functions by F . Let v 2 Hðdiv;XÞ \ ðLsðXÞÞ3, where s > 2. Its degrees of freedom in F ,
denoted by vF ¼ ðvFjf Þf , are given by:
8f 2 F : vFjf ¼
1
jfj

Z
f

v � nf dS: ð17Þ
Throughout the paper we will make use of the restrictions of an edge or a face function to special subsets of edges and
faces. More precisely, let v denote a vector field defined in the continuum setting on the computational domain X, and
vE 2 E its degrees of freedom defined for all the edges of E. Then,

� vEjf ¼ veð Þe2@f denotes the subset of values of vE attached to the edges e that form the polygonal boundary of the face f;
� vEjP ¼ veð Þe2@P denotes the subset of values of vE attached to the edges e that form the boundary of the polyhedron P.

On its turn, let vF 2 F be a face function. Consistently with the previous notation,

� vFjP ¼ v fð Þf2@P denotes the subset of values of vF attached to the faces f that form the boundary of the polyhedron P.

The collection of edge and face restrictions may be given the algebraic structure of a linear space, which is denoted by the
self-explanatory symbols Ejf ; EjP and FjP (see Fig. 1).

Remark 3.1. As pointed out in [7,9], we could complete this construction by the introduction of the linear space P of cell-
based functions, i.e., those functions that are defined by attaching one number to each polyhedron P. Up to a suitable
rescaling of the quantities defined above, it is possible to re-interpret the entire setting in terms of k-cochains or 3D discrete
k-forms, where k ¼ 0 corresponds to N ; k ¼ 1 to E; k ¼ 2 to F , and k ¼ 3 to P. However the investigation of connections and
analogies with algebraic topology concepts is beyond the scope of our work.

UsingN ; E, and F , we define the discrete operators GRAD and CURL that mimic the two differential operatorsr and curl,
respectively.

� The discrete operator GRAD maps any discrete scalar field of N into a discrete vector field of E, and is defined by:
cite this article in press as: K. Lipnikov et al., The mimetic finite difference method for the 3D magnetostatic field problems on poly-
l meshes, J. Comput. Phys. (2010), doi:10.1016/j.jcp.2010.09.007

http://dx.doi.org/10.1016/j.jcp.2010.09.007


6 K. Lipnikov et al. / Journal of Computational Physics xxx (2010) xxx–xxx

Please
hedra
8q 2 N : GRADðqÞð Þje ¼
qv2
� qv1

jej ; 8e ¼ ðv1; v2Þ 2 E; ð18Þ
where qv1
and qv2

are the values of the node function q at the vertices v1 and v2, these latters being connected by the oriented
edge e ¼ ðv1; v2Þ having length jej.
� The discrete operator CURL maps any discrete vector field of E into a discrete vector field of F , and is defined by:
8v 2 E : CURLðvÞð Þjf ¼
1
jfj
X
e2@f
jejrf;eve; 8f 2 F; ð19Þ
where ve is the value of the edge function v that is attached to the edge e.

Remark 3.2. By construction it immediately follows that CURL � GRAD ¼ 0, which mimics the differential identity of cal-
culus curl � r ¼ 0.

We now assume that two quadrature formulas for the volume integrals of the bilinear forms (10) and (11) are available
with the following properties: they are first-order accurate and act, respectively, on the whole sets of face and edge degrees
of freedom. The construction of these quadrature rules is the crucial point in the derivation of an accurate mimetic discret-
ization. We will discuss this issue in great details in the next subsection. For the moment, we introduce two quadrature rules
as follows:
Z

X
u � vdV ¼ uE ;vE

� �
E þ OðhÞ; ð20ÞZ

X
l�1u � vdV ¼ uF ;vF

� �
F þ OðhÞ; ð21Þ
where u and v are sufficiently regular vector fields, and, according to (16) and (17, uE ;vE 2 E and uF ;vF 2 F are the edge and
the face degrees of freedom of u;v , respectively. Using these quadrature formulas, it is straightforward to define the discrete
bilinear forms
8u;v 2 E : Ahðu;vÞ :¼ CURLðuÞ; CURLðvÞ½ 	F ; ð22Þ
8v 2 E; q 2 N : Bhðv; qÞ :¼ v;GRADðqÞ½ 	E ; ð23Þ
which are, indeed, our mimetic approximations of the bilinear forms (10) and (11). Similarly, we consider the discretization
of the integral of (12) (to be used in the right-hand side of (13)) through the edge-based quadrature formula:
Z

X
J � vdV ¼ JE ;vE

� �
E þ OðhÞ; ð24Þ
which involves the discrete edge-based vector fields JE ;vE 2 E.
Eventually, the formulation of the mimetic discretization of (13) and (14) is given by
Find ðuh;phÞ 2 Eg �N 0 such that :

Ahðuh;vÞ þ Bhðv ;phÞ ¼ JE ;v
� �

E 8v 2 E0; ð25Þ
Bhðuh; qÞ ¼ 0 8q 2 N 0: ð26Þ
Note that the Dirichlet conditions for the discrete solution fields uh and ph are automatically taken into account because
these fields belong to Eg and N 0, respectively.

3.1. Linear algebraic formulation

In this subsection, we present the linear algebraic formulation that arises from the mimetic finite difference discretization
(25) and (26). This construction is devised in four steps. First, we note that both discrete operators GRAD and CURL are lin-
ear; hence, their action on node-and edge-based discrete fields can be represented as a matrix–vector multiplication. Let G

be the mE �mN matrix such that
8q 2 N : GRADðqÞ ¼ Gq; ð27Þ
which implies that the component of the discrete gradient of the node-based vector q attached to the edge e is obtained by
the scalar product between the row of G associated to e and the vector of numbers q. Similarly, we define the mF �mE matrix
C that yields the discrete curl of an edge-based vector v 2 E through a matrix–vector multiplication:
8v 2 E : CURLðvÞ ¼ Cv : ð28Þ
In accordance with the definitions (18) and (19), the non-zero entries of G on the row associated to an edge e 2 E are equal to
�1=jej, while the non-zero entries of C on the row associated to a face f 2 F are equal to rf;ejej=jfj. It is easy to see that up to a
cite this article in press as: K. Lipnikov et al., The mimetic finite difference method for the 3D magnetostatic field problems on poly-
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suitable (left diagonal) rescaling by edge lengths and face areas, G and C are, respectively, the incidence matrix describing the
edge-node connectivity and the incidence matrix describing the face-edge connectivity of mesh T h.

The second step consists in reformulating the two quadrature rules (20) and (21) as a vector-matrix–vector multiplica-
tion. To this purpose, we define the mE �mE matrix ME such that
Please
hedra
8u;v 2 E : u;v½ 	E ¼ vTMEu: ð29Þ
Likewise, we define the mF �mF matrix MF such that
8u;v 2 F : u;v½ 	F ¼ vTMFu: ð30Þ
Since both quadrature formulas are an approximation of an L2 inner product between the vector-valued functions u and v , we
assume that ME and MF are inner product matrices for the linear spaces E and F , respectively. This assumption implies that
ME and MF must be symmetric and positive definite. The construction of these matrices is performed locally by defining, for
any element P 2 T h, suitable elemental matrices that act on the restriction of the degrees of freedom to the element and then
assembling all the elemental contributions in a finite element fashion. This procedure is detailed in the next sub-section.

Using the discrete gradient and curl operators (18) and (19), and the matrices introduced in (29) and (30), we reformulate,
in the third step, the bilinear forms (22) and (23) and the quadrature term of the right-hand side of (24) as follows:
8u;v 2 E : Ahðu;vÞ ¼ vTAu; where A ¼ CTMFC; ð31Þ
8v 2 E; 8q 2 N : Bhðv; qÞ ¼ vTBT q; where B ¼ GTME ; ð32Þ
8J 2 Hðcurl;XÞ \ ðC0ð�XÞÞ3; 8v 2 E : JE ;v

� �
E ¼ vT MEJ

E : ð33Þ
In the fourth and final step, we reformulate the mimetic scheme (25) and (26) in the linear algebraic form:
Find ðuh;phÞ 2 Eg �N 0 such that :

vTAuh þ vTBT ph ¼ vTMEJ
E 8v 2 E0; ð34Þ

qTBuh ¼ 0 8q 2 N 0: ð35Þ
We directly impose the Dirichlet boundary conditions on the resulting linear system by eliminating equations for boundary
edges and boundary nodes and by modifying properly the remaining equations to take into account that uh 2 Eg and ph 2 N 0.
The elimination of the boundary equations leads to a saddle-point problem for a vector of internal degrees of freedom that
we denote by ðfuh

T ;fph
TÞT . The reduced problem takes the form
eA eBTeB 0

" # fuhfph

" #
¼

g
MEJ

E þ egh

0

" #
; ð36Þ
where eA and eB are the sub-matrices of A and B that correspond to the internal degrees of freedom, and the reduced right-
hand side g

MEJ
E is modified by the vector egh to take into account the boundary values of uh.

