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Abstract. In this paper I review the main features of the (newborn) Virtual Element Method, and of
its application to the approximation of boundary value problems for Partial Differential Equations of
particular relevance for applications. I will mostly concentrate on the definition of the Virtual Element
spaces, that, roughly, consist of (vector valued) functions that are solution of (systems of) partial dif-
ferential equations in each subdomain of a decomposition of the computational domain into polygons
or polyhedra of quite general shape. Then I will give some hint on the use of these spaces for the
discretization of some classical toy-problems like Heat conduction, Darcy flows, and Magnetostatic
problems.
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1. Introduction

The aim of this paper is to give some hints on a (brand new) technique, recently introduced in
Scientific Computing, with the name of Virtual Element Methods. It is one of the many pos-
sible applications of the so-called Galerkin Method to approximate the solution of boundary
value problems for Partial Differential Equations in variational form.

To give an idea of the Galerkin method in one of the simplest possible examples, assume
that one wants to compute the approximate solution of the PDE −Δu = f in a given (say,
polygonal, for hyper-simplicity) domain Ω, with the boundary conditions u = 0 on ∂Ω. The
variational form of this problem consists in looking for a function u ∈ V such that∫

Ω

gradu · gradvdx =

∫
Ω

f vdx ∀ v ∈ V (1.1)

where the space V is chosen as H1
0 (Ω), that is, the space of square integrable (classes of

Lebesgue measurable) functions with square integrable derivatives (in Ω) that vanish on ∂Ω.
The Galerkin method consists in choosing a finite dimensional subspace Vh ⊂ V and

looking for uh ∈ Vh such that∫
Ω

graduh · gradvhdx =

∫
Ω

f vhdx ∀ vh ∈ Vh. (1.2)

It is then (in this toy-case) an easy exercise to show that such a uh exists and is unique in
Vh, together with the estimate∫

Ω

|grad(u− uh)|2dx ≤ inf
vh∈Vh

∫
Ω

|grad(u− vh)|2dx (1.3)
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that connects the error ‖u − uh‖ with the best approximation that could be given of the
solution u within the subspace Vh.

More generally, the mathematical analysis of this type of procedures assumes that we are
given a sequence of subspaces {Vh}h, indexed by the parameter h (positive, and tending to
zero). The target is to prove, under suitable assumptions on the sequence of decompositions,
that the sequence of solutions {uh}h converges to the exact solution u when h tends to 0. As
far as possible, one also tries to connect the speed of such a convergence in terms of suitable
properties of the sequence {Vh}h. See e.g. [39].

Many choices are available for the construction of such subspaces. One of the most
common and most successful ones is that of Finite Elements: one decomposes the domain Ω
in small pieces and takes Vh as the space of functions that are piece-wise polynomials. The
most classical case is that of decompositions in triangles (see two examples in Figure 1.1),
in which one takes functions that are polynomials of degree ≤ 1 in each triangle. It is easy
to see that each function of Vh, in this case, is characterized by its values at the vertices of
the triangles, that will therefore become the unknowns of our approximate problems.

Figure 1.1. Triangulations of a rectangle: non-uniform or uniform

The most obvious generalization is obtained by taking, instead, polynomials of degree
≤ 2 in each triangle (and the unknowns will then be the values at the vertices and the values
at the midpoint of each edge). And so on, using piecewise polynomials of degree ≤ k with
k = 1, 2, 3, ... etc.

For the mathematical analysis one will then consider a sequence of decompositions
{Th}h, and, for a fixed k, connect the speed of convergence of uh to u in terms of prop-
erties of the sequence. Typically, the parameter h will be connected to the biggest among the
diameters of all the elements of the decomposition Th. Clearly, to let h → 0 will mean to
consider finer and finer decompositions, and to measure the speed of convergence we look
for estimates of the error ‖u − uh‖ in terms of the powers of h (and of the degree k). See
again [39].

In three dimensions one uses, for instance, tetrahedra instead of triangles, and life is a
bit more complicated. But already in two dimensions, as soon as we abandon the use of
triangles, life becomes decidedly more complicated. Quadrilaterals (when we do not restrict
ourselves to parallelograms) can already be a source of some practical (meaning: when we
have to write the computer code!) headaches, and hexahedra are much worse. See for
instance [6, 8, 22, 36, 44, 60, 63, 66], and the references therein.

