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Abstract

We developed a mimetic finite difference method for solving elliptic equations with ten
sor coefficients on polyhedral meshes. The first-order conveegesiimates in a mesh-
dependenti!' norm are derived.

1 Introduction

For numerical solution of partial differential equatiop®lyhedral meshes can provide several
advantages. For instance, a polyhedral mesh has fewer aeeshthan a tetrahedral one with the
same mesh resolution, which increases performance of lsodzers. Moreover in computational
fluid dynamics it is often desirable to have element facepgraicular to the flow. A polyhedral
element with many faces increases the probability of hasungh faces. As mentioned in [11],
this results in a smaller numerical diffusion and a more esteusolution.

More generally, polyhedral meshes have enormous flexibititrepresenting complex ge-
ometries. The adaptive mesh refinement technique, whicked to optimize available compu-
tational resources and is an essential part of modern iploysics codes, results in polyhedral
meshes with degenerate elements. Non-matching meshetsodreaseen as polyhedral meshes
with degenerate elements. Another technique for modelorgptex porous media structures,
such as pinch-outs and faults, is to collapse edges of a bdrallelement to points which results
in polyhedral elements with strongly curved faces [12].

In this article, we use the mimetic finite difference (MFD3dlietization technique which has
been designed to work on general polyhedral meshes witinggecial treatment of degenerate
elements. From each polyhedron, the MFD method requirgstmmindary data such as areas,
barycenters and normals to faces, which simplifies its usaggdements with irregular shapes.

The MFD method produces a compatible discretization whesaete analogs of differential
operators retain their important properties, so that cmasien laws, solution symmetries, and
the fundamental identities of vector and tensor calculubald for discrete systems. For exam-
ple, the discrete divergence and gradient operators ar@inely adjoint with respect to inner
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products in discrete spaces. This property has a numberefifilusonsequences. For diffusion
problems, it results in symmetric discretizations and &iineg their convergence analysis [4].
For compressible flow simulations, it helps to build diszaions that preserve total momentum
and energy, see e.g. [13].

In articles [4, 7, 5, 6], we developed new analysis of mimeigcretization methods for
solving elliptic equations on polyhedral meshes. In theeaafspolyhedral meshes, these dis-
cretizations use one flux unknown per mesh face and one socdaown (pressure, temperature,
etc.) per mesh element. In the case of generalized polyhedshes, three flux unknowns per
curved faces are required to build a mimetic method [5, 6t.dhaplicial meshes, the family of
MFD methods contains the mixed finite element method withldleer-order Raviart-Thomas
elements [14]. In this article, we develop and analyze neslahmimetic methods.

As in [7, 6], here we build agaia family of discretization methods which is reduced to the
standardP; finite element method [9] in the case of simplicial meshesdédmweak assumptions
on the mesh regularity, each method in the family provideditist-order convergence rate in the
mesh dependent energy norm.

There are a few advantages of using of a polyhedral mestr thtrean equivalent tetrahedral
mesh with the same nodes. First, building of a conformahketdral partition requires analysis
of geometry which comes with additional computational bead, especially for moving mesh
methods. Indeed, for a given partition of polyhedron’s faicto triangles, a tetrahedral partition
using only the polyhedron vertices may not exist! Seconefetlare two ways to break a quadri-
lateral element into two triangles. The question of chapgire better partition is transformed
to finding a proper member in a family of MFD methods, whichvyiles a new numerical and
analytical tool for future research. Third, a symmetricdiiag may be required for special prob-
lems and it can be hardly done without using additional [goiht shock calculations, where the
nodal discretization of an elliptic equation is used to adimerical viscosity to the system [8],
a non-symmetric breaking may quickly destroy solution syetrgn

Recently, more general frameworks for mimetic discretratihave been developed using
algebraic topology and cochain approximations of difféediorms [1, 3]. The key concept of
[1] is a natural inner product on cochains which induces alipatorial Hodge theory on the
cochain complex. This article provides the constructivehoeé for building one of the inner
products.

The article outline is as follows. In Section 2, we define tHiptec problem. In Section
3, a class of admissible polyhedral meshes is described.ed¢tidd 4, the discrete operators
are introduced. In Section 5, the discrete MFD method is tbated. In Section 6, first-order
error estimates in energy norm are proved. The theorewsailis are verified with numerical
experiments in Section 7.

