
------------------------ 
§ Correspondence to: P. Ceresa, European Centre for Training and Research in Earthquake Engineering (EUCENTRE), 
Via Ferrata 1, 27100 Pavia, Italy. Phone: +39 0382 516962; Fax: +39 0382 529131; Email: paola.ceresa@eucentre.it 
 

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS 
 

Analytical modelling of a large-scale dynamic testing facility 
 

P. Ceresa1, §, F. Brezzi2, G.M. Calvi3, R. Pinho3 
1European Centre for Training and Research in Earthquake Engineering (EUCENTRE), Pavia, Italy 

2Istituto Universitario di Studi Superiori (I.U.S.S.), Pavia, Italy 
3University of Pavia, Department of Structural Mechanics, Pavia, Italy 

 
SUMMARY 

An analytical model which aims at reproducing the response of a large-scale dynamic testing facility, that is a system 
composed by the specimen/shaking-table/reaction-mass/airbags/dampers/soil, is developed. The Lagrangian of the 
system is derived, under the assumption of large displacements and rotations. A set of four nonlinear differential 
equations is obtained and solved with numerical methods. Preliminary verifications of the derived model are carried 
out by reproducing both well-known results in literature as well as those of a lumped model employed in the design of 
an existing dynamic testing facility. The case-study for validating the nonlinear equations of motion is the shaking 
table of the EUCENTRE Laboratory.  
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1. INTRODUCTION 

In order to reproduce historical earthquake ground motion using a seismic simulator, the dynamics 
of the simulator and test structure must be accounted for. Methods for the dynamic modelling of 
hydraulically actuated systems have been developed over a number of decades (e.g., see ref. [1]). 
Of those that have discussed the dynamics of seismic simulators, the number that has concentrated 
on the dynamics of uniaxial seismic simulators is relatively small (e.g., see ref. [2-14]). The 
likelihood that structural compliance in the test rig will affect performance has not often been 
considered. Moreover, reaction mass dynamics have been modelled in one case only [7], leading to 
a linear analytical model of a uniaxial, servo-hydraulic, stroke controlled shaking table system 
using jointly structural dynamics and linear control theory. 

In the aforementioned references, there is a wide variation in the complexity of models and in 
the sophistication of the actuator feedback control system. The proposed research does not deal 
with the control of shaking tables, even if it is recognised that seismic testing of large structures 
presents a significant control challenge, and is the subject of academic research [10-14] as well as 
the application of advanced industrial control techniques [9]. This research aims at deriving a 
model capable of simulating the behaviour of a shaking table that could be subjected to possible 
large rotations. Therefore, this research study aims at formulating and studying a deterministic 
model which describes the behaviour of a large-scale dynamic testing facility including the effects 
of the interaction between the specimen/shaking-table/reaction-mass/isolation-damping-
systems/foundation-soil. If the shaking table is a movable system in a rotating frame of reference, 
additional effects, such as the Coriolis’ acceleration, could have a great influence on the expected 
response of the dynamic testing facility. Moreover, the complexity of the interaction between the 
shaking table and the movable support system depends on the dynamic impedances of the soil, on 
the stiffness coefficients related to the isolators, or even the damping coefficients of the dampers. 
The first objective of this study is the development of a model for a shaking table designed for 
performing single-axis tests but that could be affected by the motion (i.e., the rocking) of the 
reaction mass, resulting in a set of high-order nonlinear equations suitable for numerical solutions 
and applicable to a wide range of dynamic testing facilities. The proposed model is called nonlinear 



 

since it deals with nonlinear kinematics due to the possible rocking of the support system (i.e., 
reaction-mass/isolation-damping-systems/foundation-soil). The nonlinear kinematics is considered 
in the formulation since a large rotation associated with an intended uniaxial input could have a 
very strong influence on the response of the shaking table and the specimen. A further objective is 
the validation of the model identifying the parameters that mainly affect the facility response. 
Finally, this research aims at being useful for understanding the causes of the complex behaviour of 
a large dynamic testing facility and helping in future experimental campaigns. In order to reach 
these objectives the present work is organised in the different phases, described in the following 
sections: (i) derivation of the Lagrangian of the dynamic system, assuming large displacements, (ii) 
preliminary verifications of the developed model deriving well-known results in literature and 
studying the accuracy of both equations and numerical solver, (iii) preliminary validations of the 
analytical solutions with the measured responses of the large-scale shaking table of the 
EUCENTRE Laboratory [15].  

2. ANALYTICAL MODEL DERIVATION 

The development of a dynamic model (i.e. the mathematical description) of the system to be 
controlled is fundamental for reaching the overall goal of feedback control. As stated by Franklin et 
al. [16], the term model, as it is used and understood by control engineers, means a set of 
differential equations that describe the dynamic behaviour of the system. The use of Lagrange’s 
equation provides a systematic unified approach for handling a broad class of physical systems, no 
matter how complex in structure they may be [17]. For this reason, the latter is applied for deriving 
the equations of motion of a large-scale dynamic testing facility, as presented in the next sections.  

The dynamic testing facility herein considered refers to a typical large shaking table system that 
is a platform excited with servo-hydraulic actuators (Fig. 1a) to generate artificial earthquakes and 
other dynamic testing signals of interest in the laboratory. The platform structure is most 
commonly a welded up steel structure with torsionally stiff shell and internal stiffening honeycomb 
(Fig. 1b). The specimen to be tested is fixed to the table surface with preloaded bolts and tie roods. 
The servo-hydraulic actuator is designed for low friction with full angular swivelling spherical 
bearings at the head and base. The reaction mass is constructed of reinforced concrete. Some site 
conditions allow the reaction mass to rest directly on the supporting soil, but for environmental and 
neighbourhood considerations, the reaction mass is often isolated by air suspension springs and 
damped by heavy duty automotive shock absorbers [18]. 

  
(a) (b) 

Fig. 1. Shaking table (a) excited by a servo-hydraulic actuator (b) and built as a honey-comb like 
network of stiffening diaphragms [15] 



 

The dynamic performance of the shaking table system can be significantly affected by potential 
regions of flexibility [19], e.g., the flexibility of the reaction mass on the suspension system/shock 
absorbers system; the reaction mass internal flexibility; the axial and lateral bending stiffness of the 
actuators; the hydraulic oil column bulk modulus stiffness; the axial, torsional and lateral bending 
stiffnesses of any torsion tubes or other restraining system; and, finally, the flexibility of the 
platform. The rotational motion of a large dynamic testing facility could be exacerbated by the 
large overturning moment due to the specimen located on the shaking table (whose interaction with 
the shaking table dynamics has been studied in [14, 19]). Furthermore, the large lateral 
displacements and the powerful performance in terms of both velocity and acceleration of the 
shaking table could emphasise the effects of the interaction between the support system and the 
shaking table. Finally, the motion of the reaction mass is extremely affected by the deformability of 
the soil and its dynamic impedance functions and, to the authors’ knowledge, this issue has never 
been taken into account in literature. 