Our MFD method uses one unknown per mesh edge, as the finite element method (FEM) with the lowest-order Nedelec
basis functions, plus one unknown per mesh node. Since the MFD method works on arbitrary polyhedral meshes, it may use
smaller total number of unknowns than the FEM on an equivalent tetrahedral partition. The covolume methods in [42,40]
use one unknown per edge and one unknown per face on tetrahedral meshes and expected to be more computationally
expensive since the number of faces in a tetrahedral mesh is usually much bigger than the number of vertices. The 3D DDFV
formulation proposed recently in [19] for non-linear scalar diffusion problems is not restricted to meshes of tetrahedra.
Nonetheless, its formulation requires one unknown per mesh node, edge, face and cell for each scalar variable and a straight-
forward extension to Maxwell’s equations seems impractical.

3.2. Local construction of matrices ME and MF

In this section, we describe how the matrices ME and MF are built by assembling local matrices defined for each poly-
hedron P of the mesh. Since the argument is the same for both matrices ME and MF , we present the detailed derivation
for the former matrix, while, for the latter, we will give just the final formulas which are useful for the software
implementation.

Let u and v denote two sufficiently regular vector fields defined on X. According to (16), let uEjP :¼ ðueÞe2@P denote the de-
grees of freedom of u for the mE;P edges of the polyhedron P (the same definition holds for vEjP). We write the numerical inte-
gration over a single polyhedron P as
Z

P

u � vdV ¼ uEjP;v
E
jP

h i
E;P
þ jPjOðhÞ: ð37Þ
The quadrature rule in (37) can be expressed in matrix form through the mE;P �mE;P symmetric and positive definite matrix
ME;P which acts on the local degrees-of-freedom:
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uEjP;vEjP
h i

E;P
:¼ ðvEjPÞ

T
ME;PuEjP: ð38Þ
Then, we split the left-hand side integral of Eq. (20) into the sum of the polyhedral contributions and apply the quadrature
formula given by combining (37) and (38):
Z

X
u � vdV ¼

X
P2T h

Z
P

u � vdV ¼
X
P2T h

uEjP;v
E
jP

h i
E;P
þ jPjOðhÞ

� �
¼
X
P2T h

ðvEjPÞ
T
ME;PuEjP

� �
þOðhÞ: ð39Þ
By comparing (20) and (39), we get the following expression for the global quadrature formula:
uE ;vE
� �

E :¼
X
P2T h

uEjP;v
E
jP

h i
E;P
; ð40Þ
which also takes the equivalent matrix form:
ðvEÞTMEuE ¼
X
P2T h

ðvEjPÞ
T
ME;PuEjP: ð41Þ
Let SE;P be the restriction matrix that provides the edge degrees of freedom of a polyhedron P when it is applied to an edge
function of E, i.e., vEjP ¼ SE;PvE . The size of SE;P is mE;P �mE . Using this definition in (41), we get:
ðvEÞTMEuE ¼ ðvEÞT
X
P2T h

S
T
E;PME;PSE;P

 !
uE ; ð42Þ
which implies that
ME ¼
X
P2T h

S
T
E;PME;PSE;P: ð43Þ
Repeating this argument for the left-hand side integral of (21) leads to a similar formula that allows us to assemble the
global matrix MF from the polyhedral matrices MF ;P:
MF ¼
X
P2T h

ST
F ;PMF ;PSF ;P: ð44Þ
In this formula, SF ;P is the restriction matrix that gives the face degrees of freedom of polyhedron P, denoted by vFjP, when it is
applied to a face function of F , i.e., vFjP ¼ SF ;PvF . The size of SF ;P equals to mF ;P �mF , where mF ;P is the number of faces of P.
It is worth noting that the polyhedral matrix MF ;P provides a numerical integration formula which is first-order accurate for
the volume integral (21) defined on P:
Z

P

l�1u � vdV ¼ ðvFjPÞ
T
MF ;PuFjP þ jPjOðhÞ: ð45Þ
In view of (45), the local matrix MF ;P must contain information about the magnetic permeability tensor l on P.
The general procedure for the construction of the local matrices ME;P and MF ;P relies upon the algebraic consistency con-

dition, which we formulate now.

Definition 3.1. Let M be an m�m symmetric and positive definite matrix, and N and R two full rank m� d matrices for
d ¼ 2 or 3. We say that the matrices M;N and R satisfy the algebraic consistency condition when:
ðiÞ MN ¼ R; ð46Þ
ðiiÞ NTR is a symmetric and positive definite matrix: ð47Þ
At first sight, the name algebraic consistency condition might look mysterious, as it is difficult to see what it has to do with
consistency. However we shall see in the following subsections that, in practice, we will choose, in each particular case, matri-
ces R and N such that (46) will imply that the scalar product induced by M coincides with the ‘‘exact scalar product” on
scalar functions (or vectors), so that some sort of ‘‘patch test” is satisfied. In particular, as we will discuss in the next sub-
sections, the algebraic consistency condition will stem from an OðhÞ accurate approximation of a Gauss–Green relation.
Therefore, the matrix R is not uniquely determined because any approximation of the Gauss–Green formula provides an
acceptable R. One possible realization is found in [9]. When matrices N and R are available, matrix M is derived from Prop-
osition 3.1 below. Therefore, the ‘‘game” that we systematically play to construct the mimetic finite difference method is the
following: using approximation arguments, we choose an appropriate matrix N and determine the correct matrix R from a
discrete Gauss–Green formula. The simplest choice for N consists in the interpolation of the canonical basis vectors of R3 or
R2. With this choice the product NTR has an explicit form. The matrix M that is provided by Proposition 3.1 for the pair of
matrices ðN;RÞ is then used for numerical integration.
Proposition 3.1. Let N and R be two full rank m� d matrices for d ¼ 2 or 3 and m P dþ 1 be such that the d� d matrix NTR is
symmetric and positive definite. Then, a possible form of M satisfying (46) is given by:
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M ¼ RðNTRÞ�1
RT þ cTrace RðNTRÞ�1

RT
� �

P; ð48Þ
with
P ¼ I�NðNTNÞ�1
NT ð49Þ
and c being a strictly positive real number (in our experiments, c is just 1=m). The matrix M given by (48) and (49) is symmetric
and positive definite.
Proof. A straightforward calculation shows that the matrix M given by (48) satisfies condition (46), and its symmetry is an
obvious consequence of the form given by (48). To prove that M is positive definite, we observe that for any discrete vector v
of appropriate size m there holds:
vTMv ¼ vTRðNTRÞ�1
RTv þ cTrace RðNTRÞ�1

RT
� �

vTPv P 0: ð50Þ
The first term of the right-hand side of (50) is non negative since ðNTRÞ�1 is positive definite, but may be zero when v be-
longs to the (non-trivial) kernel of RT . The second term of the right-hand side of (50) is non-negative since it is the product of
three non-negative numbers: c, which is strictly positive by hypothesis, the trace of RðNTRÞ�1

