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1 Introduction

The Virtual Element Method (VEM) was introduced in [6, 7] as a generalization of the Finite

Element Method (FEM) that allows for very general polygonal and polyhedral meshes, also

including non convex and very distorted elements. Differently from standard FEM, the VEM is

not based on the explicit construction and evaluation of the basis functions, but rather on a wise

choice and a suitable use of the degrees of freedom in order to approximate the operators and

the corresponding bilinear forms involved in the problem. The local functions are virtual, in the

sense that they are defined, in general, through a partial differential equation (or even a system);

they include (but in general are not restricted to) polynomials. However, the non-polynomial

functions are never computed in practice, and the accuracy of the method is ensured by the

polynomial part of the virtual space. The use of such an approach introduces other potential

advantages, such as exact satisfaction of linear constraints as in [11] or [3], and the possibility

to build easily discrete spaces of high global regularity [15, 2, 3]. Since its introduction, the

VEM has shared a good degree of success and has been applied to a large array of problems.

We here mention, in addition to the ones above, a sample of papers [1, 9, 18, 4, 12, 16, 26, 22]

and refer to [24] for a more complete survey of the existing VEM literature.

Although the construction of the Virtual Element Method for several three dimensional

problems is accomplished already in many papers, at the current level of development a de-

tailed presentation of their properties for general second order elliptic operators is still lacking.
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Moreover very few 3D numerical experiments are available in the literature [21, 22, 18] and all

of them are limited to the lowest order case (k = 1) while the only work dealing with the higher

order case is [5].

The objective of this work is to extend to the three-dimensional case the work of [9]. From

another point of view, we could consider it as an extension of [5] to general elliptic second

order operators. We have also implemented the Serendipity version of the VEM (see [8])

applied to faces in three dimensions which allows for a strong reduction of the face degrees of

freedom without spoiling the approximation properties. Moreover we also numerically validate

the theory with suitable numerical experiments. In doing this we will follow faithfully the

construction in [6, 1, 9, 5] and the coding guidelines of [7].

The paper is organized as follows. In Section 2 we introduce the model problem and the

Virtual Element Method in three dimensions. The review of the method is complete but

brief, and we refer to other contributions in the literature for a more detailed presentation

of the scheme. In Section 3 we outline the convergence proof, following straightforwardly the

arguments given in the two-dimensional case. Finally, in Section 4 several numerical tests are

shown.

2 The Virtual Element discretization

In the present section we give a very brief overview of the Virtual Element Method in three

space dimensions, and in particular to its variant using Serendipity elements on faces. More

details on several aspects of the method can be found in [6, 7, 1, 9, 5].

2.1 The differential problem

Let Ω ⊂ R3 be a bounded convex polyhedron and let Γ be its boundary. Let moreover κ and

γ be smooth functions Ω→ R with κ(x) ≥ κ0 > 0 for all x ∈ Ω, and let finally b be a smooth

vector valued function Ω→ R3.

We consider the problem{
Lu := −div(κ(x)∇u) + b(x) · ∇u+ γ(x)u = f(x) in Ω

u = 0 on Γ
(2.1)

where f is a given right-hand side in H−1(Ω).

We assume that problem (2.1) is well posed. That is, we assume that the problem is solvable

for any f ∈ H−1(Ω), and that the estimate

‖u‖1,Ω ≤ C‖f‖−1,Ω (2.2)

together with the regularity estimate

‖u‖2,Ω ≤ C‖f‖0,Ω (2.3)

hold with a constant C independent of f .

We recall that these assumptions imply that existence and uniqueness hold as well for the

(formal) adjoint operator L∗ given by

L∗u := −div(κ(x)∇u)− div(b(x)u) + γ(x)u. (2.4)



Serendipity VEM in 3D 3

Moreover, they imply that for every g ∈ L2(Ω) there exists a unique ϕ ∈ H2(Ω) ∩H1
0 (Ω) such

that L∗ϕ = g, and

‖ϕ‖2,Ω ≤ C∗‖g‖0,Ω (2.5)

for a constant C∗ independent of g. Actually, the 2-regularity in (2.3) and in (2.5) is not strictly

necessary in order to get the results of the present work, and an s-regularity with s > 1 would

be sufficient. Similarly, the convexity assumption on Ω could be by-passed. Here however we

are not interested in minimizing the regularity assumptions.

We also point out that the choice of having a scalar diffusion coefficient was done just for

simplicity. Having a full diffusion tensor would not change the analysis in a substantial way.

Similarly, the use of Dirichlet boundary conditions on Γ is done just for the sake of simplicity,

and other boundary conditions can be easily accommodated.