All these aspects could cause the presence of non-negligible nonlinear terms in the equations of 
motion of the dynamic testing facility. These considerations encouraged this research work on the 
analytical modelling of a large dynamic testing facility in order to account for nonlinear kinematics 
with the application of the motion composition rules (the velocity composition rule and Coriolis’ 
theorem). Hence, nonlinear equations of motion of the specimen/shaking-table/reaction-
mass/isolation-damping-systems/foundation-soil system are derived using the Lagrangian 
approach, with the assumption of large displacements. It follows that the obtained model is 
developed for any given uniaxial shaking table whose response could be strongly affected by the 
possible rocking of the reaction mass. Two methods are followed for the derivation of the 
analytical model - the energy approach and the direct method of derivation of the equations of 
motion. Fig. 2 represents a schematic view of the dynamic facility to be analytically modelled. It 
represents a typical large-scale uniaxial shaking table system where the platform is moved by a 
servo-hydraulic actuator and the excitation forces are reacted by a large reaction mass, as 
previously introduced. Two main systems are represented in Fig. 2:  
  System I, which includes the reaction mass, the springs and the dampers that could represent the 

stiffness and the damping coefficients of both the isolation system and the surrounding soil,  
  System II, composed by the shaking table and the specimen (or payload) to be tested. 
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Fig. 2. Schematic view of the large dynamic testing facility to be analytically model 

Six generalised coordinates Qi were initially considered (Fig. 2): three for the system I and three for 
the system II. In particular, Q1 is the absolute displacement along the x- direction, Q2 is the absolute 
y-displacement, Q3 is the absolute rotation in the (x, y) plane, Q4 is the relative x-displacement, Q5 
is the relative y-displacement, Q6 is the relative rotation in the (x, y) plane. The displacements Q1, 



 

Q2 and the rotation Q3 characterise the motion of system I, whereas the displacements Q4, Q5 and 
the rotation Q6 represent the relative motion of system II with respect to the motion of system I. The 
out-of-plane rotation was not taken into account since a two dimensional model is studied in this 
formulation phase.  

For the sake of simplicity, the first introduced assumption is that the payload is perfectly 
restrained to the platform and it moves accordingly to the shaking table motion. Therefore, the 
relative vertical displacement Q5 and the relative rotation Q6 are disregarded in this phase of the 
formulation, whereas the degree of freedom (DOF) Q3 becomes the rotation of both system I and 
system II. Hence, four are the degrees of freedom accounted for the formulation of the nonlinear 
analytical model (Fig. 2): three generalised coordinates of the centre of gravity of the system I – Q1, 
Q2, and Q3 – and only one coordinate for the centre of gravity of the system II – Q4. Four nonlinear 
differential equations of motion have to be derived. It is worth noting that the springs and dampers 
introduced for modelling isolation and damping systems, as well as the impedances of the soil, are 
not lumped to the centre of gravity of the system I. They are distributed along the bottom surface of 
the reaction mass and could be located with any orientation in the (x, y) frame of reference as it will 
be explained in the following sections. 

2.1. Derivation of the equations of motion using Lagrange’s formulation 

The Lagrange’s equation of motion for a system with n degrees of freedom can be stated as [20]: 
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where L is the Lagrangian of a system computed as the difference between the total kinetic energy 
(T) and the total potential energy (V), D is the dissipation function, Qi the generalised coordinate 
and iQ&  its time derivative (i.e., the generalised velocity), and *

iQ the generalised force applied at 
the coordinate i. Since ii QV &∂∂ is equal to zero, Eq. (1) can be rewritten as:  
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In the following sections the homogeneous matrix approach proposed by Legnani et al. [21, 22] is 
applied since it allows the writing of the dynamics equation of a system of rigid bodies following 
Lagrange’s method. This methodology was originally developed to study kinematic and dynamic 
chains of rigid body systems in the form of a consistent method employing 4×4 matrices. As stated 
by Legnani [22], the resulting notation is succinct, expressive and convenient for the automatic 
calculation. In fact, the required position (M), velocity (W) and acceleration (H) matrices allow 
handling both linear and angular terms at the same time. The dynamic requires the use of the 
further matrix, usually called pseudo inertial matrix (J), describing the mass distribution of the 
body. The direct application of this methodology is presented in the following sections, where all 
the ingredients required for writing Eq. (2) are computed after the derivation of the matrices M, W, 
H and J for system I and system II, respectively. Three frames of reference are used during the 
formulation: (X1, Y1, Z1) which is the absolute inertial frame of reference; (X2, Y2, Z2) whose origin 
corresponds to the centre of gravity of the reaction mass (i.e., system I); (X3, Y3, Z3) whose origin is 
located at the centre of gravity of the shaking table-specimen (i.e., system II). 
2.1.1. Derivation of the kinetic energy T. With reference to Eq. (2), the total kinetic energy T is 
given by the sum of the kinetic energies of both system I (TI) and system II (TII): 

T=TI+TII (3)



 

Both energy approach and direct method were employed for the derivation of T, leading to the 
same final expression. For sake of brevity, only the final results obtained with the energy approach 
are presented in this section. The expressions of TI and TII are derived in the reference frame whose 
origin corresponds to the centre of gravity of system I, and expressed as a function of velocity and 
inertia matrices by means of the trace operator: 
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where W12(1) and W13(1) are the velocity matrices of system I and system II, respectively, in the 
reference frame (X1, Y1, Z1), JI(2) is the pseudo inertial matrix of system I in the reference frame (X2, 
Y2, Z2), and JII(1) is the pseudo inertial matrix of system II in the reference frame (X1, Y1, Z1). 