RT , which is the sum of non-
negative eigenvalues, and vTPv , which is non-negative because P is an orthogonal projector. It is left to show that vTMv ¼ 0
implies that v ¼ 0. Condition vTMv ¼ 0 implies that the equations RTv ¼ 0 and Pv ¼ 0 hold separately. On its turn, the lat-
ter condition implies that the vector v belongs to the linear sub-space of Rm spanned by the columns of N, i.e., there exists a
vector / 2 Rd such that v ¼ N/. We obtain:
0 ¼ RTv ¼ RTN/ ¼ NTR/ ð51Þ
from which it follows that / ¼ 0, because NTR is symmetric and positive definite by hypothesis and, hence, non-singular.
Therefore, we have that v ¼ 0. This proves the assertion of the proposition. h
3.2.1. 3D consistency relation for edge functions
In the mimetic setting discussed at the end of the previous sub-section, we choose the matrix N as follows. Let us consider

the three constant vectors that form the canonical basis of R3, i.e., c1 ¼ ð1;0;0ÞT , c2 ¼ ð0;1;0ÞT ; c3 ¼ ð0;0;1ÞT . For each poly-
hedron P, we set the column vector N j for j ¼ 1;2;3, which is the jth column of the matrix N, equal to the degrees of freedom
of cj for the edges of P through the relation:
N j ¼ cj
� 	E

jP: ð52Þ
Therefore, the entries of N are given by
8e 2 P and j 2 f1;2;3g : Ne;j ¼
1
jej

Z
e

cj � tedS: ð53Þ
After substituting u ¼ cj, equations (37) and (38) imply that
Z
P

cj � vdV ¼ vEjP
� �T

ME;PN j þ jPjOðhÞ: ð54Þ
The rest of this sub-section is devoted to derivation a proper expression for the columns Rj of the matrix R so that the quad-
rature rule (54) can also take the form:
Z

P

cj � vdV ¼ vEjP
� �T

Rj þ jPjOðhÞ: ð55Þ
Comparing (54) and (55) yields the algebraic consistency condition of the form ‘‘ ME;PN ¼ R” that allows us to derive the
matrix ME;P from Proposition 3.1.

To this aim, let c be a constant vector field on the polyhedron P and note that we can always set c ¼ curlðp1Þ with
p1ðxÞ ¼ ð1=2Þc � ðx� xPÞ for every x 2 P. Here xP is the center of gravity of the polyhedron P. All the components of the vec-
tor field p1 are linear scalar functions on P;p1 is a divergence-free vector function and is orthogonal to the constant vectors
with respect to the L2 inner product defined on the polyhedron P. Let us define
hcurlðvÞiP ¼
1
jPj

Z
P

curlðvÞdV : ð56Þ
From the orthogonality of p1 to the constant vectors, the Cauchy–Schwarz inequality and the fact that for any sufficiently
regular function / the cell average h/iP is a first-order approximation of / on P, we obtain that
Z

P

p1 � curlðvÞdV ¼
Z

P

p1 � curlðvÞ � hcurlðvÞiPð ÞdV 6 kp1kðL2ðPÞÞ3kcurlðvÞ � hcurlðvÞikðL2ðPÞÞ3 ¼ jPjOðhÞ: ð57Þ
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Using c ¼ curlðp1Þ, we get the following development:
Please
hedra
Z
P

c � vdV ¼
Z

P

curlðp1Þ � vdV integrate by partsð Þ

¼
Z

P

p1 � curlðvÞdV þ
Z
@P

nP � p1 � v
� 	

dS use estimate ð57Þð Þ

¼ jPjOðhÞ þ
Z
@P

nP � p1 � v
� 	

dS split the boundary integralð Þ

¼ jPjOðhÞ þ
X
f2@P

Z
f

nP;f � p1 � v
� 	

dS use a � ðb� cÞ ¼ b � ðc� aÞð Þ

¼ jPjOðhÞ þ
X
f2@P

Z
f

v � nP;f � p1� 	
dS: ð58Þ
In the previous development we introduced nP, which is the unit vector orthogonal to the polyhedron’s boundary @P, and
nP;f , which is the unit vector orthogonal to the polyhedron’s face f 2 @P. Both vectors nP and nP;f point out of P. It is worth
noting that the previous development is exact if v or curlðvÞ are constant vectors on P because in both cases the volume
integral on P, which is neglected to obtain the first-order accurate approximation (58), is zero. This remark is crucial in prov-
ing that NTR is a positive definite matrix, as we will show at the end of this sub-section.

The next step consists in reformulating the face integrals of the right-hand side of (58) in a 2D way. To do so, we first note
that the vector nP;f � p1 is parallel to face f. Thus, it is convenient to split v into the sum of its parallel and perpendicular
component with respect to f, i.e., v ¼ vk þ v?. Using such a decomposition, we readily get:
Z

f

v � nP;f � p1� 	
dS ¼

Z
f

vk þ v?
� 	

� nP;f � p1� 	
dS ¼

Z
f

vk � nP;f � p1� 	
dS: ð59Þ
The right-most integral of Eq. (59) can be reformulated using the following notation:
v̂f ¼ vk and p̂1
f ¼ nP;f � p1: ð60Þ
We have:
Z
f

vk � nP;f � p1ðxÞ
� 	

dS ¼
Z

f

v̂f � p̂1
f dS: ð61Þ
In a local coordinate system associated with the face f, the vector functions v̂f and p̂1
f have only two non-zero components.

Thus, the latter integral is reduced to a 2D integral. We complete this derivation by assuming (for the moment) that a quad-
rature formula is available for the numerical integration of the right-hand side of (61). This quadrature formula, whose con-
struction is detailed in the next sub-section, is required: (i) to be first-order accurate; (ii) to depend on the edge degrees of
freedom of the integrand terms related to the face f; (iii) to be exact when v̂f is constant on f. This numerical integration rule
is formally written as:
Z

f

v̂fðnÞ � p̂1
f ðnÞdS ¼ v̂fð ÞEjf ; p̂1

f

� 	E
jf

h i
E;f
þ jfjOðhÞ: ð62Þ
Assumptions (i)–(iii) imply that the right-hand side of (62) can take the form of a vector–matrix–vector multiplication
through the introduction of a suitable face matrix ME;f:
v̂fð ÞEjf ; p̂1
f

� 	E
jf

h i
E;f
¼ v̂fð ÞEjf
� �T

ME;f p̂1
f

� 	E
jf : ð63Þ
The matrix ME;f that is defined for the face f will be derived in the next subsection from a 2D consistency relation for the faces
by applying again Proposition 3.1.

Now, substituting back all expressions from (63) to (58) leads to the integration rule:
Z
P

c � vdV ¼
X
f2@P

v̂fð ÞEjf
� �T

ME;f p̂1
f

� 	E
jf þ jPjOðhÞ: ð64Þ
We can go one step further in this development by introducing the restriction matrix SE;P;f that extracts the edge degrees of
freedom of face f when applied to an edge function of EjP. The size of SE;P;f equals mE;f �mE;P, where mE;f is the number of
edges of face f and mE;P the number of edges of polyhedron P. Therefore, there holds that vEjf ¼ SE;P;fvEjP, and, since the degrees
of freedom of v̂fð ÞEjf coincide with the degrees of freedom of v for the same edges, we obtain
Z

P

c � vdV ¼
X
f2@P

v̂fð ÞEjf
� �T

ME;f p̂1
f

� 	E
jf þ jPjOðhÞ ¼ vEjP

� �T X
f2@P

S
T
E;P;fME;f p̂1

f

� 	E
jf þ jPjOðhÞ: ð65Þ
The formula for R is derived from (65). To this purpose, we just use the vectors cj for j ¼ 1;2;3, introduced at the beginning of
this section, instead of c, and let p̂1

f;j be defined by (60) using p1
j ðxÞ ¼ ð1=2Þcj � ðx� xPÞ instead of p1ðxÞ. We have that
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Z
P

cj � vdV ¼ vEjP
� �T X

f2@P
ST
E;P;fME;f p̂1

f;j

� �E
jf
þ jPjOðhÞ ¼ vEjP

� �T
Rj þ jPjOðhÞ; ð66Þ
where
Rj :¼
X
f2@P

ST
E;P;fME;f p̂1

f;j

� �E
jf
: ð67Þ
Comparing (66) with (54), neglecting OðhÞ terms, and using the arbitrariness of v , we get the algebraic consistency relation
in the form required by Proposition 3.1:
for j 2 f1;2;3g : ME;PN j ¼ Rj: ð68Þ
We are left to prove that NTR is a symmetric and positive definite matrix. This is a consequence of the fact that the
numerical integration formulas developed so far are exact when v is a constant vector on P. Let us substitute v ¼ ci for
i ¼ 1;2;3 in (66). We obtain:
dijjPj ¼
Z

P

cj � cidV ¼ cið ÞEjP
� �T

Rj ¼ NT
i Rj; ð69Þ
where dij ¼ 1 for i ¼ j and dij ¼ 0 for i – j. Eq. (69) implies that NTR ¼ jPjI, from which it is obvious that NTR is symmetric and
positive definite.