The variational form of our problem reads
find u ∈ H1

0 (Ω) such that

a(u, v) + b(u, v) + c(u, v) =

∫
Ω

fv dx for all v ∈ H1
0 (Ω),

(2.6)

where

a(u, v) =

∫
Ω

κ∇u · ∇v dx, b(u, v) =

∫
Ω

b · ∇u v dx, c(u, v) =

∫
Ω

γuv dx. (2.7)

When convenient, we will also use the notation

B(u, v) = a(u, v) + b(u, v) + c(u, v) (2.8)

and we remark that our assumptions on the coefficients imply that the bilinear form B(·, ·)
verifies

B(u, v) ≤M‖u‖1,Ω‖v‖1,Ω u, v ∈ H1(Ω), (2.9)

and hence

‖Lu‖−1 = sup
v∈H1

0 (Ω)

< Lu, v >

‖v‖1,Ω
= sup
v∈H1

0 (Ω)

B(u, v)

‖v‖1,Ω
≤M‖u‖1,Ω.

It is also easy to check that this, together with (2.2), implies that

sup
v∈H1

0 (Ω)

B(u, v)

‖v‖1,Ω
≥ CB‖u‖1,Ω ∀u ∈ H1

0 (Ω), (2.10)

for some constant CB > 0 independent of u. On the other hand it is also well known that (2.9)

and (2.10) imply existence and uniqueness of the solution of problem (2.6).

Remark 2.1 We point out that, together with (2.9) we also have

|b(u, v)|+ |c(u, v)| ≤ Cb,γ‖u‖1,Ω ‖v‖0,Ω, (2.11)

that will come at hand later on.
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2.2 Some useful notation

In what follows k will denote a positive integer associated with the “polynomial degree” of

the virtual element scheme. We will denote by P a polyhedron in R3, while edges, faces, and

vertices of P will be indicated by e, F, and ν respectively. We will denote by xP, hP and |P| the

centroid, the diameter, and the volume of P, respectively. The set of of polynomials of degree

less than or equal to s in P will be indicated by Ps(P). If α = (α1, α2, α3) is a multi-index, we

will indicate by mα the scaled monomial

mα =

(
x− xP
hP

)α1
(
y − yP
hP

)α2
(
z − zP
hP

)α3

(2.12)

and we denote by Phom
s (P) the space generated by the monomials of degree exactly equal to s:

Phom
s (P) = span{mα , |α| = s} (2.13)

where |α| = α1 + α2 + α3.

Remark 2.2 Note that, in our computations, we will always use the scaled monomials as

a basis for the polynomial spaces. Other choices might be more convenient in some particular

cases. See for instance [23, 13, 25].

The corresponding definitions in the case of a polygon in R2 are completely analogous. A

face F of a polyhedron is treated as a a polygon in two dimensions, using local coordinates

(x, y). Edges of polyhedra and polygons are treated in an analogous way as one-dimensional

sets.

2.3 Virtual elements on faces

We start by briefly recalling the virtual element spaces on the faces of a generic polyhedron.

Given a polygon F (representing a generic face), we define the preliminary virtual space

Ṽ k(F) =
{
v ∈ H1(F) ∩ C0(F) : v|e ∈ Pk(e) ∀ edge e ∈ ∂F, ∆v ∈ Pk(F)

}
. (2.14)

Denoting by {νie}k−1
i=1 the k − 1 internal points of the Gauss-Lobatto integration rule of order

k+1 on each edge e, it can be easily shown that a set of degrees of freedom for the space Ṽ k(F)

is given by:

D1) value of v(ν) ∀ν vertex of F; (2.15)

D2) value of v(νie) ∀e ∈ ∂F, i = {1, 2, .., k − 1}; (2.16)

D3) moments

∫
F

v pk dx ∀pk ∈ Pk(F). (2.17)

The standard VEM in three dimensions is actually the one proposed in [1], that carries much

less degrees of freedom on faces with respect to the choice (2.14) (see also [5]). Here we avoid

the presentation of such space, and recall instead directly its Serendipity version, that produces

an even larger reduction of the number of degrees of freedom.
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2.4 Serendipity version of virtual elements on faces

The Serendipity version of virtual elements was introduced in [8] as a tool to decrease the

number of internal degrees of freedom on polygons. We here recall them very briefly and refer

to the above paper for a detailed description.

Serendipity virtual elements are based on the introduction of a projection operator

ΠD
k,F : Ṽ k(F)→ Pk(F)

that can be computed using only the boundary degrees of freedom plus a suitable subset of the

internal ones: typically the moments up to a certain degree kF ≤ k depending on the geometry

of the element F. For instance (following [8]), denoting by NS the number of selected degrees

of freedom, one can define the mapping D from Ṽ k(F) to RNS that associates to v ∈ Ṽ k(F) the

vector of its corresponding NS degrees of freedom. Then one defines ΠD
k,Fv ∈ Pk(F) such that

(D(ΠD
k,Fv), Dqk)RNS = (Dv,Dqk)RNS ∀qk ∈ Pk(F), (2.18)

and the precise formulation for our request on kF is: kF must be such that (2.18) has a unique

solution.