With respect to the frame of reference (X1, Y1, Z1), the matrices that characterise the motion of 
system I are introduced in Eq. (5). The upper 3×3 sub-matrix of M12(1) represents the rotational 
component of motion, whereas the 3×1 vector contains the translational components of motion. 
With reference to the coefficients of the matrix H12(1), the second time derivative, 3Q&& , represents 
the real angular acceleration whereas the square of the first time derivative, 2

3Q& , is the square of the 
angular velocity and stands for the Coriolis’ acceleration that cannot be neglected to correctly 
describe the motion of a body in a rotating frame element.  
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The velocity matrix of the system II with respect to reference frame (X1, Y1, Z1) is obtained with the 
following transformations due to Rivals’ theorem or velocity composition rule: 

)1(23)1(12)1(13 WWW +=  (6)
where W12(1) is the drag component derived in Eq. (5), while the relative velocity is given by: 

)1(21)2(23)1(12)1(23 MWMW ⋅⋅=
 (7)

The velocity matrix W23(2) as well as the position M23(2) and acceleration H23(2) matrices of the 
system II in the frame of reference (X2, Y2, Z2) are obtained as follows: 
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Therefore, the final expression of the velocity matrix W13(1) is: 
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The acceleration matrix of the system II with respect to the reference frame (X1, Y1, Z1) is obtained 
by means of the Coriolis’ theorem that is the acceleration composition theorem in the following 
matrix notation: 

)1(23)1(23)1(12)1(12)1(13 2 HWWHH +⋅⋅+=  (10) 



 

The addenda H12(1) and W12(1) are introduced with Eq. (5), W23(1) is defined in Eq. (7), and finally: 
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After computations, the absolute acceleration H13(1) is derived as in Eq. (12). 
According to Eq. (4), pseudo inertial matrices have to be introduced. The mass distribution of 
system I and system II can be represented by symmetric inertial matrices JI and JII, respectively. 
The pseudo-tensor of inertia of system I in the reference frame (X2, Y2, Z2) is written in Eq. (13), on 
the left, whereas the pseudo-matrix of inertia of the system II with respect to the reference frame 
(X3, Y3, Z3), whose origin is located in the centre of mass of system II, is on the right of Eq. (13). 
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Using the general transformation law that works for the pseudo-tensor of inertia [22], the mass 
distribution of the system II in the frame of reference (X1, Y1, Z1) is computed with the relationship: 

JII(1) = M12(1) J II(2) M12(1)
T= TT
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where M23(2) is computed according to Eq. (8) and the remaining addenda are defined as: 
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with mI and mII masses of system I and system II, whereas the Ixx, Iyy, Izz, Ixy (=Iyx), Iyz (=Izy), Ixz (=Izx) 
differ from the usual moments of inertia since they are defined as: 

Ixx =∫x2 dm Iyy =∫y2 dm Izz =∫z2 dm Ixy =∫xy dm Iyz =∫yz dm Ixz =∫xz dm (15) 

Knowing that the trace of a square matrix is the sum of its diagonal elements, the final expression 
of the kinetic energy T is computed in Eq. (16) where the first row refers to the kinetic energy of 
the system I, and the remaining addenda represent the kinetic energy of the system II. 
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2.1.2.  Derivation of the potential energy V. The total strain energy V is given by several 
contributions. First of all, the gravity, the potential energies related to the actuator (modelled with a 
spring whose stiffness is named k4), the isolation system and the soil (modelled with the 
introduction of i springs, with stiffness ki for i =1, ns where ns is the total number of springs). An 
additional contribution to V should be the stiffness due to the system of bearings (i.e., guides, 
actuators, hydrostatic bearings with pressurised oil) that allow the sliding motion of the shaking 
table. However, in this phase of the formulation, this contribution is not considered. With reference 
to Fig. 2, the total potential energy is derived after the computations of the following contributions: 

4_ kspringsiP VVVV ++=  (17) 

The addendum VP represents the potential energy related to the gravitational loads for system I and 
system II, respectively: 
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where Hg is the matrix of gravity acceleration whose only non-null component is in y-direction: -gy. 
For system I, the potential energy is computed knowing JI(1) in the frame of reference (X1, Y1, Z1). 
The latter is computed after JI(2) derived in Eq. (13). Applying the transformation law of this tensor 
from frame (X2, Y2, Z2) to (X1, Y1, Z1) and the definition of the matrix M12(1) in Eq. (5), the final 
expression of this pseudo-tensor of inertia is obtained: 
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The computation of the potential energy of system II requires the knowledge of the tensor JII(1), 
already defined in Eq. (14). It follows that, after calculations, the potential energy is obtained as: 

]sin[V 2342 QmQQmgQmg IIIIyIyP ++=  (20) 

With reference to Eq. (17), the elastic potential energy Vi_springs must be added to V. The springs 
could generally represent the stiffnesses of both the isolation system and the soil (Fig. 2). Let ūi 
denote the displacement of the spring whose stiffness is ki, the potential energy of the ns springs 
can be simply written as:  
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The displacement ūi, which represents the elongation or the shortening of the spring, is determined 
knowing the old coordinates and the transformation matrix [T] that accounts for the rotation of the 



 

new reference frame with respect to the old one. Since the orientation of each spring is defined by 
the angle αi, the displacement ūi is given by: 
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Substituting ūi in Eq. (21), the final expression of Vi_springs that works for any type of springs, 
including the ones that represent the stiffness of the soil, is written as follows: 
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The potential energy related to the stiffness of the actuator is calculated as a function of the spring 
elongation ∆l which is the difference between the displacements of two ends of the actuator (i.e., 
the joints 2 and 1 in Fig. 2): 
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where k4 is the translational spring that models the stiffness of the servo-hydraulic actuator. 
Considering a time interval (t-to), the displacements of joint 1 can be computed as the difference 
between the coordinates of point 1 at time t and to, being the latter the initial time; similarly, for the 
displacement of joint 2. Since the frame of reference rotates of Q3, a transformation matrix must be 
introduced to compute the coordinates of points 1 and 2 in the rotated frame of reference. After 
computations, the transformed coordinates U1 and U2 of points 1 and 2 are computed as a function 
of the coordinates ( 1x , 1y ) and ( 2x , 2y ) of point 1 and 2, respectively, at time to: 

3313311 sin)(cos)( QQxQQyU +−=  

33432334322 sin)sin(cos)cos( QQQQxQQQQyU +++−=  
(25) 

Therefore, the potential energy related to spring of stiffness k4 is given by the following expression: 
2
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where 12 xxx −=  and 12 yyy −= . In summary, the total potential energy V is given by the sum of 
the previously computed contributions of the Eqs. (20), (23) and (26): 
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2.1.3. Derivation of the dissipation function D. Assuming that the dissipated energy is a pseudo-
potential energy, it can be introduced into Eq. (2). As stated in Section 2.1.2, the contribution given 
by the damping of the bearings that allow the sliding motion of the shaking table is not accounted 
for in this step of the formulation. Therefore, D is computed as the sum of the energy dissipated by 
the dampers and the actuator (Fig. 2): 

4_ ddampersj DDD +=  (28) 