It is worth noting that the previous derivation is indeed related to a very precise discrete Gauss–Green relation or discrete
integration-by-parts formula. In fact, substituting (62) into (61), the resulting expression into (59) and then into (58), and
taking c ¼ curlðp1Þ, we get:
Z

P

v � curlðp1ÞdV ¼
X
f2@P

vð ÞEjf ; nP;f � p1� 	E
jf

h i
E;f
þ jPjOðhÞ: ð70Þ
Applying the quadrature to the integral in the left-hand side and neglecting the OðhÞ terms, we get the following definition.

Definition 3.2. Let ðP1ðPÞ=RÞ3 denote the space of linear vectors orthogonal to constant vector fields on the polyhedron P.
The discrete Gauss–Green relation for edge functions defined on the polyhedron P takes the form:
8v 2 EjP; 8p1 2 ðP1ðPÞ=RÞ3 : v ; curlðp1Þ
� 	E

jP

h i
E;P

:¼
X
f2@P

v jf ; nP;f � p1� 	E
jf

h i
E;f
: ð71Þ
Now, recalling that in the present setting N j ¼ ðcjÞEjP and using the discrete Gauss–Green relation (71), we get the alternative
derivation of the algebraic consistency condition:
8v 2 EjP : vTME;PN j ¼ v ; ðcjÞEjP
h i

E;P
¼ v; curlðp1

j Þ
E
jP

h i
E;P

 vT Rj; ð72Þ
where Rj is defined through the last identity.
We finally emphasize that the whole derivation is based on the existence of the integration formula (62) with the prop-

erties listed therein. We will investigate this issue in the next sub-section.

3.2.2. 2D consistency relation for edge functions
As in the 3D case, we first choose the matrix N and then determine the correct matrix R such that a consistency condition

of the form ‘‘ ME;fN ¼ R” holds. The matrix ME;f that we need for the numerical integration formula (63), follows from Prop-
osition 3.1.

Let us consider a face f and introduce a 2D system of coordinates n ¼ ðn1; n2ÞT associated with it. We define in the plane of
f the 2D unit vectors nf;e and tf;e that are orthogonal and tangential, respectively, to the edge e of f. We assume that the ori-
entation is such that detðnf;e � tf;eÞ > 0. For simplicity, we use the same notation te for the 2D tangential vector that defines
the unique global orientation of the edges.

Let us consider the two constant vectors that form the canonical basis of the vector space R2, i.e., c1 ¼ ð1;0ÞT ; c2 ¼ ð0;1ÞT .
The jth column N j of the matrix N for j ¼ 1;2 is given formally by
N j ¼ cj
� 	E

jf : ð73Þ
The entries of the matrix N are calculated as follows:
8e 2 @f and j 2 f1;2g : Ne;j ¼
1
jej

Z
e

cj � te dL: ð74Þ
Now, we derive an expression for the columns Rj so that the quadrature rule
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Z
f

cj � vdS ¼ vEjf
� �T

ME;fN j þ jfjOðhÞ ð75Þ
can also take the form
Z
f

cj � vdS ¼ vEjf
� �T

Rj þ jfjOðhÞ ð76Þ
for every generic and sufficiently regular vector-valued function v defined on f.
In order to do so, we introduce the 2D operators
8w 2 H1ðfÞ : CurlnðwÞ ¼ � @w
@n2

;
@w
@n1

� �T

; ð77Þ

8/ ¼ ð/1;/2Þ 2 Hðcurl; fÞ : curlnð/Þ ¼
@/1

@n2
� @/2

@n1
: ð78Þ
Let c ¼ ðc1; c2ÞT be a constant vector field defined on face f. We take the scalar function p1ðnÞ ¼ �c1ðn2 � nf;2Þ þ c2ðn1 � nf;1Þ
where nf ¼ ðnf;1; nf;2ÞT is the local position vector of the center of gravity of face f. It is easy to see that p1ðnÞ is orthogonal
to the constant functions with respect to the L2ðfÞ inner product. Note that c ¼ Curlnðp1Þ. Using this fact and integrating-
by-parts, we obtain:
Z

f

c � vdS ¼
Z

f

Curlnðp1Þ � vdS ¼
Z

f

p1curlnðvÞdSþ
Z
@f

p1tf � vdL; ð79Þ
where tf is the unit vector tangent to @f, the two-dimensional boundary of face f. Let us now define
hcurlnðvÞif ¼
1
jfj

Z
f

curlnðvÞdS:
From the orthogonality of p1 to the constant functions, the Cauchy–Schwarz inequality and the fact that for any sufficiently
regular function w the cell average hwif is a first-order approximation of w on f, we obtain that
Z

f

p1curlnðvÞdS ¼
Z

f

p1 curlnðvÞ � hcurlnðvÞif
� 	

dS 6 kp1kðL2ðfÞÞ2kcurlnðvÞ � hcurlnðvÞifkðL2ðfÞÞ2 ¼ jfjOðhÞ: ð80Þ
Using (80) into (79) yields
Z
f

c � vdS ¼ jfjOðhÞ þ
X
e2@f

Z
e

p1tf;e � vdL: ð81Þ
Now, we consider the first-order approximation
Z
e

p1tf;e � vdL ¼ jejp1ðneÞ
1
jej

Z
e

tf;e � vdS
� �

þ jejOðhÞ ¼ jejp1ðneÞrf;evEje þ jejOðhÞ; ð82Þ
where ne is the mid-point of e and the sign rf;e ¼ tf;e � te takes into account the orientation of the edge e with respect to the
face f. We end the derivation by taking cj ¼ ðcj;1; cj;2ÞT for j ¼ 1;2 introduced at the beginning of this sub-section instead of
the generic constant vector c and the scalar polynomial p1

j ðnÞ ¼ �cj;1ðn2 � nf;2Þ þ cj;2ðn1 � nf;1Þ. Quadrature formula (75) is ob-
tained by defining the component of the column vector Rj for j ¼ 1;2 associated to the edge e, or, equivalently, the entry ðe; jÞ
of the matrix R, by:
8e 2 f and j 2 f1;2g : Rj
� 	

je ¼ Re;j :¼ jejrf;ep1ðneÞ: ð83Þ
In order to use Proposition 3.1, we are left to show that NTR is symmetric and positive definite. Note that the numerical inte-
gration rule in (81) is exact when v is a constant vector on f (or its curl is zero). Setting v ¼ ci for i ¼ 1;2 and noting that
ci � cj ¼ dij yields
dijjfj ¼
Z

f

ci � cjdS ¼ cið ÞEjf
� �T

Rj ¼ NT
i Rj; ð84Þ
which immediately implies the relation NTR ¼ jfjI, and, consequently, that NTR is symmetric and positive definite.
The previous derivation is related to a discrete Gauss–Green formula or a discrete integration-by-parts formula. Substitut-

ing (82) into (81), and taking c ¼ Curlnðp1Þ yields:
Z
f

v � Curlnðp1ÞdS ¼ jfjOðhÞ þ
X
e2@f
jejp1ðneÞrf;evEje: ð85Þ
Applying the quadrature rule to the integral in the left-hand side of (85) and neglecting the OðhÞ terms, we get the following
definition.
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Definition 3.3. Let P1ðfÞ=R denote the space of linear scalar functions orthogonal to constant scalar fields on the polygonal
face f. The discrete Gauss–Green relation for the edge functions defined on the face f takes the form:
Please
hedra
8v 2 Ejf ; 8p1 2 P1ðfÞ=R : v ; Curlnðp1Þ
� 	E

jf

h i
E;f

:¼
X
e2@f
jejp1ðneÞrf;eve: ð86Þ
Now, recalling that in the present setting N j ¼ cj
� 	E

jf and using the discrete Gauss–Green relation (86), we get the alternative
derivation of the algebraic consistency condition:
8v 2 Ejf : vTME;fN j ¼ v; cj
� 	E

jf

h i
E;f
¼ v ; Curlnðp1

j Þ
� �E

jf


 �
E;f

 vT Rj; ð87Þ
where Rj is defined through the last identity.
Finally, we note that this derivation is related to the construction of the mimetic inner product for discrete fluxes that was

proposed in [14]. Definition 3.3 can be identified with the consistency condition ðS2Þ that is used to derive the MFD scheme for
the 2D diffusion equation in [14]. To do so, it is sufficient to re-interpret the 2D curl as the divergence of a 2D rotated field,
and the edge degrees of freedom as the fluxes of the rotated field.