Luckily, in the majority of applications the use of triangles/tetrahedra and or quadrilater-
als/hexahedra is sufficient to give very effective practical methods.
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There are however several types of problems where the use of much more general polyg-
onal or polyhedral elements becomes highly desirable. The most relevant, so far, are the anal-
ysis of fractured materials and crack propagation (see, e.g. [1, 26, 40, 73, 74, 77, 78, 84], and
the references therein), topology optimization (see, e.g. [3, 24, 25, 50, 56, 79, 87, 89, 98],
and the references therein), computer graphics (see, e.g. [43, 45–47, 57, 61, 69, 72, 97])
and several other applications including fluid-structure interaction or two phase flows (see
for instance [37, 38, 52, 64, 71], and the references therein). But their use for structured
materials (see, e.g. [76, 79, 80, 83]) is also a promising direction, as well as for many other
applications (see, e.g. [48, 76, 88, 90, 95] and the references therein).

The literature on these types of decompositions is quite wide, both from the Mathemat-
ical and the Engineering point of view. Here I just quote, in addition to the ones already
mentioned: [5, 9–12, 23, 27, 29, 42, 53–55, 59, 62, 70, 75, 81, 82, 86, 91–94, 96], and the
references therein.

In the last decade the use of Mimetic Finite Differences (a sort of finite differences,
allowing very general decompositions, but not within the framework of Galerkin methods)
underwent an impressive growth. I just mention, among the more recent papers, [4, 13, 17–
20, 28, 30, 32–34, 41, 65].

The Virtual Element Methods (VEMs, in the title of the present paper) could be seen
as an evolution of Mimetic Finite Differences, keeping their tremendous generality for the
type of usable decompositions, but falling back into the simpler and more elegant realm of
Galerkin approximations. See [2, 14–16, 21, 35, 49, 51, 68].

Here I want to describe, mostly for non-experts, the very basic features of the method,
concentrating on a few very simple cases, and just giving hints and references to the more
sophisticated (and practically much more interesting) developments of the last two years.

Here and there, I will do a certain amount of hand-waving, trying to trade precision
for clarity. I apologize for that in advance. However, in these cases, I will always warn
the readers, and address those that are interested in precise details to some papers already
published or at least available on my web page.

An outline of the paper is as follows. In the next section, I will introduce some of the most
commonly used functional spaces in the approximation of PDE’s. In doing so, I will take,
as toy-examples, some super-simplified problems in variational formulation (namely: Darcy
flows, both in the primal and in the mixed formulation, and the magnetostatic problem). In
the subsequent section I will try to give an idea on the classical Finite Element spaces used
in the practice of Scientific Computing. Then, in Section 4 I will present the basic ideas on
the construction of Virtual Element Spaces. Their main properties will be presented in the
subsequent section, and their use in the approximation of PDE’s will be briefly illustrated
in Section 6. Some conclusions will be drawn in the final section, and a quite ample set of
references will be in charge of (partly) heal the lack of details of the whole paper.

2. Typical model problems and functional spaces

In this section I will recall a few model problems of interest in applications, together with
their variational formulations. To start with, I recall some of the most used functional spaces.

2.1. The spaces most used in variational formulations. Let Ω be a Lipschitz continuous
polyhedral domain. The following spaces are the common bricks used to deal with PDEs.
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L2(Ω) and (L2(Ω))3 := square integrable (vector valued) functions on Ω.
H(div; Ω) := {τ ∈ (L2(Ω))3 s.t. div τ ∈L2(Ω)}
H(curl; Ω) := {ϕ ∈ (L2(Ω))3 s.t. curlϕ ∈ (L2(Ω))3}
H(grad; Ω) := {v ∈ L2(Ω) s.t. grad v ∈ (L2(Ω))3} ≡ H1(Ω)

2.2. Primal formulation of Darcy problem. We consider now the classical model prob-
lem of Darcy flow (fluid flow through a porous medium). We denote by p the pressure,
by u the velocities (actually, the volumetric flow per unit area), by f the source and by
K a material-depending tensor (representing the ratio between the permeability tensor and
the viscosity coefficient). For the sake of simplicity, we also take the (totally) unrealistic
choices: K = I (= identity) and p = 0 at the boundary ∂Ω. Taking also into account the
physical laws: u = −K∇p = −∇p (Constitutive Equation), and divu = f (Conserva-
tion Equation) we end up with the model problem already considered in the introduction:
Find p ∈ H1