The general expression of the energy dissipated by the nd external dampers that are immediately 
beneath the reaction mass and characterized by damping coefficients dj, is given by: 
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2
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where jv  is the velocity associated to each damper. With reference to Fig. 2, the velocity vector is 
computed as a function of the horizontal and vertical velocities of system I in the absolute frame of 



 

reference, and the angular velocity of both system I and system II. If αj is the slope of j-th damper, 
the velocity becomes equal to:  

jjjjj QxQQyQv αα sin)(cos)( 2313
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Therefore, the dissipated function Dj_dampers is given by: 
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An additional contribution is given by the dissipation factor related to the actuator (Fig. 2): 
2
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where d4 is the viscous damping, 2U&  and 1U&  are the time-derivatives of the displacements in Eq. 
(25), representing the velocities of points 2 and 1, respectively. After computations, Dd4 is equal to: 
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Therefore, the total dissipation function of the dynamic system is derived by: 
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2.1.4. Derivation of the generalised applied force *
iQ . In this case-study, the applied forces are 

internal forces due to the servo-hydraulic actuator, along the direction of the actuator (Fig. 2), that 
is along the degree of freedom Q4. Therefore, the force due to the actuator could be defined as a 
“follower load” which refers to a force applied in a direction tangential to the centre line of the 
actuator so that it follows the motion of the system as it deforms. If the overall system rotates of 
Q3, the same rotation is suffered by the load applied by the actuator. However, since the applied 
forces are follower loads, they could not be derived from a potential energy. If the input signal is an 
acceleration ü (i.e., a transient signal, an accelerogram), the Lagrangian force applied to the system 
II is easily calculated as *

4Q = |mII ü|. It follows that the components of the Lagrangian forces 
related to the four considered degrees of freedom are: 
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where l is the lever arm between the line of load application and the centre of mass of the system I. 

2.2. Derived nonlinear differential equations of motion 

After the previous computations for deriving the expressions of the kinetic energy T (Section 
2.1.1), the potential energy V (Section 2.1.2), the dissipation function D (Section 2.1.3) and, finally, 
the generalised components of forces *

iQ  (Section 2.1.4), the differential nonlinear equations for 
describing the motion of the dynamic system are obtained as second-order Lagrange equations, 
considering four generalized coordinates. Writing Eq. (2) with respect to the coordinate Q1, Q2, Q3 
and Q4, respectively, the four nonlinear differential equations (36)-(39) are obtained. With respect 
to Q1: 
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With respect to Q2:  
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With respect to Q3: 
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 With respect to Q4: 
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With reference to Fig. 2, the symbols used in the four equations are defined as follows: 
 mI is the mass of the reaction mass (system I); 
 mII is the mass of the shaking table and the test specimen, if any (system II); 
 II = Ixx,I +Iyy,I and III = Ixx,II +Iyy,II 
 gy is the gravity acceleration; 
 xi, yi, αi  are the coordinates and the slope of the i-th spring; 
 xj, yj, αj are the coordinates and the slope of the j-th damper; 
 k4, d4 are the stiffness and the damping of the servo-hydraulic actuator; 
 12 xxx −=  and 12 yyy −= , where 1 and 2 refer to the ends of the servo-hydraulic actuator. 

Eqs. (36)-(39) form a complete system of differential equations describing the motion of a large 
dynamic testing facility designed for performing single-axis tests but that could be affected by 



 

possible large rotations. The solution strategies and some of the preliminary verifications of the 
developed analytical model, as well as the comparisons with the experimental data of a real case-
study are presented in the following sections. 

3. PRELIMINARY VERIFICATIONS 

An additional aim of this study is the computation of the solutions of the above nonlinear 
differential equations. There are two ways for solving the dynamic equations of a system model 
[16]. For a quick and approximate solution, linear analysis techniques can be used. The resulting 
approximations of system response provide insight into why the solution has certain features and 
how the system might be changed to modify the response in a desired direction. In contrast, a 
precise picture of the system response typically calls for numerical techniques to solve the system 
equations.  

To facilitate and systematise the solution of ordinary constant-coefficient differential equations, 
the Laplace-transform method is used extensively [17]. However, to the authors’ knowledge, the 
nonlinearity of the equations is not explicitly dealt with Laplace transforms. Therefore, the 
solutions of the Eqs. (36)-(39) could be found with the Laplace transforms only after a linearization 
of the problem. Since the nonlinearity of the dynamic model cannot be neglected, numerical 
solution methods, capable of solving linear as well as nonlinear differential equations, have been 
investigated. For numerically solving the derived differential equations of Section 2.2, the fourth 
order Runge-Kutta methods are employed (“ode45” solver in Matlab [23]) because of their good 
efficiency. They provide solutions which are comparable in accuracy to Taylor series solution in 
which higher order derivatives are retained. Higher order differential equations can be treated as if 
they were a set of first-order equations. These methods allow one to vary the step size and use only 
initial values.  

However, before solving the four differential nonlinear equations of motion (36)-(39), some 
well-known results are derived after the introduction of assumptions that simplify or “linearise” 
them. If well-known results can be derived from very complex systems of equations, this could be 
considered as a first proof of the accuracy of the model itself. In the next section, some of the 
linearised models derived from Eqs. (36)-(39) are introduced. Moreover, the verification of the 
accuracy of both the equations and the numerical solver is discussed in Section 3.2. Then a 
comparison with a lumped mass model used in the design phase of an existing large-scale dynamic 
testing facility is presented (Section 3.3).  

3.1. Some “linearisation” of the derived nonlinear equations of motion 

As mentioned above, it is useful to linearise models in order to compare results with those of well-
known systems. In the next paragraphs, only two of the derived linearised models for 
representative systems are introduced.  
a) System with two degrees of freedom – Q1 and Q4. The first considered configuration is 
characterized by a rotation Q3 equal to zero. The second introduced assumption is that the total 
strain energy V and the dissipation function D are nil. Therefore, the previously derived Lagrangian 
assumes the following expression in (40). After the assumptions of free-body conditions, the 
equation of motion (41) for the horizontal translation represents the first well-known outcome: 
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It results that the generalized acceleration 1Q&&  of the system I approaches to zero if the total mass 
mtot approaches to infinity, or even if mI >> mII. This implies that the acceleration of the reaction 
mass system decreases increasing its mass (mI) with respect to the movable mass of shaking table-
specimen system (mII). This result is intuitive and well-known in literature, and justifies the fact 
that the reaction mass should be typically 30 to 50 times the specimen-shaking table mass, as stated 
by Clark [18]. This advice has been followed in the majority of the designs of the existing shaking 
tables [15] in order to reduce as much as possible the motion of the reaction mass, due to the 
motion transmitted by the shaking table. 

b) System with two degrees of freedom – Q4 and Q3. The second configuration is derived from the 
Eqs. (36)-(39), setting the generalized translational coordinates of the reaction mass (Q1, Q2) equal 
to zero and, consequently, the corresponding velocities. In Fig. 3 are compared two cases of study 
for verifying the accuracy of the analytical model. The obtained equations of motion represent the 
well-known equations of classical mechanics [20] describing the motion of a lumped mass 
restrained to slide along a rod (that is, a predefined direction) which rotates around its centre of 
gravity with rotational velocity 3Q& . The first set of equations is derived for the simple model in 
Fig. 3(a) and compared with the one obtained with a direct formulation by Goldstein [20], leading 
to the same final results. 
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Fig. 3. Comparisons of two cases of study: (a) a lumped mass mII restrained to slide along a rod 
which rotates around its centre of gravity, and (b) the dynamic system with two DOFs – Q4 and Q3.  