Using such projection operator, one can define the serendipity space

V kS (F) =
{
v ∈ Ṽ k(F) :

∫
F

v q dx =

∫
F

(ΠD
k,Fv)q dx for all q ∈ Phom

kF+1(F)∪ ...∪Phom
k (F)

}
. (2.19)

A set of degrees of freedom for the above space are the sets D1) and D2) given in (2.15)-(2.16),

plus

D3′) moments

∫
F

v pkF dx ∀pkF ∈ PkF(F).

Remark 2.3 It is important to point out that for v ∈ V kS (F) all the moments∫
F

v pk dx ∀pk ∈ Pk(F) (2.20)

are computable: for polynomials p of degree ≤ kF we get them directly form the degrees of

freedom D3′), and the others are obtainable through ΠD
k,Fv (computable from the degrees of

freedom of v) and the definition (2.19). It is clear that the bigger is kF, the more degrees of

freedom we retain in V kS (F), and to minimize their number one would like to choose the smallest

possible kF that ensures the unique solvability of (2.18).On the other hand, the computation

of such a kF on every polygon could be a rather heavy burden. We refer to [8] for a deeper

discussion of this matter. Following the terminology in [8], denoting by ηF the minimum number

of lines needed to cover the whole boundary of F, we can set kF = k − ηF. Since for strictly

convex polygons ηF is equal to the number of edges, and in any case is always ≥ 3, a lazy choice

could be to take ηF = 3 for all the elements, while a stingy choice would compute the exact

ηF for each element. The first choice is robust but leads to a lesser gain in terms of degrees

of freedom. The second choice leads to larger computational gain but its performance is mesh

dependent (in a sense detailed in [8]). The quest for a cheap way to chose the most convenient

kF is not over yet, and we will discuss it more at length in our future works. In Section 4.2.1

we will discuss the problem in more details.
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2.5 Virtual elements on polyhedrons

Let Ωh be a partition of Ω into non-overlapping and conforming polyhedrons. We begin by

defining the virtual space locally, on each polyhedron P ∈ Ωh. Note that each face F ∈ ∂P is a

two-dimensional polygon. We introduce the following boundary space

Bk(∂P) =
{
v ∈ C0(∂P) : v|F ∈ V kS (F) for all F faces of ∂P

}
. (2.21)

The above space is made of functions that on each face are two-dimensional virtual functions

and are continuous across the edges. Once the boundary space is defined, we can construct

the local virtual space on P following for instance [1]. We recall the procedure briefly and refer

to [5] for a more detailed description. We define first the preliminary space

Ṽ k(P) =
{
v ∈ H1(P) : v|∂P ∈ Bk(∂P), ∆v ∈ Pk(P)

}
,

and then we define the local virtual space as

V k(P) =
{
v ∈ Ṽ k(P) :

∫
P

v q dx =

∫
P

(Π∇k,Pv)q dx for all q ∈ Phom
k−1(P) ∪ Phom

k (P)
}
, (2.22)

where the projection operator Π∇k,P : Ṽ k(P)→ Pk(P) is defined by
∫

P

∇(v −Π∇k,P v) · ∇pk dx = 0 ∀pk ∈ Pk(P)∑
e=edge∈∂P

∫
e

(v −Π∇k,Pv) de = 0.
(2.23)

It is easy to check that the following linear operators constitute a set of degrees of freedom for

the space V k(P):

• value of v(ν) ∀ν vertex of P; (2.24)

• value of v(νie) ∀e edge of ∂P, i = {1, 2, .., k − 1}; (2.25)

• moments

∫
F

v pk−kF dF ∀pk−kF ∈ Pk−kF(F),∀ face F of ∂P; (2.26)

• moments

∫
P

v pk−2 dx ∀pk−2 ∈ Pk−2(P). (2.27)

Note that the operator Π∇k,P is computable using the degrees of freedom (2.24)-(2.27). Similarly,

the L2 projection operator Π0
k,P : V k(P) → Pk(P) is also computable from the same degrees

of freedom, taking into account (2.22). Moreover, following for instance the same arguments

as in [9], an integration by parts easily shows that we can also compute the L2-projection

∇v → Π0
k−1,P(∇v) onto [Pk−1(P)]3 (actually, onto [Pk(P)]3). Finally, the global virtual space

V k ⊂ H1
0 (Ω) is defined by using a standard assembly procedure as in finite elements:

V k =
{
v ∈ H1

0 (Ω) : v|P ∈ V k(P) for all P ∈ Ωh

}
.