0 (Ω) such that −Δp = f in Ω. As we already saw in the introduction, we can
consider the variational formulation: find p ∈ H1

0 (Ω) such that:∫
Ω

∇p · ∇q dx =

∫
Ω

f qdx ∀q ∈ H1
0 (Ω). (2.1)

2.3. Mixed formulation of Darcy problem. There is however another variational formu-
lation of the same problem, that in many practical cases is even more convenient than (2.1),
and goes under the name of mixed formulation. It amounts to keep both unknowns u and p,
looking for p ∈ L2(Ω) and u ∈ H(div; Ω) such that∫

Ω

u · v dΩ =

∫
Ω

p divv dΩ ∀v ∈ H(div; Ω) (2.2)

and ∫
Ω

divu q dΩ =

∫
Ω

f q dΩ ∀ q ∈ L2(Ω), (2.3)

where we see the spaces H(div; Ω) and L2(Ω) coming into the game (as spaces where we
look for the solution, that therefore need to be discretized).

2.4. Magnetostatic equations. Another very simple model problem is given by the mag-
netostatic equations. Here, given a polyhedral domain Ω, and given j = (divergence free)
current density vector and μ = magnetic permeability constant, we consider the unknowns
u = vector potential with the gauge divu = 0, H = μ−1curl u = magnetic field, and B =
magnetic induction, together with the physical laws: B = μH, curlH = j, and divB = 0
(that however has already been taken into account with the use of the vector potential u, since
divB = div μH = div curl u = 0). We supplement these equations with the (moderately
realistic) boundary conditions u ∧ n = 0 on ∂Ω.

The classical magnetostatic equations can therefore be written now

curlμ−1curl u = j and divu = 0 in Ω (2.4)

and we supplement them with the boundary conditions u ∧ n = 0 on ∂Ω. In order to reach
a variational formulation of the problem, we define first

H0(curl; Ω) := {ϕ ∈ H(curl; Ω) such that ϕ ∧ n = 0 on ∂Ω} (2.5)
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and we introduce a Lagrange multiplier p ∈ H1
0 (Ω) to take into account the gauge divu = 0.

Hence we can write the variational formulation as:⎧⎨⎩
Find u ∈ H0(curl,Ω) and p ∈ H1

0 (Ω) such that :
(μ−1curl u, curl v)− (∇p,v) = (j,v) ∀v ∈ H0(curl; Ω)
(u,∇q) = 0 ∀ q ∈ H1

0 (Ω),
(2.6)

showing an example of use for H(curl; Ω) and H1
0 (Ω).

2.5. Continuity requirements for the basic spaces. Before entering the details of the
VEM approximations for these spaces, I will make a final consideration on the continuity
requirements for each of them. Assume that we have, say, a piecewise smooth vector valued
function v : Ω → R3. Then, if you want to ensure that it belongs, globally, to (H1(Ω))3

you must require that all the components of v are continuous at the inter-element boundaries.
If instead you want to ensure that v belongs, globally, to H(curl; Ω), you must require that
its tangential components are continuous at the inter-element boundaries, while for having
v ∈ H(div; Ω) you must require the continuity, at the inter-element boundaries, of its nor-
mal component. Finally, as natural, no continuity is required to ensure v ∈ (L3(Ω))3.

The knowledge of these continuity requirements is crucial in building approximations:
roughly speaking, the quantities that are required to be continuous must be single-valued
al the inter-element boundaries, and in practice one needs to prescribe them as degrees of
freedom in the approximations.

3. Classical F.E. approximations

3.1. Basic polynomial spaces. To give the flavor of typical Finite Element approximations,
let us see to simplest possible choices of polynomial spaces on a tetrahedron:

P0 := {constants} (1 d.o.f.)
RT0 := {τ = a+ cx} with a ∈ R3 and c ∈ R (4 d.o.f.)

N0 := {ϕ = a+ c ∧ x} with a ∈ R3 and c ∈ R3 (6 d.o.f.)