Then, the model in Fig. 3(b) is studied, with k4 representing the stiffness of the servo-hydraulic 
actuator along the sliding direction of the movable mass mII - as the spring K in Fig. 3(a). The 
derived equations of motion are: 

⎪⎩

⎪
⎨
⎧

=+++++

=−+−

02)]()[(

0)(

4343
2
4,,,,

44
2
344

QQQmQQmIIII

QlkQQmQm

IIIIIIyyIIxxIyyIxx

IIII

&&&&

&&&
 (42) 

These equations are similar to the ones describing the motion of the model in Fig. 3(a), and, hence, 
to the expressions of classical mechanics [20]. This represents a proof of the accuracy of the 
derived analytical model. Finally, it has to be pointed out that the studied system, even if very 
simple, reveals a significant interaction between the considered degrees of freedom since the 
rotation Q3 could affect the sliding motion Q4 with non-negligible effects, and vice-versa. 

3.2. Verification of the accuracy of both the equations of motion and the numerical solver 
The verification of the accuracy of the Eqs. (36)-(39) is firstly carried out applying the following 
mathematical procedure. Known and simple solutions are imposed to the equations of motion, and 
the forces satisfying the equilibrium are derived. These forces become the external loads to be 
applied to the system of equations and the corresponding solutions are calculated. If the latter are 



 

comparable with the initially imposed solutions within an acceptable tolerance, this is a proof that 
the equations of motion are accurate and that the numerical solver works properly.  
The first step is the writing of the Eqs. (36)-(39) in a canonical form as follows: 

04321 =−⋅+⋅+⋅+⋅ kkkkk EQDQCQBQA &&&&&&&&  for k = 1, 2, 3, 4 (43)

In order to apply the Runge-Kutta method, eight new variables are introduced: 
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Therefore, eight first-order nonlinear differential equations of motion are derived. It is worth noting 
that the distribution and the pose (Fig. 2) of the springs ki (i = 1, ns) and the dampers dj (j =1, nd) 
are explicitly taken into account in the computations since this is one of the main features of the 
proposed dynamic model. The validation of the accuracy of the equations performed in this section 
is based on a numerical example where only horizontal and vertical springs are taken into account 
(i.e. αi = 0° and αi = 90°, respectively); similarly for the dampers (i.e. αj = 0° and αj = 90°, 
respectively). Applying these assumptions into Eq. (43) and using the Gauss elimination method, 
the new set of eight differential equations can be solved by Runge-Kutta method. Following the 
steps of the introduced mathematical procedure, simple solutions are applied to the equations of 
motion, such as the ones in (45) with the initial conditions in (46): 

Q1(t) = Q1o cos(ωs t), Q2(t) = Q2o cos(ωs t), Q3(t) = Q3o cos(ωs t),  Q4(t) = Q4o cos(ωs t) (45) 
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Solving the dynamic model with the imposed solutions (45), the four expressions of the loads - 
1QF , 2QF , 3QM  and 4QF - are computed. The latter are then applied as external forces leading to a 

new set of solutions to be compared with the ones in Eq. (45). The results plotted in Fig. 4 are 
obtained with the data of one of the numerical examples carried out during the verification 
procedure. The plots show very good agreement between the imposed and computed solutions. The 
high quality of the results is due to the application of the error tolerance properties (according to 
[23]).  
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Fig. 4. Comparison between the imposed and computed solutions of a numerical example solving 

Eq. (43). Plot of the displacement Q4 that is one of the four solutions  

During the numerical verifications, the influence of the time step on the accuracy of the numerical 
solver has been studied imposing simple external loads (e.g. harmonic forces) and solving Eq. (43) 
with the time step as parameter. In fact, regardless of the integration technique, the time step 
remains an important determinant of when to compute the solutions, and when to compare the 
model to data. It was derived that the time step cannot be uniquely defined since, for each analysis, 
it has to be selected as the one that provides more accuracy with less increase in the computing 
time.    



 

3.3. Comparison with a lumped model used in the design phase of an existing large-scale dynamic 
testing facility 
During the preliminary verifications of the analytical model, a comparison with the numerical 
simulations carried out for designing an existing large-scale dynamic testing facility is performed. 
The case-study refers to the large uniaxial shake table built in the laboratory of EUCENTRE 
(European Centre for Training and Research in Earthquake Engineering), in Italy. The latter has 
been chosen for its large dimensions (5.6 m by 7.0 m) and powerful characteristics in terms of 
displacement (peak values ± 0.5 m), velocity (peak values ± 1.5 m/s) and acceleration (peak value 
1.8 g with a maximum specimen mass of 60 tonnes) applicable to the test-specimen (with a 
maximum overturning moment capacity of 4000 kNm that is 1000 kN at 4 m from the top plate of 
the platform). An exhaustive description of this dynamic testing facility is given in [15]. 

During the design phase of the facility, the study of the dynamic soil-structure interaction was 
performed in order to predict the ground motion induced by the excitation of the shaking table. For 
this reason, a simplified analytical model of the reaction-mass/foundation was developed for 
estimating the motion transmitted to the soil. A linear lumped mass model was formulated with two 
degrees of freedom (i.e. Q1 and Q3), under the assumptions of small displacements and small 
rotations. The dynamic impedance functions characterising the soil were defined applying unit 
harmonic non-quadratic loads to all DOFs within the possible operational frequency range (0÷20 
Hz) of the dynamic testing facility (Table 1). The lumped mass model was analysed applying 
random excitation signals with the criterion of reproducing the excitation that should be used in 
running the experimental tests with the shaking table. The solutions (i.e., displacement and 
rotation) were computed in frequency domain, with frequency dependent damping and stiffness 
coefficients and without the possibility of taking into account the initial conditions since the 
Fourier transforms (FT) were employed. Then, the obtained solutions were converted back in time 
domain with the inverse transforms and the velocities and accelerations were calculated from the 
time-histories of the solutions using central difference method [24]. The amplification of 
accelerations and displacements transmitted to the reaction-mass/foundation/soil corresponding to 
the isolator resonance frequency led to discarding any type of isolation device (i.e., the airbags). 
Neither base isolation nor damping systems were designed to mitigate the vibration impact induced 
by the experimental simulations.  