The associated (global) degrees of freedom are the obvious counterpart of the local ones intro-

duced above.
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2.6 Discretization of the problem

We start by introducing the discrete counterpart of the bilinear forms (2.7). On every polyhe-

dron P ∈ Ωh we follow the same construction introduced in [9] for the 2-dimensional case. We

first introduce the stabilization form

sP(v, w) =

NP
dof∑
i=1

di dofi(v) dofi(w) ∀v, w ∈ V k(P), (2.28)

where: dofi(v) is the value of the ith local degree of freedom of the function v, NP
dof denotes

the number of the degrees of freedom (2.24)-(2.27), and the positive constants di are given by

the diagonal recipe proposed in [5] (which takes into account also the values of κ on P). Then

we introduce, for all v, w ∈ V k(P), the local approximations of the bilinear forms in (2.7)

ahP(v, w) =

∫
P

κΠ0
k−1,P(∇v) ·Π0

k−1,P(∇w) dx+ hP sP(v −Π∇k,Pv, w −Π∇k,Pw),

bhP(v, w) =

∫
P

b ·Π0
k−1,P(∇v)(Π0

k−1,Pw) dx,

chP(v, w) =

∫
P

γ (Π0
k−1,Pv)(Π0

k−1,Pw) dx. (2.29)

Remark 2.4 Here we are implicitly assuming that the diffusion coefficient κ is not too

small compared to the other coefficients b and γ (or, more precisely, locally to |b|hP and γh2
P).

When this is not the case, a suitable stabilizing term in bhP and/or chP will also be necessary.

The above bilinear forms are stable in the sense of [6]. The respective global bilinear forms

ah(·, ·), bh(·, ·), ch(·, ·) are constructed as usual by summing over all elements P of Ωh.

We can finally state the discrete problem:
Find uh ∈ V k such that

ah(uh, vh) + bh(uh, vh) + ch(uh, vh) =

∫
Ω

fhvh ∀vh ∈ V k ,
(2.30)

where the approximate loading fh is the L2-projection of f on piecewise polynomials of degree

k. Note that all the forms and operators appearing above are computable in terms of the

degrees of freedom of uh and vh, as observed above. Often we will use

Bh(uh, vh) := ah(uh, vh) + bh(uh, vh) + ch(uh, vh).

3 Convergence results

In this section we extend to the three dimensional case the error estimates that were obtained

in [8] for the two-dimensional case. Most steps are quite similar, and we just briefly sketch the

general path of the proofs.

3.1 Interpolation results

We present first some approximation results concerning the Virtual Element spaces of the

previous Section. The results are a simple extension (to the present case of Serendipity nodal
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spaces on faces) of the interpolation estimates shown in [26] for two dimensions and extended

in [17] to the three dimensional case. See also [10], [14].

We assume that {Ωh}h is a family of meshes, satisfying the following assumptions (typical

of the Virtual Element methods): There exists a positive constant σ such that all elements P

of {Ωh}h and all faces of ∂P are star-shaped with respect to a sphere (respectively, a disk) of

radius bigger than or equal to σhP, hP being the diameter of P; moreover, all edges e ∈ ∂P, for

all P ∈ {Ωh}h have length bigger than or equal to σhP.

Here and in the sequel C will denote a generic positive constant independent of hP, with

different meaning in different occurrencies, and generally depending on the coefficients of the

operator L. Whenever needed to better follow the steps of the proofs, for a smooth scalar or

vector-valued function ℵ, we shall use Cℵ to denote a constant depending on ℵ and possibly on

its derivatives up to the needed order.

Proposition 3.1 There exists a positive constant C = C(σ, k) such that, for all P in Ωh

and all smooth enough functions ϕ defined on P, it holds

‖ϕ−Π0
k,Pϕ‖m,P ≤ Chs−mP |ϕ|s,P m, s ∈ N, m ≤ s ≤ k + 1,

‖ϕ−Π∇k,Pϕ‖m,P ≤ Chs−mP |ϕ|s,P, m, s ∈ N, m ≤ s ≤ k + 1, s ≥ 1,

‖ϕ− ϕI‖m,P ≤ Chs−mP |ϕ|s,P, m, s ∈ N, m ≤ s ≤ k + 1, s ≥ 2,

where ϕI ∈ V k is the interpolant of ϕ in V k, i.e., such that dofi(ϕ) = dofi(ϕI).

3.2 Continuity results

Concerning the bilinear forms presented in the previous section, we state a continuity result,

whose proof is a trivial extension of several classical results in the framework of Virtual Element

Methods.

Proposition 3.2 The bilinear form Bh(·, ·) is continuous in V k × V k, that is,

Bh(u, v) ≤ Cκ,b,γ‖u‖1,Ω‖v‖1,Ω u, v ∈ V k, (3.1)

with Cκ,b,γ a positive constant depending on κ, b, γ but independent of h. Moreover, similarly

to (2.11), we have

|bh(u, v)|+ |ch(u, v)| ≤ Cb,γ‖u‖1,Ω ‖v‖0,Ω. (3.2)

3.3 Approximation of the bilinear forms

The following result will be needed to estimate the difference between continuous and discrete

bilinear forms. This is done once and for all in the following preliminary Lemma.

Lemma 3.1 Let P ∈ Ωh, let µ be a smooth function on P, and let u, v denote smooth scalar

or vector-valued functions on P. For a generic ϕ ∈ L2(P) (or in (L2(P))3) we define, for s

integer ≤ k,

EsP(ϕ) := ‖ϕ−Π0
s,Pϕ‖0,P. (3.3)

Then we have the estimate:

(µu, v)0,P − (µΠ0
s,Pu,Π

0
s,Pv)0,P ≤ EsP(µu)EsP(v) + EsP(µv)EsP(u) + CµEsP(u)EsP(v), (3.4)
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where Cµ is a constant depending on µ.