P1 := {v = a+ c · x} with a ∈ R and c ∈ R3 (4 d.o.f.)

A function in P1 can obviously be individuated by its value at the four vertices of the
tetrahedron, and a vector in (P1)

3 will be individuated by the three values of its three compo-
nents at each vertex. A vector valued function in N0 will be individuated by the (constant!)
values of its tangential components along each of the six edges. Instead, a vector valued
function in RT0 will be individuated by the values of its normal components on each of the
four faces. It is an easy exercise to check that the normal component of an element of RT0,
on any plane, is always constant. Finally, a function in P0 can obviously be individuated by
its value, say, at the barycenter.

3.2. Lowest order finite element spasces. Let now Th be a decomposition of Ω in tetrahe-
dra. We consider the following finite element approximations.

L2(Ω) ∼ L0
0 := {q ∈ L2(Ω) such that q|T ∈ P0 ∀T ∈ Th},
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H(div; Ω) ∼ RT 0 := {τ ∈ H(div; Ω) s.t. τ |T ∈ RT0 ∀T ∈ Th},
H(curl; Ω) ∼ N0 := {ϕ ∈ H(curl; Ω) s.t. ϕ|T ∈ N0 ∀T ∈ Th},
H(grad; Ω) ∼ L1

1 := {v ∈ H(grad; Ω) s.t. v|T ∈ P1 ∀T ∈ Th}.

It is easy to see, from the previous discussion, that: i) a function in L0
0 is individuated by its

values at the barycenter of each tetrahedron of the decomposition, ii) a function in RT 0 is
individuated by the values of its normal component at each face of the decomposition, iii) a
function in N0 is individuated by the values of its tangential component at each edge of the
decomposition, and iv) a function in L1

1 is individuated by its values at each vertex of the
decomposition.

P0P RT0 N0 1

Figure 3.1. Degrees of freedom for the four polynomial spaces

All this is very elegant and, at the same time, very practical. This is not always the case.
For instance, the most elegant available form for polynomial approximations (of degree k)
of H(curl) in a cube like (−1, 1)3 is given by

span
{
yz(w2(x, z)− w3(x, y)),

zx(w3(x, y)− w1(y, z)),

xy(w1(y, z)− w2(x, z))
}

+ (Pk)
3 + grad s(x, y, z)

where each wi (i = 1, 2, 3) ranges over all polynomials (of 2 variables) of degree ≤ k and
s ranges over all polynomials of superlinear degree ≤ k + 1, where the superlinear degree
of a monomial is defined as “ordinary degree ignoring variables that appear linearly”, [7].

Clearly nobody ever tried to do something similar on a dodecahedron....

4. Virtual element spaces

4.1. Polygonal and polyhedral elements. There is a wide literature on Polygonal and
Polyhedral Elements, with applications to several important fields in Engineering and Com-
puter Sciences. See for instance [5, 27, 45, 58, 61, 67, 85, 93, 94], and the references therein.

In general, these methods present the members of the discrete subspace as the solutions
of suitable problems within each element. These problems are then solved in an approximate
way, to obtain their values at the nodes of a suitable numerical integration formula (that, in
turn, is used in order to compute the integrals that appear in the variational formulation).

The Virtual Element Methods follow this path insofar as to use solutions of (systems) of
PDE equations. However, they do not attempt an approximate solution of these equations
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Figure 4.1. Voronoi tassellations: coarser and finer

(a most expensive step) and use instead suitable integrations by parts in order to compute
the integrals (appearing in the variational formulations) exactly, at least when one of the two
terms is a polynomial of a degree up to k, where k denotes the accuracy that has been chosen
by the user (the higher is k, the most expensive is the computation). This ensures the full
satisfaction of the so-called patch-test of order k, that roughly requires that: if the solution
of the original problem is, globally, a polynomial of degree ≤ k, then the solution of the
discretized problem coincides with the exact solution. A property that is considered as very
important in the Engineering literature, and that is lost when using numerical integration.