The results of the numerical simulations performed during the design phase are compared in this 
section with the solutions of a linearised model derived from the complete set of nonlinear second-
order differential Eqs. (36)-(39). The comparison has been carried out in terms of accuracy, 
required input data and time-consuming of the performed analyses. The equations corresponding to 
the ones used during the design phase of the EUCENTRE shaking table are obtained from Eqs. 
(36)-(39) after some simplifying assumptions, that is both the coordinate Q4 and the mass mII are 
ignored, the springs and the dashpots are lumped in the centre of gravity of system I, the rotation Q3 
is small (that is Q3 ≈ 0, sinQ3 ≈ Q3 and cosQ3 ≈ 1), and the DOF Q2 can be disregarded since it has 
no interaction with the horizontal and vertical coordinates, leading to:  
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These linearised equations correspond to the governing equations of the linear model used during 
the design phase of the EUCENTRE shaking table [15], in what follows named “linear design 
model” and compared with the “linearised proposed model” of Eq. (47). The coefficients cij and kij 
represent the damping and stiffness coefficients (i.e., the impedance functions) of the soil. It is 
worth noting that, in the design model, they were computed as frequency dependent (Table 1). 



 

Since Eq. (47) is directly solved in the time domain using the Runge-Kutta method (RK), it is not 
possible to introduce frequency dependent coefficients. Therefore, with reference to the impedance 
functions derived for the linear design model, “average” values for cij and kij are selected such that 
the equal energy concept is saved (Table 1). Introducing four new variables y1, y2, y3 and y4 in Eq. 
(47), the following four first order differential equations are derived and solved with nil initial 
conditions, as it was assumed during the numerical simulations of the design phase: 
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For comparison with the results presented in [15], the external force FQ1 and overturning moment 
MQ3 are derived from the analyses of a reinforced concrete (RC) column subjected to several 
ground motions. For the geometrical data and reinforcement details of the full-scale bridge piers, 
the reader is referred to [25]. Some of the numerical responses computed solving Eqs. (47) are 
plotted in Fig. 5 (Q1RK and Q3RK), considering the excitation action time-histories due to Coalinga 
record. These solutions have to be compared with the results of the linear design model and plotted 
in Fig. 5 (Q1FT and Q3FT). In the compared numerical simulations, the reaction mass weights 2178 
tonnes, and FQ1 and MQ3 reach the peak values of 980.2 kN and 5301 kN m, respectively.  

It is worth noting that the time-histories of the responses called Q1RK and Q3RK in Fig. 5 are the 
solutions of the linearised proposed model and are directly obtained in time-domain with “average” 
values for both the stiffness and damping coefficients of the soil (Table 1). However, this 
assumption does not reduce the accuracy of the obtained results when compared with the solutions 
of the design model solved in frequency domain considering frequency dependent soil impedances 
(Table 1). Even in terms of computing time for performing the analyses, the adopted numerical 
solver (RK) is faster than the application of Fourier Transforms. Therefore, it can be stated that the 
solutions computed from the linearised proposed model agree well with the ones obtained during 
the design phase of the EUCENTRE shaking table.  

 

Table 1. Comparisons of the stiffness and damping constants of the soil adopted in the linear 
design model and in the linearised proposed model, respectively 

Design Model k11 (kN/m) k13 (kN/m) k33 (kN/rad) c11 (kN/m) c13 (kN/rad/s) c33 (kNm/rad/s) 
0 Hz 

÷ 
20 Hz 

3.82×106 
÷ 

2.69×106 

-5.95×106 

÷ 
-2.63×106 

2.65×108 

÷ 
1.72×108 

7.25×105 
÷ 

7.41×104 

-11.03×105 
÷ 

-0.57×105 

3.95×107 
÷ 

2.91×106 
Proposed Model k11_avg k13_avg k33_avg c11_avg c13_avg c33_avg 

 4.15×106 -4.31×106 2.08×108 9.87×104 -0.56×105 2.72×106 
 

This step represents a further proof of the accuracy of both the proposed analytical model and the 
applied numerical solver. In fact, this section presents the comparison of the numerical responses 
computed with two completely different models (linear design model versus linearised proposed 
model) and solved with two very different solving techniques (FT versus RK methods).  

In this section the model, proposed for describing the behavior of a shaking table designed to 
perform single-axis tests, and extended to take into account the effects of nonlinear kinematics due 
to possible rotations, has been preliminarily validated through the comparison with simple 
available numerical tests carried out considering an existing shaking table. This comparison shows 
that the proposed model can reproduce the results of simple available examples after a linearization 
process and some simplifying assumptions.   
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Fig. 5. Translational displacement Q1 and rotation Q3 of the centre of mass of the reaction mass 

block, obtained with the linearised proposed model (QiRK) vs the linear design model (QiFT), under 
Coalinga record 

4.APPLICATION TO A REAL CASE-STUDY 

As described in the previous sections, the developed analytical model is formulated to be 
applicable to any large-scale dynamic testing facility that moves in the longitudinal direction. 
However, an analytical model should be always verified against experimental data, whenever 
feasible. Therefore, this section is devoted to the preliminary validation of the developed analytical 
model with data recorded during real tests of the EUCENTRE shaking table.  
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Fig. 6. Compositions of the measured acceleration components at the two sides of the reaction 
mass – 1H vs 3V (at the actuator side) on the left, 2H vs 4V (at the opposite side) on the right 

15.4 15.5 15.6 15.7 15.8 15.9 16
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Time (s)

Ac
ce

le
ra

tio
n 

(g
)

1H
2H

 15.4 15.5 15.6 15.7 15.8 15.9 16
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Time (s)

A
cc

el
er

at
io

n 
(g

)

3V
4V

 
(a) (b) 

Fig. 7. Comparison of the measured (a) horizontal and (b) vertical responses at the opposite sides 
of the reaction mass of the EUCENTRE shaking table 

As previously introduced, the latter was chosen for its large dimensions and powerful 
characteristics. In addition, the reaction-mass/shaking-table/specimen system constitutes a non-
equilibrated structure due to the eccentric position of both the platform and the test specimen. The 
former is eccentric with respect to the centre of gravity of the reaction mass, the latter for its own 
configuration. Therefore, this system could suffer rotation and could be characterised by a 

2H 

3V 4V 
1H 



 

nonlinear response if large rotations are activated during an experimental test. Finally, it has been 
observed that the reaction mass suffered a rigid rotation probably due to the settlement of the 
system [26]. This rotation could have a non negligible effect on the response of the dynamic 
facility since it represents an initial condition that is a transient vibration [24].  