2 The continuous problem

Let Q@ C R? be a bounded Lipschitz polyhedrog, e L?(Q2) and KK be a regular symmetric
positive definite tensdk e (W1>(Q2))**”. We look for the solution. € H}(Q2) of the boundary
value problem

—divKgradu =g in Q. (2.1)



Extension to other boundary conditions is straightforwartis problem admits the variational
formulation: Find v € H}(Q) such that

/ K gradu - gradv dz = / gudzx Vo e Hy(Q), (2.2)
Q Q

and we will discretize the problem in this form. For furtheseuwe set:

((u, v)) = / K gradu - gradv dz. (2.3)
Q

In what follows, we assume that there exist two constap@sndx* such that:
kvIv < vIK(x)v < k*vliv VveR? xeq. (2.4)

All constants in the estimates proposed in this paper wpktel upon:, andx*.

Throughout this paper, we shall uge||,, p and| - |, p to denote the norm and semi-norm,
respectively, on the Hilbert spa¢€* (D), whereD C Q. If D = €, subscriptD may be omitted.
Finally, for further use, we sét' (Q2) = H}(Q) N C°(Q).

3 Thedecomposition

3.1 Notation

We assume that dn we are given a sequen¢@; },, of regular polyhedral mesh&g in a sense of
assumptiorfHG). This means that for each, the domairf2 is split inton p polyhedraP, ... P,, .,
with ny verticesVy, Vs, ..., V,,, .

For every geometric objecp (edge, face, polyhedron, etc.), we will denotediameterby
hq. Moreover, for every decompositiah, we set

|l := maxhp. (3.1)

Most of the times, the subscript will be omitted, and we skiafiply write it as|z|. We denote by
V(Ty), L(T) andF(T,) the set of vertices, edges and faces of the decompoditiofhe cor-
responding sets of internal vertices, edges and faces aogatebyV(7T,), Lo(T,) andFo(T),
respectively.

3.2 Assumptionson the decompositions

As we shall see, the properties of the decompositions tleaheeded in our approach are very
weak, meaning that we are allowed a great freedom in the eludithe shape of the polyhedral
elements.

However, to make the description simpler, we will make sos®imptions that argtronger
than necessaryit will nevertheless be clear in the following discussibattmore general situa-
tions can be tackled.

We assume that there exist two positive real numbgrandp, (the same for all the sequence)
such that for every decompositian in the sequence we have:
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HG (Regular polyhedral decompositidi). There exists a@ompatiblesub-decompositiois,,
into shape-regulatetrahedra, such that

e every polyhedrorP € T, admits a decompositio$y, » made of less thaiV, tetrahe-
dra.

e The shape-regularity of the tetrahedka € §; is defined as follows [9]: the ratio
between the radiusy of the inscribed sphere and the diaméigris bounded from
below by constang:

K 5 po>0. (3.2)
hi

It is important to point out, from the very beginning, thagté is no need, in practice, to build
the decompositiof;,. We are only assuming thaidoes exis{or, better, thait could be buily. In
practice, we are essentially avoiding sequences of decsitigpts in which there are polyhedra
that are, asymptotically, more and more hourglass-shapleaving thinner and thinner tails (see
Figure 1): a choice which is hardly conceivable by any useuwfnumerical method.

Figure 1: Hourglass (left) and thin-tailed (right) polyhad

3.3 Consequences of the assumption HG

The above requirements have several consequences, thas easily verified. Among them we
underline the following ones which will be used later.

C1 There exist integer numberg;, N. and N, (depending only orV,) such that every polyhe-
dron in every decomposition has less thpfaces, less thaiV, edges, and less thaw,
vertices.

C2 There exists a positive number (depending only oV, andp,) such that
he > ashf > Ugh‘Pa (33)

whenevetk is an edge off andf is a face ofP.



C3 For every facef, there exists a decomposition ¢fin a finite number € N,) of regular
shapedtriangles, meaning that there exists a positive constgrdepending only omp;
such that for every triangl€ we have

rr Z U¢hT, (34)
wherer is the radius of the inscribed circle ahd is the diameter of .

C4 There exists a constant, depending only oV, andp, such that for every polyhedroR
and for every facg of P we have theAgmon inequality

/f¢2 dS <, (h131||80||%2(13) + hPngad(p”%Q(P)> : (3.5)

4 Thediscrete operators

4.1 Thediscrete unknowns

We consider now the sé&t(7;,) of verticesin T, and the seN of nodal valueon V(T,), that is
the mappings frorV(T;,) into R. We will also consider the subsht, of the nodal unknowns that
vanish at the verticeg € 012, that is

No :={u € Nsuchthau(V) =0 VV € V(T,), V € 0Q}. (4.1)

In a similar way we can consider the sebf edge unknownas the mappings from the set of all
oriented edgesf 7, to R.