Let us see how this can be done, on some toy problem.
Assume that we are given a sequence of decompositions {Th}h of the computational do-

main Ω into polygons or polyhedra. To fix the ideas, we just assume that the decomposition
satisfies the following assumption

• H0 For the 2-dimensional case, we assume that: H02 - there exists a fixed real number
ρ such that each polygon E is starshaped with respect to all the points of a ball of
diameter ρhE and all its edges have a length ≥ hE (where hE is the diameter of E).
In three dimensions, we assume that: H03 - there exists a fixed real number ρ such that
each polyhedron E is starshaped with respect to all the points of a ball of diameter ρhE
and all its faces satisfy the two dimensional assumption H02 with constant ρ.

Note that H0 easily implies, among other things, that there exists an integer number N ,
depending only on ρ, such that the number of edges of each element is bounded by N .

4.2. General features of VEM Spaces. As for other methods, the trial and test functions
inside each element are rather complicated (e.g. solutions of suitable PDE’s or systems of
PDE’s).

However, contrary to other methods,

i) they do not require the approximate evaluation of trial and test functions at the inte-
gration points.

ii) In most cases they satisfy the patch test exactly (up to the computer accuracy).

iii) We have a whole family of spaces (conforming and nonconforming approximations of
all the main functional spaces)
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4.3. Approximations of H1(Ω) ≡ H(grad; Ω). We consider first the two-dimensional
case. For each element E that satisfies H0, and for each integer k ≥ 1 we consider the local
spaces:

Bnodalk,2 (∂E) := {g | g ∈ C0(∂E) and g|e ∈ Pk(e) for all edge e ∈ ∂E}, (4.1)

and
V nodal
k,2 (E) := {v | v|∂E ∈ Bnodalk,2 (∂E) and Δv ∈ Pk−2(E)}. (4.2)

Then we define, in a very natural manner:

V nodal
k,2 (Ω) :=

{
v ∈ H1(Ω)

∣∣ v|E ∈ V nodal
k,2 (E) for all E ∈ Th

}
. (4.3)

We then consider the three dimensional case. For each element E that satisfies H0, and
for each integer k ≥ 1 we consider first the local spaces:

Bnodalk,3 (∂E) = {g | g ∈ C0(∂E) and g|f ∈ V nodal
k,2 (f) for all face f ∈ ∂E} (4.4)

and
V nodal
k,3 (E) := {v | v|∂E ∈ Bnodalk,3 (∂E) and Δv ∈ Pk−2(E)}, (4.5)

and then we define:

V nodal
k,3 (Ω) :=

{
v ∈ H1(Ω)

∣∣ v|E ∈ V nodal
k,3 (E) for all E ∈ Th

}
. (4.6)

We can now consider the global degrees of freedom (say, in three dimensions):

• The values of v at the vertices of Th,

•
∫
e
v qk−2ds for all edge e ∈ Th, ∀qk−2 ∈ Pk−2(e),

•
∫
f
v qk−2df for all face f ∈ Th, ∀qk−2 ∈ Pk−2(f),

•
∫
E
v qk−2dE for all element E ∈ Th, ∀qk−2 ∈ Pk−2(E),

4.4. Approximations of H(div; Ω). In each element E, and for each integer k, we define

Bfacek,2 (∂E) := {g | g|e ∈ Pk ∀ edge e ∈ ∂E} in 2d,

Bfacek,3 (∂E) := {g | g|f ∈ Pk ∀ face f ∈ ∂E} in 3d.

The local spaces, in two dimensions, will then be

V face
k,2 (E) := {τ | τ · n ∈ Bfacek,2 (∂E), div τ ∈ Pk−1, rot τ ∈ Pk−1},

and in 3 dimensions

V face
k,3 (E) := {τ | τ · n ∈ Bfacek,3 (∂E), div τ ∈ Pk−1, curl τ ∈ (Pk−1)

3}.
Finally, in all cases , the global spaces will be written as

V face
k,d (Ω) := {τ ∈ H(div; Ω) | τ ∈ V k,d(E) for all E ∈ Th}. (4.7)

Before describing the degrees of freedom, we define, on a generic domain O, the space
G⊥k (O) as the subset of the g ∈ (Pk(O))3 such that∫

O
g · grad qk+1 dO = 0 ∀ qk+1 ∈ Pk+1(O).