Fig. 6 and Fig. 7 show the rocking of the dynamic testing facility due to the sudden stop while 
retracting the actuator and then free vibration. This response was measured during the experimental 
campaign described in [27]: the test was performed at both low-magnitude excitation and bare-
table condition; therefore, this response is not affected by the specimen’s overturning.  

It is worth noting that all the aspects previously discussed are taken into account in the proposed 
formulation. Before presenting the application of the developed nonlinear dynamic model to a real-
case study, a brief description of the available experimental tests is given in order to clarify the 
main steps that characterised this validation phase.  

4.1. Available experimental results 
Two are the experimental tests available for this second preliminary validation. They were 
performed during the calibration phase of the EUCENTRE dynamic testing facility in order to 
analyse the actual behaviour of the shaking table and to verify the assumptions carried out in the 
design process (Section 3.3). The complete description of the test campaign can be found in [27]. 
The location and the names assigned to the different instruments of these experiments are shown in 
Fig. 8. During these two tests, a rigid payload of 60 tonnes, composed by a layer of RC cubic 
elements with 2.4 m side, was located on the shaking table (therefore, a rigid mass of 60 tonnes is 
applied at 1.2 m from the top plate of the platform). Table 1 summarises the type of signal and the 
instrumentation of the experiments. As stated in [27], the input motion used during these two tests 
was the Coalinga record at 100% magnitude. 
 

Table 1. Available tests carried out at the EUCENTRE Laboratory, from [27] 
Test Type of signal Instrumentation 

N° 1 (21/09/2005) Coalinga record at 100%  
magnitude 

1 geophone located on the reaction mass in the zone of the 
actuator anchorage. 

N° 2 (30/09/2005) Coalinga record at 100%  
magnitude 

1 geophone located on the centre right hand side of the reaction 
mass and 8 servo-accelerometers located at the borders and 
edges of the reaction block. 

  
(a) (b) 

Fig. 8. Distributions of the instrumentations during the application of Coalinga record for Test (a) 
N° 1 and (b) N° 2, as described in Table 1 

In Fig. 9(a) are plotted the vertical and horizontal velocities recorded by the geophone located as in 
Fig. 8(a). It should be noted that the amplitude of the vertical velocity is half of that of the 
horizontal component. During Test N° 1, no geophone was put on the right side of the reaction 
mass, opposed to the actuator side, in order to measure, simultaneously, the velocities at both ends. 
Therefore, a proof of the possible rocking that could affect the response of the dynamic facility 
cannot be derived from the signals acquired during this test.  
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During Test N° 2, a 3D geophone was placed at the centre part of the reaction mass, at location 
D in Fig. 8(b), and the recorded velocities are plotted in Fig. 9(b). Comparing the horizontal and 
vertical components of Fig. 9(b) with the ones in Fig. 9(a), it should be apparent that the 
amplitudes are extremely different. This could be due to the attenuation of both the horizontal and 
vertical motion moving from the actuator anchorage side to the centre part of the reaction mass. 

 

 
(a) (b) 

Fig. 9. Velocities recorded by the geophone (a) at the actuator side (Fig. 8a) and (b) at the centre 
part of the reaction mass (Fig. 8b) 

The other available experimental data from Test N° 2 are the accelerations acquired by the servo-
accelerometers (1V-8H in Fig. 8b). Fig. 10 presents the time histories of the vertical and horizontal 
components in three main locations of the reaction mass according to the name convention 
introduced in Fig. 8: the label “down” refers to the signals measured at location C, “up-actuator” at 
location B, and “up-opposed” at location A. These plots show that there is a large difference in the 
attenuation of the signals at the two sides of the reaction mass, reaching lower values at the 
opposite side of the actuator anchorage zone – “up-actuator” versus “up-opposed”. The same 
conclusion could be applied comparing the signals recorded at the same side of the reaction mass – 
“up-actuator” versus “down”.  

It was claimed in [27] and reported in Table 1 that the applied input signal was the Coalinga 
record for both experiments. However, there is a non negligible difference between the velocities 
of Test N° 1 with those acquired during Test N° 2, mainly in terms of frequency content. 
Moreover, from a comparison between the time-histories of the velocities (Fig. 9) and the 
accelerations (Fig. 10), it could be apparent that there is no clear correlation between them. 
Furthermore, since the real signal applied during these tests is not available, there is some 
uncertainty related to the application of the same input signal during Tests N°1 and 2. 

The experimental results previously plotted from Fig. 9 to Fig. 10 reveal that the response of the 
reaction mass due to Coalinga record at 100% magnitude is different from the behaviour observed 
in Fig. 6 and Fig. 7, mainly in terms of the attenuation of the motion.  

Since the signals recorded from the geophone seem much more reliable than the ones measured 
from the servo-accelerometers, they become the main reference for the comparison with the results 
obtained from the proposed dynamic model, as described in the following section. 



 

4.2. Numerical results 
Considering the experimental responses previously plotted, it results that the motion of the reaction 
block is complex and affected by rocking. Therefore, this could suggest that the distribution of the 
stiffness and damping coefficients of the soil is not uniform in the longitudinal direction, that is the 
direction of both the force application and the allowed motion of the shaking table. For this reason, 
the observed motion could not be reproduced (and predicted) with an analytical model with lumped 
springs and dashpots like the one used during the design phase of the dynamic testing facility 
(described in Section 3.3). It has to be used an analytical model that accounts for springs and 
dashpots distributed, in a non-uniform manner, along the base of the reaction mass.  

As described in Section 2, the developed formulation accounts for ns springs, nd dashpots 
located along the reaction mass base, each one with different values of stiffness ki and damping dj, 
and also with different poses αi and αj, respectively. Hence, the observed non-uniform distribution 
of both stiffness and damping can be reproduced with the proposed dynamic model. 