4.2 Restrictions of unknowns

When considering the restrictions ohknowngor, more generallymapping$ to a given geo-
metrical object) we would generally use the subscrjgtor simply . For instance, botiN o
andXN¢ will denote the restriction dN to the nodes belonging @.

4.3 TheGRAD operator

It will often be convenient to consider tHERAD operator, defined from the set of nodal un-
knownsN to the set of edge unknowidsas follows: for each element € N and for each edge
e with vertices(V;, V4), oriented fromV; to V4,
(GRAD u)‘e = u(Vy) — u(Vy). (4.2)

Sometimes, it will be convenient to consider the applicatibtheSRAD operator to a subset
of N. Given a polyhedrorP € T;,, the operatoERAD» (defined exactly as in (4.2)) mapés
into Ep. It is obvious thatGRADp is a restriction ofSRAD, and it will also be denoted by
GRAD when no confusion can occur. Finally we set

Eo={T€l :7(e)=0 VeeclL(Ty),ec 0N}

It is easy to see th&ERAD maps alsdN; — &.
If u, € Ny is taken as an approximation of the scalar functiothat solves (2.2), then
GRAD uy is an element o€, and the operatg RAD is related to the operat@rad.
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44 Thenormin XN,

In the space of our unknowns,, we can now introduce the following norm:

2
fonll? = 3 Boull == Y- he > [(GRADp ) [ (43)
PeTy, PeTy, ecOP
Note that, essentially from (3.3), the norm in the above)(4.2quivalent to
(5RADpw1)
loul? = > 1 3 |- (4.4)

PeTy, ecoP

mimicking the H} (Q)-norm.

45 Theinterpolation and reconstruction operators

We shall now define the natural interpolation operatbxsfrom H*(2) to the discrete spacs.
For eachu in H'(Q2) we definellyu € N by

(yw)|y = u(V) YV €V(T). (4.5)

Let us consider the problem of finding continuous right isesrof the interpolation operator
ITn. We shall see in Appendix 1 that, under assumptittd on the decompositiofi;,, there
exists a constant depending solely oV, andp,, and a linear operatay, — Ryv, from N into
H(Q) with the following properties:

e Foreveryv, € N,
HNRN’Uh = Up,. (46)

e For everyv, € Ny and for every polyhedro® € 7,
| Bovunlip < 7 lloall?- (4.7)
e For everyv, € Ny, for every polyhedror® € T, and for every verteX” € P,

| Rsvon, — vn(V)6.p < v hpllvall. (4.8)

The existence of such a reconstruction is the only reasonwehgsk for the assumptiddG
to hold. It is clear then that the assumptidi®s is abundant. We have chosen it only to allow
a simpleconstruction (see Appendix 1), and in particular one thasdaot require too much
functional analysis.

For further use, we note that from (4.7), (4.8) and (3.5), mmediately have the following
result.

e For everyv, € Ny, for every polyhedrorP € T, for every facef € 0P, and for every
vertexV € f

| Rvon — vn (V)6 s < 7 hplloall?. (4.9)
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where~ is a constant independentaf, P andTJ;, and depending only oiV,, p..

Remark 4.1 Actually, the properties of the decomposition that we rea#hed areC1-C4 and
(4.6)(4.8), and we could take them as our assumptions on the decomposRieaders with a
sufficiently solid background in Partial Differential Eqti@ns and Functional Analysis will soon
recognize that these assumptions require very little i@gtyl properties for the polyhedra ifi,.
However, in practice, all this generality is not needed, sittte decompositiof, is essentially
at the choice of the user.

5 Thediscrete problem

As it is reasonable to expect, the discrete version of thélpno (2.2) will have the following
structure

Findu;, € Ny such that
(5.1)

[SRAD uy,, GRAD vy] e = (9,vn) Vv, € No,

N

wherel[-, -]¢ is a suitable scalar product & and (g, ) a suitable linear functional dNy, that
need to be properly defined.
We shall use théi}-type inner produc[uh, vh]] in N, defined by analogy with (2.3),

|[uh, Uh]l = [9%@ Up,, 93%./4@ Uh] e (52)

and write the discrete problem as follows:

Findu;, € Ny such that
(5.3)

[uh,vh] = (g,vh)N Vv, € No.