Then we can choose the degrees of freedom in V face
k,d (Ω) as
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•

∫
e

τ · n qkde ∀qk ∈ Pk(e) ∀ edge e

•

∫
E

τ · grad qk−1dE ∀qk−1 ∈ Pk−1(E) ∀ element E

•

∫
E

τ · g⊥
k dE ∀g⊥

k ∈ G⊥k (E) ∀ element E

in two dimensions, and

•

∫
f

τ · n qkdf ∀qk ∈ Pk(f) ∀ face f

•

∫
E

τ · grad qk−1dE ∀qk−1 ∈ Pk−1(E) ∀ element E

•

∫
E

τ · g⊥
k dE ∀g⊥

k ∈ G⊥k (E) ∀ element E

in three dimensions.

4.5. Approximations of H(curl; Ω). For the 2-dimensional case, we can think that
H(curl; Ω) is obtained from H(div; Ω) by a simple rotation of π/2. With this, we can
just think that also its discretization

V edge
k,2 (Ω) is obtained by rotating V face

k,2 of π/2.

Namely, we can consider vector fields that on each edge have a tangential component in
Pk(e) , and whose divergence and rotation are in Pk−1(e) for each element E. The corre-
sponding degrees of freedom can also be easily obtained by rotating the corresponding ones
for V face

k,2 (Ω).
We can therefore turn to the (more complex) discretizations of H(curl; Ω) in three di-

mensions.
In each element E, and for each integer k, we therefore set

Bedgek,3 (∂E) := {ϕ| ϕ|f ∈ V edge
k,2 (f) ∀ face f ∈ ∂E and

ϕ · te is single valued at each edge e ∈ ∂E}

where we denoted by te the unit tangent vector to an edge e. Now we can set

V edge
k,3 (E) = {ϕ| ϕ|t ∈ Bedgek,3 (∂E), divϕ ∈ Pk−1, curlcurlϕ ∈ (Pk−2)

3}

where ϕ|t is, on each face, the tangential part of ϕ. We can therefore define the global space
as:

V edge
k,3 (Ω) := {ϕ ∈ H(curl; Ω)| ϕ ∈ V edge

k,3 (E) for all E ∈ Th}.

In V edge
k,3 (Ω) we can take the following degrees of freedom:

• for every edge e:
∫
e

ϕ · te qkde ∀qk ∈ Pk(e)
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• for every face f : ∫
f

ϕ · rot qk−1df ∀qk−1 ∈ Pk−1(f)

∫
f

ϕ · r⊥k,2df ∀r⊥k,2 ∈ R⊥
k,2(f)

whereR⊥
k,2 is the subset of the r ∈ (Pk(f))

3 such that∫
f

r · rot qk+1 df = 0 ∀qk+1 ∈ Pk+1(f)

• and for every element E:∫
E

ϕ · rot qk−1dE ∀qk−1 ∈ (Pk−1(E))3

∫
E

ϕ · r⊥k,3dE ∀r⊥k,3 ∈ R⊥
k,3(E)

whereR⊥
k,3(E) is the subset of the r ∈ (Pk(E))3 such that∫

E

r · curl qk+1dE = 0 ∀qk+1 ∈ (Pk+1(E))3

4.6. Approximations of L2(Ω). The approximation of spaces as L2(Ω) or (L2(Ω))ddoes
not present any difficulties. As the space has no continuity requirements, we can just take
piecewise polynomials discontinuous (vector valued) functions:

V volume
k,d (Ω) = {q| q|E ∈ Pk,d(E) for all E ∈ Th}.

5. Useful properties

We observe that the classical differential operators grad, curl, and div send these VEM
spaces one into the other (up to the obvious adjustments for the polynomial degree). Indeed:

grad (V nodal
k,d ) ⊆ V edge

k−1,d; curl (V edge
k,d ) ⊆ V face

k−1,d; div (V face
k,d ) ⊆ V volume

k−1,d . (5.1)

But possibly the most crucial feature common to all these choices is the possibility to
construct (starting from the degrees of freedom, and without solving approximate problems
in the element) an approximate L2-type scalar product

[u,v]h =
∑
E∈Th

[u,v]h,E , (5.2)

with the following properties:



The Great Beauty of VEMs 227

P1 [pk,v]h,E = (pk,v)0,E ∀pk ∈ (Pk(E))d, ∀v in the VEM space

(where (pk,v)0,E represents the L2(E) inner product, or the (L2(E))d inner product for
vector valued functions), and