 
 

 
Fig. 10. Horizontal and vertical accelerations recorded by the servo-accelerometers in the three 

main locations on the reaction mass. With reference to Fig. 8, the label “down” refers to location C, 
“up-actuator” to B, and “up-opposed” to A   

Some configurations of springs and dashpots were studied in order to optimize the simulation of 
the measured responses at both sides of the reaction mass, in the horizontal and vertical directions. 
However, the results presented in this section do not refer to the optimal configuration of springs 
and dashpots that works for any test or input signal. Additional experimental tests are required to 
validate the studied configuration and much more rigorous optimization methods (e.g., least-
squares identification [16]) have to be introduced for defining the optimal solutions. The initial 
values for the total horizontal and vertical springs and dashpots are those estimated as the 
“average” values introduced in Section 3.3 for the comparison with the model of the design phase 
of the dynamic testing facility (Table 1). Initially, the stiffness coefficient associated to each spring 
was assumed equal the total value divided by the number of springs (ns); similarly for the nd 
dashpots.  

As already introduced in Section 4.1, the input signal applied during the tests listed in Table 1 is 
not available. Therefore, the Coalinga record considered during the numerical simulations is the 
input already used for reproducing the results discussed in Section 3.3 and it was downloaded from 



 

[28]. In addition, comparing the velocity and accelerations time-histories of Test N°1 versus Test 
N°2, it seems that the record that was applied during the two tests could not be exactly the same. 
For this reason and for the uncertainty related to the lack of correlation between the velocities (Fig. 
9) and the accelerations (Fig. 10), the comparison between the numerical and the experimental 
results is performed considering the peak response quantities from the analysis and results from the 
tests.  

The results summarised in Table 2 have been obtained with uniform distributed springs and 
dashpots. Considering the horizontal components, the acceleration computed in A is greater than 
the one obtained at location B, and this disagrees with the signal attenuation observed during the 
experimental test moving from location B to A (labelled as “up-actuator” and “up-opposed in Fig. 
10). The same conclusion can be applied to the vertical components since the computed responses 
in A and in B reach the same order of magnitude. After these considerations, different weights have 
been assigned to the springs and dashpots in both horizontal and vertical directions in order to 
reproduce the observed responses as well as the rocking of the reaction mass. The first comparison 
with the measured signals refers to the horizontal and vertical velocities at point B, that is at the 
actuator anchorage zone (Fig. 8a). Table 3 compares, in term of peak values, the numerical 
solutions of the proposed mathematical model with the available experimental responses. The 
proposed model results in good correlation in term of ratio of computed to observed peak response, 
mainly for the horizontal component of the velocity.  

 

Table 2. Attenuation estimate of the peak accelerations at locations B and A (labelled as “up-
actuator” and “up-opposed in Fig. 10) obtained solving the proposed model with uniformly 

distributed springs and dashpots. Comparison with the acquired experimental responses in B 
Acceleration 
 component 

Peak 
value  

Numerical  
response in B 

(m/s2) 

Numerical 
response in A 

(m/s2) 

Experimental 
response in B  

(m/s2) 

Ratio  
Num.in A/ 
Num. in B 

Ratio  
Num.in B/Exp. 

Positive +0.192 +0.243 +0.229 1.27 0.84 Horizontal Negative -0.207 -0.261 -0.189 1.26 1.10 
Positive +0.060 +0.065 +0.087 1.08 0.69 Vertical Negative -0.064 -0.061 -0.131 0.96 0.49 

 

Table 3. Comparisons of the peak velocities: solutions of the proposed model vs acquired 
experimental responses (plotted in Fig. 9 on the left, location B) 

Velocity  
component 

Peak value  Numerical response  
(mm/s) 

Experimental response  
(mm/s) 

Ratio  
Num./Exp. 

Positive +4.373 +3.939 1.11 Horizontal Negative -4.517 -4.343 1.04 
Positive +2.109 +1.495 1.40 Vertical Negative -2.346 -1.677 1.39 

 

Table 4. Comparisons of the peak accelerations: solutions of the proposed model vs acquired 
experimental responses (plotted in Fig. 10, at location B labelled as “Up-actuator”) 

Acceleration 
 component 

Peak value  Numerical response  
(m/s2) 

Experimental response  
(m/s2) 

Ratio  
Num./Exp. 

Positive +0.206 +0.229 0.90 Horizontal Negative -0.197 -0.189 1.04 
Positive +0.113 +0.087 1.30 Vertical Negative -0.122 -0.131 0.89 

 

The second step of the validation is related to the comparisons between simulated and measured 
accelerations. Considering the acceleration at the actuator side (location B or “up-actuator”), 
comparisons of the computed and experimental peak values are given in Table 4. The proposed 



 

model provides reasonably good correlation to the experimental test data, resulting in better 
accuracy if the horizontal component is considered. Despite the overestimation of the vertical 
components, comparison with the experimental results shows noticeable improvement in response 
predictions when a uniform configuration of springs and dashpots (last column of Table 2) is 
replaced by a non-uniform distribution of the stiffness and damping of the soil (last column of 
Table 4). In terms of peak values, the obtained results are able to capture the responses measured 
during the experimental test, in the vertical and horizontal direction, respectively. It is important to 
remind that the amplitudes of the computed velocities and accelerations depend on to the assigned 
distribution of both springs and dashpots representing the soil, which is not the optimal 
configuration since additional test data are required. After the performed comparisons, it could be 
stated that the numerical results are promising since they are capable to capture the complex 
behaviour of a large dynamic testing facility whose response is difficult to understand and be 
accurately reproduced from the available experiments. 

5. CONCLUSIONS 

The present research featured the objective of developing a mathematical model for a large 
dynamic testing facility. Using the Lagrange’s formulation, a system of four nonlinear second-
order differential equations was derived and formulated in a general manner in order to catch the 
behaviour of a generic large-scale dynamic testing facility with motion allowed in the longitudinal 
direction and to consider the effects of the nonlinear kinematics due to possible large rotations.  

The accuracy of the equations of motion was firstly checked with preliminary numerical 
verifications and then against the experimental results of the large uniaxial shake table built in the 
EUCENTRE Laboratory. During this validation phase, several limitations of the available 
experimental data were encountered. Therefore, the validation was not straightforward and the 
collected tests do not represent an exhaustive set of examples for validating the model. A 
preliminary calibration procedure was carried out in order to take into account the non-uniform 
distribution of stiffness and damping of the surrounding soil and to capture the rocking that 
characterises the motion of the reaction mass. Nonetheless, additional experimental data are 
required for calibrating the analytical model and characterising the motion of the dynamic facility. 

The preliminary numerical validations seem very promising. Therefore, after the implementation 
of more sophisticated optimisation methods required to reduce the fit error, the developed 
analytical model may perhaps accurately reproduce the real behaviour of a large dynamic testing 
facility. Finally, future work is also to be carried out for the analysis of solution sensitivity to initial 
conditions in order to evaluate the importance of the initial conditions to the final solutions. 
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