Proof. For simplifying the notation we will set ū := Π0
s,Pu, v̄ := Π0

s,Pv. By adding and sub-

tracting terms, and by the definition of projection we have

(µu, v)0,P−(µū, v̄)0,P = (µu, v − v̄)0,P + (u− ū, µv̄)0,P

= (µu− µu, v − v̄)0,P + (u− ū, µv̄ − µv)0,P

= (µu− µu, v − v̄)0,P + (u− ū, µv̄ − µv + µv − µv)0,P

= (µu− µu, v − v̄)0,P + (u− ū, µv − µv)0,P − (u− ū, µ(v − v̄))0,P,

(3.5)

and the result follows by Cauchy-Schwarz inequality with Cµ = ‖µ‖∞.

The following result follows immediately by a direct application of Lemma 3.1.

Lemma 3.2 For all P ∈ Ωh it holds

ahP(uh, vh)−aP(uh, vh) ≤ Ek−1
P (κ∇uh)Ek−1

P (∇vh) + Ek−1
P (κ∇vh)Ek−1

P (∇uh)

+ CκEk−1
P (∇uh)Ek−1

P (∇vh)

+ sP((I −Π∇k,P)uh, (I −Π∇k,P)vh)) ∀uh, vh ∈ V k(P),

(3.6)

bhP(u, v)−bP(u, v) ≤ Ek−1
P (b · ∇u)Ek−1

P (v) + Ek−1
P (∇u)Ek−1

P (bv)

+ CbEk−1
P (∇u)Ek−1

P (v) ∀u, v ∈ H1(P),
(3.7)

chP(u, v)−cP(u, v) ≤ Ek−1
P (γu)Ek−1

P (v) + Ek−1
P (γv)Ek−1

P (u)

+ CγEk−1
P (u)Ek−1

P (v) ∀u, v ∈ H1(P).
(3.8)

From all the above results, proceeding as in [8], we have the following consistency property

that is reminiscent of the classical results for Finite Element Methods (as, e.g., the crucial

Theorem 4.1.4. in [19]).

Proposition 3.3 For all u sufficiently regular and for all vh ∈ V k it holds

BP(Π0
k,Pu, vh)−BhP(Π0

k,Pu, vh) ≤ Cκ,b,γhkP‖u‖k+1,P‖vh‖1,P ∀P ∈ Ωh, (3.9)

where Π0
k,Pu is again the L2-projection of u onto Pk(P).

Remark 3.1 We point out that (3.9) holds for a generic vh ∈ V k, for which only H1

regularity can be used. If for instance vh = vI , that is, vh is the interpolant of a more regular

function, (3.9) can be improved. Indeed, proceeding again as in [8] we would have

BP(Π0
k,Pu, vI)−BhP(Π0

k,Pu, vI) ≤ Cκ,b,γhk+1
P ‖u‖k+1,P‖v‖2,P. (3.10)

On the other hand, using (3.7) and (3.8) we can easily show for all u and v in H1(P)

|bP(u, v)− bhP(u, v)|+ |cP(u, v)− chP(u, v)| ≤ Cb,γhP‖u‖1,P‖v‖1,P. (3.11)
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3.4 Stability results

Before going to study the error estimates for our problem, we have to prove the following

stability result.

Proposition 3.4 The bilinear form Bh(·, ·) satisfies the following condition (discrete coun-

terpart of (2.10)): there exists an h0 > 0 and a constant CB such that, for all h < h0 and for

all uh ∈ V k:

sup
vh∈V k

Bh(uh, vh)

‖vh‖1,Ω
≥ CB‖uh‖1,Ω. (3.12)

The proof follows the classical path of Schatz [28]. We first prove that for every v∗ ∈ H1
0 (Ω)

there exists a v∗h ∈ V k such that

ah(v∗h, vh) = a(v∗, vh) ∀ vh ∈ V k, (3.13)

and moreover, there exists a constant C, independent of h, such that

h‖v∗ − v∗h‖1,Ω + ‖v∗ − v∗h‖0,Ω ≤ C h ‖v∗‖1,Ω. (3.14)

This is done following essentially the path of [8] combined with the 3D estimates in [17]. Then

we recall that for uh ∈ V k, using (2.10) we have

∃v∗ ∈ H1
0 (Ω) such that

B(uh, v
∗)

‖v∗‖1,Ω
≥ CB‖uh‖1,Ω. (3.15)

Then we take the corresponding v∗h given by (3.13), and we get

Bh(uh, v
∗
h) = ah(uh, v

∗
h) + bh(uh, v

∗
h) + ch(uh, v

∗
h)

= a(uh, v
∗) + bh(uh, v

∗
h) + ch(uh, v

∗
h)

= B(uh, v
∗) + bh(uh, v

∗
h)− b(uh, v∗) + ch(uh, v

∗
h)− c(uh, v∗)

= B(uh, v
∗) + bh(uh, v

∗
h − v∗) + (bh − b)(uh, v∗)

+ ch(uh, v
∗
h − v∗) + (ch − c)(uh, v∗).