3.2.3. 3D consistency relation for face functions
As in the two preceding sub-sections, we choose the matrix N in the algebraic relation ‘‘ MF ;PN ¼ R” and search for a suitable

matrix R such that the numerical integration rule (45) holds. The matrix MF ;P will then be given by Proposition 3.1. An impor-
tant connection, which is discussed at the end of this sub-section, exists with a discrete Gauss–Green formula. We also remark
that the development discussed in this section is related to that in [14] for the mimetic discretization of the elliptic equation.

Let us assume that l�1 is constant on the polyhedron P and consider three constant vectors that form a basis in R3, i.e.,
c1 ¼ lð1;0;0ÞT ; c2 ¼ lð0;1; 0ÞT , and c3 ¼ l ð0;0;1ÞT . For each polyhedron P and j ¼ 1;2;3 we require the column vector N j,
which is the jth column of matrix N, to be equal to the degrees of freedom of cj for the faces of P:
N j ¼ ðcjÞFjP: ð88Þ
More precisely, the entries of N are given by
8f 2 @P; j 2 f1;2;3g : Nf;j ¼
1
jfj

Z
f

nf � cjdS: ð89Þ
The rest of this section is devoted to the derivation of a proper expression for the columns Rj of matrix R such that the quad-
rature rule
Z

P

l�1cj � vdV ¼ vFjP
� �T

MF ;PN j þ jPjOðhÞ ð90Þ
can also take the form
Z
P

l�1cj � vdV ¼ vFjP
� �T

Rj þ jPjOðhÞ ð91Þ
for every generic vector-valued function v defined on P. The comparison between (90) and (91) reveals the first part the
algebraic consistency condition, i.e., MF ;PN ¼ R. The second part is proved below. Now, the matrix MF ;P used in the quad-
rature formula (45) is given by Proposition 3.1.

Let c be a constant vector. Since l�1 has been taken constant on P, we have that c ¼ lrp1ðxÞwhere p1ðxÞ ¼ l�1c � ðx� xPÞ.
Let us define
hdivðvÞiP ¼
1
jPj

Z
P

divðvÞdV : ð92Þ
From the orthogonality of p1 to the constant scalar fields, the Cauchy–Schwarz inequality and the fact that for any suffi-
ciently regular function / the cell average h/iP is a first-order approximation of / on P, we obtain the inequality:
Z

P

p1divðvÞdV ¼
Z

P

p1 divðvÞ � hdivðvÞiPð ÞdV 6 kp1kðL2ðPÞÞ3kdivðvÞ � hdivðvÞiPkðL2ðPÞÞ3 ¼ jPjOðhÞ: ð93Þ
Using the previous expression for the vector field c, we get the following development:
Z
P

l�1c � vdV ¼
Z

P

rp1 � vdV integrate by partsð Þ

¼ �
Z

P

p1divðvÞdV þ
Z
@P

p1nP � vdS use estimate ð93Þð Þ

¼ jPjOðhÞ þ
Z
@P

p1nP � vdS split the boundary integralð Þ

¼ jPjOðhÞ þ
X
f2@P

Z
f

p1nP;f � vdS: ð94Þ
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Then, we consider the following first-order approximation for each face integral that appears in the summation term of (94):
Please
hedra
Z
f

p1nP;f � vdS ¼ p1ðxfÞ þ OðhÞ
� 	 Z

f

nP;f � vdS ¼ p1ðxfÞjfjrP;fvFjf þOðhÞ
Z

f

nP;f � vdS; ð95Þ
where we used (17) to introduce vFjf , and the sign rP;f ¼ nP;f � nf to take into account the orientation of f with respect to @P.
Substituting (95) into (94) yields
Z

P

l�1c � vdV ¼ jPjOðhÞ þ
X
f2@P

jfjrP;fp1ðxfÞvFjf þOðhÞ
Z

f

nP;f � vdS
� �

¼ jPjOðhÞ þ
X
f2@P
jfjrP;fp1ðxfÞvFjf : ð96Þ
Taking cj instead of c in (96), considering the corresponding scalar polynomial p1
j ðxÞ and renumbering locally the mF ;P faces

of @P from 1 to mF ;P yields
Z
P

l�1cj � vdV ¼ vFjf
� �T

Rj þ jPjOðhÞ; ð97Þ
where the component of the column vector Rj associated with the face f, or, equivalently, the ðf; jÞ-entry of the matrix R is
given by
Rf;j ¼ Rf;j ¼ rP;f jfjp1
j ðxfÞ: ð98Þ
We are now left to show that NTR is a symmetric and positive definite matrix. As for the previous cases, the crucial point
is that the integration formulas (94) and (95) are exact when the vector field v is constant on P. Let us now take cj instead of c
and set v ¼ ci in (94), and recall that l is assumed to be constant on P. We obtain the following development:
jPjljij ¼ jPj l�1ci
� 	

� l l�1cj
� 	

¼
Z

P

ðl�1ciÞ � cjdV ¼ ðciÞFjP
� �T

Rj ¼ NT
i Rj; ð99Þ
from which it follows that NTR ¼ jPjl, and, eventually that NTR is a symmetric and positive definite matrix.
The previous derivation is related to a discrete Gauss–Green formula or a discrete integration-by-parts formula. Taking

c ¼ lrp1 in (96) yields:
Z
P

v � rp1dV ¼ jPjOðhÞ þ
X
f2@P
jfjrP;fp1ðxfÞvFjf : ð100Þ
Applying the quadrature rule to the integral in the left-hand side and neglecting the OðhÞ terms, we get the following
definition.

Definition 3.4. Let P1ðPÞ=R denote the space of linear scalar functions orthogonal to the constant scalar fields defined on the
polyhedron P. The discrete Gauss–Green relation for the face functions defined on the polyhedron P takes the form:
8v 2 FjP; 8p1 2 P1ðPÞ=R : v ; lrðp1Þ
� 	F

jP

h i
F ;P

:¼
X
f2@P
jfjp1ðxfÞv f : ð101Þ
Now, recalling that in the present setting N j ¼ ðcjÞFjP and using the previous discrete Gauss–Green relation, we get the alter-
native derivation of the algebraic consistency condition:
8v 2 FjP : vTMF ;PN j ¼ v ; cj
� 	F

jP

h i
F ;P
¼ v ; lrðp1

j Þ
� �F

jP


 �
F ;P

 vT Rj; ð102Þ
where Rj is defined through the last identity.

3.3. Local implementation

The implementation of the mimetic finite difference method requires formally the construction and solution of linear sys-
tem (36). To this purpose, we first have to calculate:

� the discrete gradient operator GRAD in (18) and its matrix representation G in (27);
� the discrete curl operator CURL in (19) and its matrix representation C in (28);
� the edge matrix ME of the quadrature formula (29);
� the face matrix MF of the quadrature formula (30).

Then, we have to calculate the two matrices A ¼ CTMFC and B ¼ GTME (see (31)) that form the coefficient matrix of system
(36). Even if A and B are defined by multiplying global matrices, a local construction is still possible by calculating the four
matrices GjP;CjP;ME;P and MF ;P for each polyhedron P, forming the elemental matrices AjP and BjP and then assembling all
local contributions. We describe this algorithm in the rest of this subsection.
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Local construction of the matrix A. For every polyhedron P do the following:

1. calculate the matrix N by using formulas (88) and (89); and the matrix R by using formula (98);
2. calculate the matrix MF ;P by using Proposition 3.1;
3. calculate the local curl matrix CjP by applying (19) to the faces of the polyhedron P;
4. calculate the local matrix AjP ¼ CjP

� 	T
MF ;PCjP by direct multiplication;

5. accumulate the local matrices to the global matrix A:
Please
hedra
A ¼
X
P2T h

SF ;Pð ÞTAjPSF ;P; ð103Þ
where SF ;P is the same as in (44).