P2 ∃α∗ ≥ α∗ > 0 independent of h such that

α∗‖v‖20,E ≤ [v,v]h,E ≤ α∗‖v‖20,E , ∀v in the VEM space,

where obviously ‖v‖20,E := (v,v)0,E . In turn, properties P1 and P2 can be easily obtained,
if we are able to compute the L2-projections onto Pk of the elements of the VEM spaces.
Indeed, assume that for every v in the VEM space and for every polynomial pk you can
compute (up to computer precision) an element Π0

kv in Pk such that

(v −Π0
kv, pk)0,E = 0 ∀ pk ∈ Pk ∀ v in the VEM space. (5.3)

Then you can set

[u, v]h,E := (Π0
ku,Π

0
kv) + S(u−Π0

ku, v −Π0
kv) (5.4)

where S is “any” symmetric bilinear form that, roughly speaking, scales like the true L2

inner product (see [14], [35], or [16] for a precise definition, more details and examples).
Needless to say, these approximate L2-type inner products depend on the type of Virtual

Elements that we are dealing with. Hence, in what follows, we are going to use a different
name for each of them. With obvious notation we will, therefore, have scalar products
[u, v]V EM,nodal and [u, v]V EM,volume for scalar functions, together with [u,v]V EM,edge

and [u,v]V EM,face for vector-valued functions.

6. VEM approximations of PDE’s

Using the L2-type projection operators, and, if needed, the properties (5.1) one can find
an easy and systematic way to discretize PDE’s by means of Virtual Element spaces. It
should be pointed out, however, that on specific occasions alternative solutions could be
more effective. Moreover, the discretization of the forcing terms requires some (minor)
additional care that I do not discuss here. See for instance [14] or [31].

6.1. VEM’s for primal Darcy. Remembering equation (2.1) we can now formulate the
approximate problem as: find ph ∈ V nodal

k,2 such that:

[gradph,gradqh]V EM,edge = [f, qh]V EM,nodal

for all qh ∈ V EMnodal
k,2 .

6.2. VEM’s for mixed Darcy. The approximate version of the mixed formulation (2.2)–
(2.3) can now be written as: find ph ∈ V volume

k−1,d and uh ∈ V face
k,d such that:

[uh,vh]V EM,face = [ph, divvh]V EM,volume

for all vh ∈ V face
k,d , and

[divuh, qh]V EM,volume = [f, qh]V EM,volume

for all qh ∈ V volume
k−1,d .
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6.3. VEM’s for electromagnetic problems. The VEM approximation of the magnetostatic
problem (2.6), in turn, can be chosen as: find uh in V edge

k,3 and ph in V nodal
k,3 such that:

[μ−1curl uh, curl vh]V EM,face − [∇ph,vh]V EM,edge

= [j,vh]V EM,edge ∀vh ∈ V edge
k,3

and
[u,∇qh]V EM,edge = 0 ∀ qh ∈ V nodal

k,3 .

Remark 6.1. To tell the truth, in order to set up the proof, one has to think that the Virtual
Element space has been tilted, or, as we say (cfr. [2]), enhanced. This does not correspond
to a change in the code, but it simplifies the proofs that, without it, would become more
cumbersome. I decided not to enter these aspects, and to refer the interested readers to [2]
and [16].

It has to be pointed out that these methods are extremely robust with respect to the choice
of the geometry of the decomposition. To give the flavor of their capability, I report the
results made on a totally crazy sequence of meshes going from 4 × 4 to 16 × 16 winged
horses, clearly inspired by Escher. The results have been obtained with the primal and mixed
formulation of Darcy problem, having p = sin(2x) cos(3y) as exact solution (courtesy of
Alessandro Russo and Donatella Marini).

Figure 6.1. Winged horses: 4×4 and 16×16

7. Conclusions

Virtual Elements is a new method, and a lot of work is needed to assess its pros and cons.
Its major interest is on polygonal and polyhedral elements, but its use on distorted quads,
hexahedra, and the like, is also quite promising. For triangles and tetrahedra the interest
seems to be concentrated in higher order continuity (e.g. [35]). The use of VEM mixed
methods seems to be quite interesting, in particular for their connections with Finite Volumes
and Mimetic Finite Differences.
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Figure 6.2. L2 error for primal (left) and mixed (right) formulations
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