From this, using (3.2) and (3.11) we have

Bh(uh, v
∗
h)−B(uh, v

∗) ≤ C∗‖uh‖1,Ω h‖v∗‖1,Ω, (3.16)

that joined to (3.15) gives

Bh(uh, v
∗
h)

‖v∗‖1,Ω
≥ (CB − C∗ h)‖uh‖1,Ω,

and the result follows easily.

Remark 3.2 Clearly, if b = 0, and γ = 0, (3.12) holds for any h.

3.5 Convergence in H1

We are now ready to prove the following Theorem.
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Theorem 3.1 For h sufficiently small, problem (2.30) has a unique solution uh ∈ V k, and

the following error estimate holds:

‖u− uh‖1,Ω ≤ Chk (‖u‖k+1,Ω + |f |k,Ω), (3.17)

with C a constant depending on κ, b, and γ but independent of h.

Proof. The existence and uniqueness of the solution of problem (2.30), for h small, is a conse-

quence of Lemma 3.4. To prove the estimate (3.17), using (3.12) we have that for h ≤ h0 there

exists a v∗h ∈ V k verifying

B(uh − uI , v∗h)

‖v∗h‖1,Ω
≥ CB‖uh − uI‖1,Ω. (3.18)

Recalling that Bh(uh, v
∗
h) = (fh, v

∗
h), and B(u, v∗h) = (f, v∗h), adding and subtracting Π0

k,Pu and

using some simple algebra we obtain:

CB‖uh − uI‖1,Ω‖v∗h‖1,Ω ≤ Bh(uh − uI , v∗h) = Bh(uh, v
∗
h)−Bh(uI , v

∗
h)

= (fh, v
∗
h) +Bh(Π0

ku− uI , v∗h)−Bh(Π0
ku, v

∗
h)

= (fh, v
∗
h) +Bh(Π0

ku− uI , v∗h) + (B −Bh)(Π0
ku, v

∗
h)

+B(u−Π0
ku, v

∗
h)−B(u, v∗h)

= (fh − f, v∗h) +Bh(Π0
ku− uI , v∗h) + (B −Bh)(Π0

ku, v
∗
h)

+B(u−Π0
ku, v

∗
h).

(3.19)

The first term in the right hand side of (3.19) is bounded by the Cauchy-Schwarz inequality and

standard approximation estimates on the load f . The second and fourth terms are bounded

using the continuity of Bh and B, respectively, and the third term is bounded by the consistency

estimate (3.16). Also using approximation estimates for polynomials and for the virtual element

space, we get

CB‖uh − uI‖1,Ω‖v∗h‖1,Ω ≤ C hk
(
Cκ,b,γ ‖u‖k+1,Ω + |f |k,Ω

)
‖v∗h‖1,Ω,

and the proof is concluded.

Remark 3.3 It is immediate to check that, by the same proof, also the following refined

result holds:

‖u− uh‖1,Ω ≤ C
( ∑

P∈Ωh

h2k
P (‖u‖2k+1,P + |f |2k,P)

)1/2

.

3.6 L2 estimate

Theorem 3.2 For h sufficiently small, the following error estimate holds:

‖u− uh‖0,Ω ≤ Cκ,b,γhk+1 (‖u‖k+1,Ω + |f |k,Ω). (3.20)
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Proof. As usual, we shall use duality arguments. Let ψ ∈ H2(Ω) ∩ H1
0 (Ω) be the solution of

the adjoint problem (see (2.4)):

L∗ψ = u− uh, (3.21)

and let ψI ∈ V k be its interpolant, for which it holds

‖ψ − ψI‖1,Ω ≤ Ch|ψ|2,Ω ≤ Ch‖u− uh‖0,Ω. (3.22)

Then:

‖u− uh‖20,Ω = B(u− uh, ψ) = B(u, ψ − ψI) +B(u, ψI)−B(uh, ψ)

= B(u, ψ − ψI) + (f, ψI) +Bh(uh, ψI)− (fh, ψI)−B(uh, ψ)

= B(u− uh, ψ − ψI) + (f − fh, ψI) + (Bh −B)(uh, ψI)

= B(u− uh, ψ − ψI) + (f − fh, ψI −Π0
k−1ψI)

+ (Bh −B)(uh −Π0
ku, ψI) + (Bh −B)(Π0

ku, ψI),

(3.23)

and the result follows with the usual arguments. The first term is bounded through (3.1),

(3.17), and (3.22). For the second term we apply Cauchy-Schwarz and standard approximation

estimates. The third and fourth terms are bounded through (3.10), taking k = 0 for the third

one, and standard approximation estimates.