Local construction of the matrix B and of the right-hand side of (36). For every polyhedron P do the following:

1. calculate the (polyhedron) matrix N by using formulas (52) and (53); and the (polyhedron) matrix R by accumulating the
face contributions as follows. For any face in @P:
(a) calculate the (face) matrix N by using formulas (73) and (74); the (face) matrix R by using formula (83);
(b) calculate the matrix ME;f by Proposition 3.1;
(c) accumulate the face contribution to the (polyhedron) matrix R in accordance with (67);

2. calculate matrix ME;P by Proposition 3.1;
3. calculate the local gradient matrix GjP by applying (18) to the edges of the polyhedron P;
4. calculate the local matrix BjP ¼ GT

jPME;P and the local right-hand side vector ME;PJEjP by direct multiplication;
5. accumulate the local contribution to the global matrix B by using the formulas:
B ¼
X
P2T h

SE;Pð ÞTBjPSN ;P; ð104Þ

MEJ
E ¼

X
P2T h

SE;Pð ÞTME;PJEjP: ð105Þ
In both equations, SE;P is the same as in (43), and SN ;P is the restriction matrix that extracts the degrees of freedom for the
nodes of P from a node function of N . Note that SN ;P has size mN ;P �mN , where mN ;P is the number of vertices in P.

4. Well-posedness of the method

In this section we investigate the well-posedness of this mimetic finite difference method. The existence and uniqueness
of the mimetic solution ðuh; phÞ is proved in Theorem 4.1. The proof is based on the fact that an edge function u can have zero
discrete curl, i.e., CURLðuÞ ¼ 0, if and only if u is the discrete gradient of a node function. This property is proved in Lemma
4.1 for simply connected meshes.

Definition 4.1. We say that T h is a simply connected mesh if for any closed path v without inner loops formed by a subset of
the mesh edges E there exists a subset Fv of the mesh faces F such that for any mesh edge e that belongs to a face f of Fv there
are only two possible cases: either e belongs to v or there is another face ~f in Fv that shares this edge.

In a simply connected mesh, it is always possible to connect the edges of a closed path through the mesh faces by forming
a ‘‘discrete” surface that has the given path as boundary and does not have any inner hole. Fig. 2 shows two possible situations.
In both plots of this figure, the edges of the mesh path v (here displayed as a sequence of arrows) are connected through an
internal mesh surface using mesh faces. No holes are present in the left plot, while, in the right plot, the discrete surface con-
tains an inner hole delimited by the gray boundary. The surface considered in the right plot cannot be used to qualify the
mesh as simply connected. Note that in two dimensions, a 2D mesh containing a portion depicted in the right plot can never
be simply connected, while in three dimensions other discrete surfaces may exist that connect the edges of v. It is easy to
realize that the property of the mesh of being simply connected reflects the topological property of the domain of being
contractable. For a contractable domain, any reasonable mesh is expected to be simply connected. Thus, the requirement
of being simply connected does not introduce a new constraint on the admissible meshes that are used to formulate the cur-
rent mimetic discretization. Note also that any logically rectangular or cubic mesh in the sense of Hyman–Shashkov [30–32] is
simply connected. Lemma 4.1 is an extension of a similar result for logically rectangular or cubic meshes [30–32] to unstruc-
tured polyhedral meshes.

Lemma 4.1. Let T h be a simply connected mesh, and u 2 E be an edge function. Then, CURLðuÞ ¼ 0 if and only if there exists a
node function q 2 N such that u ¼ GRADðqÞ. The node function q is unique once its value in any node has been set.
Proof. Let u ¼ GRADðqÞ for some node function q. Then, Remark 3.2 implies that CURLðuÞ ¼ 0.
cite this article in press as: K. Lipnikov et al., The mimetic finite difference method for the 3D magnetostatic field problems on poly-
l meshes, J. Comput. Phys. (2010), doi:10.1016/j.jcp.2010.09.007

http://dx.doi.org/10.1016/j.jcp.2010.09.007


Fig. 2. Admissible (a) and non-admissible (b) discrete surfaces according to the requirements of Definition 4.1. In both left and right plots the closed path
that bounds the discrete surface is formed by the edges indicated by the straight arrows that connect the sequence of nodes with a circle. The closed path in
plot (a) is equal to the sum of the elementary circuits of its inner mesh faces while in plot (b) the most inner circuit, here denoted by the dashed polygonal
line, must also be added.
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Let CURLðuÞ ¼ 0. Let v � E be any subset of the mesh edges that form a closed path without loops. Condition CURLðuÞ ¼ 0
implies that
Please
hedra
X
e2v
jejrv;eue ¼ 0; ð106Þ
where rv;e is the sign that takes into account the orientation of e 2 v \ @f with respect to the orientation of the face f, and ue is
the value of u attached to edge e. To prove this fact, let us consider the subset Fv of the mesh faces F that connect the edges of
v in accordance with Definition 4.1. It is easy to see that
0 ¼
X
f2Fv

jfj CURLðuÞð Þf ¼
X
f2Fv

X
e2@f

rf;ejejue ¼
X
e2v
jejrv;eue; ð107Þ
because any ‘‘internal” edge of Fv gives two contributions of opposite sign that mutually eliminates; see again Fig. 2. It is
worth pointing out that Eq. (107) is just a discrete version of the Stokes theorem (‘‘curl” theorem) applied to the ‘‘discrete
surface” Fv with boundary v. Now, we select a node ~v of the mesh T h and we set a real value for this node, i.e., q~v. Then, for
any other node of the mesh we consider an open path vv that connects ~v to v and define the value of the nodal function q
attached to v by the formula:
qv ¼ q~v þ
X
e2vv

jejrvv ;e
ue: ð108Þ
The crucial point of this definition is that the value of qv for any v 2 T h provided by (108) is actually independent of the path
vv. In fact, if we consider a different path v0v still connecting ~v to v, the union of this two paths forms the closed path
v ¼ vv [ v0v. Eq. (106) implies that
X

e2vv

jejrvv ;e
ue ¼

X
e2v0v

jejrv0v ;eue; ð109Þ
where the signs rvv ;e
and rv0v ;e take into account the fact the two paths vv and v0v are run in opposite sense. The derivation of

node function q in (108) implies that
8e ¼ ðv1; v2Þ 2 E; ue ¼
qv2
� qv1

jej ¼ GRADðqÞð Þe; ð110Þ
where the edge e is oriented from node v1 to node v2 (so that rvv ;e
¼ 1) and qv1

and qv2
are the values that q takes at the two

nodes v1 and v2. Therefore, the node function q is uniquely determined by the edge values ue and by the value q~v at the first
mesh node ~v. Note that this latter can always be taken on the boundary and set equal to zero. h

The well-posedness of our numerical method relies on the following result.

Theorem 4.1. Let T h be a simply connected mesh. Then, problem (34) and (35) admits a unique solution.
Proof. Let ðuh; phÞ 2 E0 �N 0 be the solution of the homogeneous problem obtained by imposing J ¼ 0 in (34). We will prove
that uh ¼ 0 and ph ¼ 0. To this purpose, let us consider Eq. (34) with v ¼ uh and Eq. (35) with q ¼ ph. We get
uT
hAuh þ uT

hB
T ph ¼ uT

hC
T� 	

MF Cuhð Þ ¼ 0;
which implies that Cuh ¼ 0 because MF is a positive definite matrix. Substituting Cuh ¼ 0 and BT ¼MEG into Eq. (34) yields:
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vTCTMFCuh þ vTMEGph ¼ vTMEGph ¼ 0;
which implies that Gph ¼ 0 because ME is a non-singular matrix and v is arbitrary. Condition Gph ¼ 0 implies that ph is a
constant node function, i.e., it has the same value in every mesh vertex. From the homogeneous Dirichlet conditions it imme-
diately follows that ph ¼ 0. Then, we observe that condition Cuh ¼ 0 and the result of Lemma 4.1 imply that there exists a
node function qh 2 N such that uh ¼ Gqh. From Eq. (35) with q ¼ qh and BT ¼MEG we have
qT
hBuh ¼ qT

hG
TMEuh ¼ ðGqhÞ

T
MEGqh ¼ 0 ð111Þ
and, thus, that Gqh ¼ 0 because ME is a positive definite matrix. Thus, we get uh ¼ Gqh ¼ 0. This proves the assertion of the
theorem. h
Remark 4.1. The result could obviously have been obtained also by the usual theory of linear saddle-point problems. Indeed,
we should only show that in (34) and (35) the matrix BT 
MEG is injective and that the matrix A 
 CTMFC is positive def-
inite on the kernel of B, that amounts to say: uT

hC
TMFCuh > 0 whenever GTMEuh ¼ 0 and uh – 0. The amount of work, how-

ever, would have been only slightly smaller.
5. Numerical experiments

5.1. Accuracy tests

We investigate the accuracy and the convergence behavior of the MFD method (25) and (26) by numerically solving prob-
lem (13) and (14) on the domain X ¼	0;1½�	0;1½�	0;1½ for the magnetic permeabilities
l�1
1 ðx; y; zÞ ¼

1 0 0
0 1 0
0 0 1

0B@
1CA; ð112Þ

l�1
2 ðx; y; zÞ ¼

1þ y2 þ z2 �xy �xz

�xy 1þ x2 þ z2 �yz

�xz �yz 1þ x2 þ y2

0B@
1CA: ð113Þ
The boundary function g and the right-hand side source term J are set in accordance with the exact solution pðx; y; zÞ ¼ 0 and
ters of mesh families M1–M5 that are used for accuracy test cases. The symbol k is the refinement level, n is the refinement parameter (where
iate), mP is the number of polyhedric cells of the mesh, mF is the number of faces, mE is the number of edges, mN is the number of vertices, and h is the
ze parameter.

k n mP mF mE mN h

0 4 64 240 300 125 2.500 10�1

1 8 512 1728 1944 729 1.250 10�1

2 16 4096 13056 13872 4913 6.25010�2

3 32 32768 101376 104544 35937 3.125 10�2

0 4 120 444 546 233 2.500 10�1

1 8 960 3216 3588 1333 1.250 10�1

2 16 7680 24384 25800 9097 6.250 10�2

3 32 61440 189696 195216 66961 3.125 10�2

0 5 216 1002 1415 630 2.158 10�1

1 10 1210 5331 7200 3080 1.348 10�1

2 15 4096 17552 23145 9690 1.023 10�1

3 20 8820 37261 48600 20160 8.186 10�2

4 25 17576 73502 95075 39150 6.297 10�2

5 30 28830 119791 154200 63240 5.457 10�2

6 35 46656 192852 247205 101010 4.548 10�2

1 888 2865 3153 1177 2.706 10�1

2 11444 35451 37495 13489 1.277 10�1

3 61440 189696 195216 66961 6.487 10�2

0 5 264 1647 2768 1386 2.798 10�1

1 10 1516 10253 17476 8740 1.599 10�1

2 15 4490 31464 53950 26977 1.092 10�1

3 20 9934 71139 122412 61208 7.934 10�2

4 25 18609 134955 232694 116349 6.427 10�2
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uðx; y; zÞ ¼
2p rðxÞ sinð2pyÞ cosð2pzÞ
�r0ðxÞ cosð2pyÞ cosð2pzÞ
�2r0ðxÞ sinð2pyÞ sinð2pzÞ

0B@
1CA; rðxÞ ¼ x3: ð114Þ
To measure the quality of the numerical solution we use the two mesh-dependent norms:
8v 2 E : jjjvjjj2E ¼ v ;v½ 	E ¼ vTMEv ; ð115Þ
8v 2 F : jjjv jjj2F ¼ v ;v½ 	F ¼ vTMFv : ð116Þ
The relative error for the approximation to vector fields u and curlðuÞ provided by uh and CURLðuhÞ are given by:
ErrorðuÞ ¼ jjjuh � uE jjjE
jjjuEjjjE

; ð117Þ

ErrorðcurlðuÞÞ ¼ jjjCURLðuh � uEÞjjjF
jjjCURLðuEÞjjjF

: ð118Þ
Accuracy tests on regular meshes. Plots (a) and (b) display the first mesh (left) and the second mesh (right) of the mesh sequence M1; mesh
ters are reported in Table 1. Plots (c) and (d) show the approximation errors for M1 using the constant magnetic permeability given by (112) and the

magnetic permeability given by (113). In each plot, we report ErrorðuÞ (circles), see Eq. (117), and ErrorðcurlðuÞÞ (squares), see Eq. (118), and two
t lines showing the theoretical slopes OðhÞ (labeled by 1) and O h2

� �
(labeled by 2).

cite this article in press as: K. Lipnikov et al., The mimetic finite difference method for the 3D magnetostatic field problems on poly-
l meshes, J. Comput. Phys. (2010), doi:10.1016/j.jcp.2010.09.007

http://dx.doi.org/10.1016/j.jcp.2010.09.007


K. Lipnikov et al. / Journal of Computational Physics xxx (2010) xxx–xxx 19
Relative approximation errors are measured for a sequence of refined meshes that belong to the five mesh families M1–M5,
which are characterized in Table 1. The numerical results for these mesh sequences are shown in the five Figs. 3–7. In each
figure, plots (a) and (b) show the first two meshes used for the calculations. Plots (c) and (d) show the approximation errors
measured through formulas (117) and (118) for calculations using, respectively, the constant magnetic permeability (112)
and the variable magnetic permeability (113). For the sake of comparison, plots (c) and (d) also show the ‘‘theoretical” linear
and quadratic slopes, respectively labeled by 1 and 2, in the bottom-left corner.

Each mesh in M1 is formed by a regular n� n� n decomposition of X into cubic cells. The first mesh of this sequence cor-
responds to n ¼ 4 and the parameter n is doubled at each mesh refinement; thus, the first two meshes displayed in plots (a)
and (b) of Fig. 3 correspond to n ¼ 4 and n ¼ 8. We consider the mesh family M1 to investigate the presence of a supercon-
vergence effect that seems to be characteristic of mimetic approximations when using regular mesh partitionings. Such an
effect has been already observed in the mimetic approximation of the flux in diffusion problems [14] and convection–diffu-
sion problems [17]. In the present calculations, the superconvergence rate is clearly visible and is reflected by the quadratic
slopes of the error curves.

Each mesh in M2 is still formed by regular cubic cells, but now it also features a refinement in one corner of domain X,
which is obtained by locally doubling the parameter n. We use mesh family M2 to investigate the accuracy of the mimetic
Fig. 4. Accuracy tests on locally refined meshes. Plots (a) and (b) display the first mesh (left) and the second mesh (right) of the mesh sequence M2; mesh
parameters are reported in Table 1. Plots (c) and (d) show the approximation errors for M2 using the constant magnetic permeability given by (112) and the
variable magnetic permeability given by (113). In each plot, we report ErrorðuÞ (circles), see Eq. (117), and ErrorðcurlðuÞÞ (squares), see Eq. (118), and two
straight lines showing the theoretical slopes OðhÞ (labeled by 1) and O h2

� �
(labeled by 2).
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Fig. 5. Accuracy tests on prismatic meshes. Each mesh is generated by orthogonally extruding a mainly-hexagonal 2D base mesh and cutting the extrusion
in the vertical direction by using a set of almost equidistant and randomly tilted planes. Plots (a) and (b) display the first mesh (left) and the second mesh
(right) of the mesh sequence M3. In both plots a part of the mesh around the point (1,1,1) has been removed to show the interior; mesh parameters are
reported in Table 1. Note that the prism faces at the domain boundaries orthogonal to the X � Y reference plane are degenerate, i.e., are formed by two
parallel sub-faces. Plots (c) and (d) show the approximation errors for M3 using the constant magnetic permeability given by (112) and the variable magnetic
permeability given by (113). In each plot, we report ErrorðuÞ (circles), see Eq. (117), and ErrorðcurlðuÞÞ (squares), see Eq. (118), and two straight lines showing
the theoretical slopes OðhÞ (labeled by 1) and O h2

� �
(labeled by 2).
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formulation when applied to a sequence of non-conforming mesh partitions. It is worth mentioning that one of the most
remarkable advantages offered by mimetic formulations is the capability of treating non-conforming meshes without the
introduction of hanging nodes that would require a special treatment in the scheme. A direct comparison of the numerical
results in plots (c) and (d) of Fig. 4 to the ‘‘theoretical” slopes in the bottom-left corners reveals a quadratic convergence rate.
Nonetheless, since a thorough theoretical comprehension of superconvergence of mimetic schemes still misses, we cannot
guarantee that this quadratic rate will persist if further refinements are considered.