4 Numerical results

In this section we present some numerical tests. In Subsection 4.1 we focus on the standard

VEM approach in 3D (that is the standard construction of [6] but using on faces the advanced

space of [1], see for instance [5]), while Subsection 4.2 is devoted to the Serendipity VEM

approach.

In these examples the domain is the unit cube Ω := [0, 1]3, we take as exact solution the

function

u(x, y, z) := sin(πx) cos(πy) cos(πz),

and we choose

κ(x, y, z) := ex+y+z , b(x, y, z) :=

 xy

yz

zx

 and γ(x, y, z) := xyz .

The load term and the boundary data are set in accordance with the above data and solution.

In all the examples we will consider three different discretizations of Ω (see Figure 1):

- Structured, a structured mesh composed by cubes;

- CVT, a mesh composed by well-shaped Voronoi cells obtained via a standard Lloyd’s

algorithm [20];

- Random, a Voronoi mesh composed by distorted cells.

To construct the last two types of meshes we use the c++ library voro++ [27]. Then, for each
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Structured CVT Random

Figure 1. Three types of discretizations of the domain Ω and cross section of such meshes.

type of mesh we make a sequence of finer meshes with mesh-size h defined as

h :=
1

N

N∑
i=1

hP ,

N being the number of polyhedrons in the mesh and hP the diameter of the polyhedron P.

We follow the trend of the following errors:

• H1 error, computed as

eH1 :=
|u−Π∇k uh|1,Ω
|u|1,Ω

,

where Π∇k uh is the elementwise VEM H1-projection on polynomials of degree k defined

in (2.23), and | · |1,Ω denotes the standard H1-seminorm;

• L2 error, computed as

eL2 :=
||u−Π0

kuh||0,Ω
||u||0,Ω

.

In accordance with Theorems 3.1 and 3.2, if we consider a VEM approximation degree k, we

expect order k in H1, and k + 1 in L2.

4.1 Test case 1: h-analysis with a standard approach

Fig. 2 shows the convergence curves of the errors for each set of meshes, and for various degrees:

k = 1, 2, 3, 4. From these graphs we can see that both the H1 and the L2 errors behave as

expected. Moreover, the trend of the error is not affected by mesh distortions. Indeed, in all
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cases the convergence slopes of the Random mesh are close to those obtained via more regular

meshes (Structured and CVT).
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Figure 2. Test case 1: convergence rates for standard VEM on all meshes.

4.2 Test case 2: h-analysis with the serendipity approach

In Subsection 2.4 we proposed the serendipity VEM approach to reduce the computational

effort. We consider both the stingy and lazy choice and compare them with the standard VEM

approach.
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To make the following discussion clearer, we refer to the standard VEM approach as VEMO,

to the stingy choice as VEMS , and finally to the lazy choice as VEML.

We recall that, according to Remark 2.3, the two choices correspond to

• lazy choice : kF = k − 3,

• stingy choice : kF = k − ηF,

with ηF = minimum number of straight lines necessary to cover the boundary of F. We focus

on two aspects of the serendipity approach. On the one hand, we want to check that the

serendipity procedure does not alter the accuracy. On the other hand we estimate the gain by

counting the dofs with the standard and the serendipity approach. We count the number of

vertex, edge and face dofs (in short, boundary dofs) for the standard VEM, #dof∂ , and the

serendipity VEM, #dofS∂ . We then define the gain as

gain :=
#dof∂ − #dofS∂

#dof∂
· 100% .

We underline that we compute the gain only in terms of the boundary dofs, since the internal

(volume) dofs can be removed by static condensation as for Finite Elements.

We show the convergence graphs of the lazy approach (VEML) in Fig. 3, and of the stingy

approach (VEMS) in Fig. 4, together with the standard approach (VEMO). From these graphs

we observe that the stingy choice is not so robust with respect to element degeneracies. Indeed,

we recover the same convergence rates of the standard case for Structured meshes, while the

scheme fails to converge for CVT and Random meshes, as shown in Fig. 4: CVT fails for k = 4

and Random fails for k = 3 and k = 4. The lazy approach is definitely more robust, see Fig. 3.

For all the degrees k we recover the same convergence plots of VEMO (the convergence lines

are indistinguishable from their counterpart of a standard VEMO).

In Table 1 we show the gain in terms of boundary dofs. Here, we can appreciate that the

gain for the stingy choice is remarkable: for the case k = 3 and 4, we save around the 40% of

the face dofs. Consequently, if we are dealing with well-shaped meshes, the stingy serendipity

approach can tear down the number of dofs. However, we also underline that the gain for the

lazy choice is not as large as for the stingy case, but it is still noteworthy: it is at least the 25%

for all the cases.

4.2.1 An adaptive stingy choice

In this short paragraph we propose a strategy inspired by [8] to cure the stingy serendipity

approach. The idea behind this method is to relax the conditions which determine the value

of kF on a face F. Indeed, as explained in [8], the reason for the failures of the stingy choice

is due to the presence of very small edges and/or edges laying almost on the same line. The

strategy adopted in the code is the following: we fix an angle threshold, θ, and an edge ratio,

ρ. Two edges forming an angle bigger than θ are considered as a single edge, and edges having

length smaller than ρhF are neglected. If µF is the number of internal angles greater than θ,

and ζF is the number of edges of F with length le < ρhF, the definition of kF is modified as

kF = max{k − 3, k − ηF + µF + ζF}.
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Figure 3. Test case 2: comparison between VEMO and VEML for all meshes.

We fixed ρ = 0.2 and θ = 135◦ and solved the same problem above. In the following graphs

and tables we refer to this approach as VEMA. In Fig. 5 we compare the convergence graphs

of VEMAwith VEMO, while in Table 2 we collect the gain in terms of boundary degrees of

freedom. We do not show the case of Structured meshes since we get exactly the same results

as the stingy choice.

We observe that this new way to compute kF is robust with respect to element degeneracies.

Indeed, all the convergence lines provided by such method are undistinguishable from the
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Figure 4. Test case 2: comparison between VEMO and VEMS for all meshes.

standard VEM ones, see Fig. 5. Moreover, the gain is now greater than that obtained with the

lazy choice and close to the optimal one obtained with the stingy approach, see the highlighted

values in Table 2.
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[16] E. Cáceres and G. N. Gatica, A mixed virtual element method for the pseudostress-velocity formulation of
the Stokes problem, IMA J. Numer. Anal. 37 (2017), no. 1, 296–331.

[17] A. Cangiani, E.H. Georgoulis, T. Pryer, and O.J. Sutton, A posteriori error estimates for the virtual
element method, Preprint arXiv:1603.05855.

[18] H. Chi, L. Beirão da Veiga, and G.H. Paulino, Some basic formulations of the virtual element method
(VEM) for finite deformations, Computer Methods in Applied Mechanics and Engineering 318 (2017),
148 – 192.

[19] P.G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications,
vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978, 1978.

[20] Qiang Du, V. Faber, and M. Gunzburger, Centroidal voronoi tessellations: Applications and algorithms,
SIAM Rev. 41 (1999), no. 4, 637–676.



20 L. Beirão da Veiga, F. Brezzi, F. Dassi, L.D. Marini and A. Russo

gain for CVT

degree h = 5.6 · 10−1 h = 3.1 · 10−1 h = 1.5 · 10−1 h = 7.4 · 10−2

VEMS

2

28.18% 28.43% 28.25% 28.14%

VEMA 28.18% 28.43% 28.25% 28.14%

VEML 28.18% 28.43% 28.25% 28.14%

VEMS

3

38.98% 41.62% 41.33% 41.28%

VEMA 33.30% 40.70% 40.83% 40.95%

VEML 27.63% 27.80% 27.65% 27.57%

VEMS

4

43.61% 48.17% 48.00% 48.05%

VEMA 32.43% 44.87% 45.76% 46.46%

VEML 25.14% 25.27% 25.15% 25.09%

gain for Random

degree h = 6.8 · 10−1 h = 3.9 · 10−1 h = 1.9 · 10−1 h = 9.3 · 10−2

VEMS

2

28.25% 28.10% 27.90% 27.78%

VEMA 28.25% 28.10% 27.90% 27.78%

VEML 28.25% 28.10% 27.90% 27.78%

VEMS

3

39.68% 39.54% 39.18% 39.07%

VEMA 35.73% 35.32% 34.85% 34.75%

VEML 27.68% 27.53% 27.37% 27.27%

VEMS

4

44.47% 44.91% 44.53% 44.42%

VEMA 29.10% 29.43% 28.92% 28.79%

VEML 25.19% 25.06% 24.94% 24.86%

Table 2. Test case 3: gain for VEMS , VEML and VEMA with CVT and Random meshes.

[21] A. L. Gain, C. Talischi, and G. H. Paulino, On the Virtual Element Method for three-dimensional linear
elasticity problems on arbitrary polyhedral meshes, Comput. Methods Appl. Mech. Engrg. 282 (2014),
132–160.

[22] A.L. Gain, G.H. Paulino, S.D. Leonardo, and I.F.M. Menezes, Topology optimization using polytopes,
Comput. Methods Appl. Mech. Engrg. 293 (2015), 411–430.

[23] L. Mascotto, A therapy for the ill-conditioning in the virtual element method, ArXiv preprint 1705.10581,
submitted for publication.

[24] L. Mascotto, L. Beirão da Veiga, A. Chernov, and A. Russo, Exponential convergence of the hp virtual
element method with corner singularities, In press on Numer. Math., DOI 10.1007/s00211-017-0921-7.

[25] L. Mascotto and F. Dassi, Exploring high-order three dimensional virtual elements: bases and stabiliza-
tions, Preprint arXiv:1709.04371, submitted for publication, 2017.
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