Each mesh in M3 is composed by orthogonal prisms with a polygonal base. These prisms are obtained by extruding a 2D
polygonal base mesh in the xy reference plane along direction z onto a set of almost equispaced horizontal layers. The 2D
base mesh is built in two steps. First, we generate the Voronoi cells for the ðnþ 1Þ � ðnþ 1Þ set of 2D points ðxi;j; yi;jÞ given
by
Please
hedra
xi;j ¼ ni þ ð1=10Þ sinð2pniÞ sinð2pgjÞ; i ¼ 0; . . . ; n; ð119Þ
yi;j ¼ gj þ ð1=10Þ sinð2pniÞ sinð2pgjÞ; j ¼ 0; . . . ; n; ð120Þ
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Fig. 6. Accuracy tests on unstructured hexahedral meshes. Each mesh is obtained by partitioning into four hexahedrons the tetrahedral cells of an
underlying Delaunay mesh provided by the mesh generator tetgen. Plots (a) and (b) display the first mesh (left) and the second mesh (right) of the mesh
sequence M4. In both plots a part of the mesh around the point (1,1,1) has been removed to show the interior; mesh parameters are reported in Table 1.
Plots (c) and (d) show the approximation errors for M4 using the constant magnetic permeability given by (112) and the variable magnetic permeability
given by (113). In each plot, we report ErrorðuÞ (circles), see Eq. (117), and ErrorðcurlðuÞÞ (squares), see Eq. (118), and two straight lines showing the
theoretical slopes OðhÞ (labeled by 1) and O h2

� �
(labeled by 2).
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where ni ¼ ih;gj ¼ jh and h ¼ 1=n. Second, we move each interior mesh node v to the center of mass of a triangle formed by
the centers of the three Voronoi cells sharing v. To generate 3D prisms, we consider n horizontal layers for even n and nþ 1
horizontal planes for odd n, which are equidistant and parallel to the reference xy plane. Then, to get a set of oblique layers,
the slope of each plane is randomly modified by an amount that is small enough to ensure that the layers do not intersect
inside X. The first two meshes, displayed in plots (a) and (b) in Fig. 5, correspond to n ¼ 5 and n ¼ 10. The convergence rate
that is visible in plots (c) and (d) is initially close to 2 and, then, approaches 1, thus confirming the fact that this mimetic
scheme is linearly convergent on a sequence of very general meshes.

Each mesh in M4 is composed by irregularly shaped hexahedral cells that are not located on a logically cubic network. Each
mesh is provided by decomposing the tetrahedral cells of an underlying Delaunay tetrahedralization of X into four hexahe-
drons. The Delaunay meshes are provided by the mesh generator tetgen. As shown by plots (a) and (b) in Fig. 6, a refined
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Fig. 7. Accuracy tests on randomly generated Voronoi meshes. Each mesh is obtained by taking the Voronoi diagrams of a set of points that are initially
regularly distributed over the domain and then randomly displaced. The Voronoi cells that overlap the domain boundary are clipped using the Sutherland–
Hodgman algorithm. Plots (a) and (b) display the first mesh (left) and the second mesh (right) of the mesh sequence M5. In both plots a part of the mesh
around the point (1,1,1) has been removed to show the interior; mesh parameters are reported in Table 1. Plots (c) and (d) show the approximation errors
for M5 using the constant magnetic permeability given by (112) and the variable magnetic permeability given by (113). In each plot, we report ErrorðuÞ
(circles), see Eq. (117), and ErrorðcurlðuÞÞ (squares), see Eq. (118), and two straight lines showing the theoretical slopes OðhÞ (labeled by 1) and O h2

� �
(labeled by 2).
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mesh is not nested into one of the coarser meshes. A linear convergence rate is clearly shown by the numerical errors (117)
and (118) reported in plots (c) and (d) of Fig. 6, i.e., for both constant and variable magnetic permeabilities.

Each mesh in M5 is composed by irregularly shaped polyhedral cells. These polyhedral cells are the Voronoi diagrams of a
set of points that are almost regularly distributed over the domain X. The set of points is generated through the following
two steps. First, we take the barycenters of the cubic cells of an n� n� n regular decomposition of domain X; second, each
point is moved to a new position inside the corresponding cell by a random displacement. The amount of the displacement is
small with respect to 1=n, the size of the underlying cubic cells, in order to avoid pathological situations like too small cells,
or too small faces, or too small edges, after the Voronoi mesh construction is performed. The Voronoi cells that extend over
the domain boundary are clipped at the boundary surfaces by using the Sutherland–Hodgman algorithm [45]. The first two
meshes of the mesh sequence M5, which are displayed in plots (a) and (b) of Fig. 7, are generated by taking n ¼ 5 and n ¼ 10,
while the two remaining meshes are generated by taking n ¼ 15 and n ¼ 20. As for mesh sequences M3 and M4, it is evident
that the refined meshes of M5 are not nested inside coarser meshes. Approximation errors, measured through formulas (117)
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Fig. 8. Left picture shows trace of the computational mesh for the C-shaped magnet. Right picture shows orientation of the magnetic induction B inside the
magnet.
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and (118), are displayed in plots (c) and (d) and the error curves display a linear convergence rate for calculations using both
constant and variable magnetic permeabilities.

5.2. C-shape magnet test

In this section we consider a C-shaped electromagnet. The model of the magnet consists of a copper slab wrapped around
the core of a ferromagnetic material (see Fig. 8). The core is a cylinder of electric steel bent to form a C-shape. The core en-
hances the magnetic field produced by the circular current J running in the copper. We use J ¼ ð�z0 � z;0; x� x0ÞT where x0

and z0 are the coordinates of a y-line which is the center of the steel cylinder. The relative permeabilities of copper and elec-
trical steel are lc ¼ 1� 6:4 � 10�6 and ls ¼ 4000, respectively.

The radius of the cylindrical core is 0.5 and thickness of the copper is 0.5. The magnet is embedded into a box filled with
air and the homogeneous Dirichlet boundary condition u ¼ 0 is imposed on the box boundary. The distance between the core
and the box boundary is about 1. The model is meshed with a quasi-uniform hexahedral mesh (using package CUBIT) with
about 50,000 elements and points. The trace of the computational mesh is shown in Fig. 8. The size of the algebraic problem
is 206,813. Note that a tetrahedrization of this mesh will approximately double the number of unknowns.

The right picture in Fig. 8 shows the magnetic induction B ¼ curlðuÞ. The arrows plotted at mesh points indicates the ex-
pected alignment of the magnetic field with the ferromagnetic core.

6. Conclusion

In this paper, we proposed an MFD method that extends the mimetic formulation to the numerical treatment of magne-
tostatic field problems. In particular, we developed an MFD method for calculating the magnetic vector potential u that sat-
isfies the solenoidal condition divðuÞ ¼ 0. Our mimetic formulation uses degrees of freedom attached to the vertices and
edges, and employs natural discrete operators that mimic the curl and the gradient operator of the differential setting. Using
the discrete curl and gradient operators and two suitable quadrature rules for the numerical discretization of volume inte-
grals on the computational domain, we provide a numerical discretization of the div–curl variational formulation of mag-
netostatics. These quadrature rules use the edge and face degrees of freedom, and the resulting inner product takes the
form of a vector–matrix–vector multiplication where the matrix is derived from an algebraic consistency condition that gen-
eralizes the usual L2 inner product construction of the MFD method. We proved the existence and uniqueness of the numer-
ical solution by means of an argument that generalizes the concept of logically rectangular or cubic meshes by Hyman and
Shashkov to the case of unstructured polyhedral meshes. Finally, the accuracy of the method is shown by numerically solving
a set of academic problems and then applying it to a real engineering problem.
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