5.1 Numerical integration formulae

In order to define the terms appearing in the previous suibseste need to introduce suitable
numerical integration formulae. Towards this aim, we cleagaumerical integration formula for
each elemenk and for each facg¢. More precisely, for each polyhedrahwith V» nodes, we
assume that we are giverp\hon-negative weights

Wh, ) wl\ﬁp (5.4)
such that the corresponding numerical integration forroukx P,
Vp
[ xap =3 xvpp. (5.5)
P i=1

is exact whenevey is a constant. Similarly, for every fagewith V; nodes, we assume that we
are given V; non-negative weights

w}, ...,w}/f (5.6)



such that the corresponding numerical integration forrouk f,

Vi

/fXdS ~ > x(V})wh, (5.7)

i=1

is exact whenevey is a polynomial of degreg 1.

Remark 5.1 To derive an integration formula for a facéwhich is exact for linear functions,
we could use a linear relation expressing the center of magsiofterms of its vertices. Since
the integral of a linear function equals to the function \@ht the center of mass timg#, the
coefficients in the linear expression scaled fjydefine the weightsj;. A similar argument would
work for a polyhedron (although it will not be needed here).

5.2 Scalar products

Once we choose our two numerical integration formulae, wect@ose the linear functional

Vp
(g,vh)N = Zg‘vah(V]@)w}, (5.8)
P i=1

where, in each elemei®t, we takeg p as the average gfover P, that is

_ 1
P

In the definition of the scalar produ¢t -|¢, the tensolK enters into play and we need to
construct a suitable approximation of it. We denotd&)l;he piecewise constant tensor@nob-
tained by averaging each componeniobver each elemer in 7,. Thus,K the L2-projection
of K onto the space of piecewise constant tensors. It is easgtihae

IK — Koo,p < vhp, (5.10)

where (as we shall assume from now onis a generic constant depending only Idpon N,
and onp,. For each facg of P, we define the outward unit normal vecta)f and the co-normal
vectors N

vi=Kpn} and o} :=Kpn}. (5.11)
When no confusion will occur, we will simply use; andz ; instead o andw}, respectively.
Using (5.10) it is immediate to see that on each fAce

[WF — 5|y < Aho. (5.12)

Now, for every polyhedror, for every functiony € H'(P), and for every polynomigh of
degree< 1, the Gauss-Green formula is

/Kvx-vpdpz/ XKVp-nds=>"
P oP

/ 2 gs. (5.13)
feop’f Ovy

Inspired by (5.13) we make our finahoice For every polyhedro®® we choose aymmetric
bilinear form |[u, v]]P onNp x Np verifying the following properties.
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e For every polynomiap of degree< 1, settingp’ := Ilnp (as defined in (4.5)), we have

i
.0 ,
[o.p],= 3 :v(v;)a—%w; Vo € Np. (5.14)
feap i=1

e There exist two constantsandC independent of and of. such that

clolls < [o. 0], <Clllp  Wo e Ne. (5.15)

Then we set, in a natural way,

[SRAD u, GRAD W], = [u, 0] =Y [u,v] . (5.16)

P

In Section 7, we show that there exist a family of bilineanisrwith the above properties. For
the moment, only (5.15) and (5.16) are needed for the coamemanalysis.

Remark 5.2 Letp and ¢ be polynomials of ordex 1. Taking into accoun¢5.13)and the fact
that the integration formuld5.7) is exact for polynomials of degree 1, we have immediately
that (5.14)implies

[Txp, Ting] ,, = / KVp - VqdP = / KVp - VqdP, (5.17)
P P

so that the assumption of symmetry gdbdlL4)are compatible.

5.3 Mimetic Finite Differences

It is easy to put all this in the framework of Mimetic Finitefi@grences. The gradient operator
GRAD is theprimary operator, and the divergence operdafdfVy is thederivedoperator. Op-
eratorsSRAD andDIVy approximate operatoggrad- anddiv(K-), respectively. Lef:, -], be

a suitable scalar product N. The divergence operator is formally defined through therdie
Green formula:

[(DjVKGh, Uh}N = — [Gh, SRAD Uh} e VG, € 80, Vp € No. (518)
Then, the MFD method is

Findu;, € Ny andG}, € &, such that
‘DJVKGh = _HN()(g)-

For a more general framework on Cochain approximations degiftial Forms (that however
does not include the present discussion), see [3].



6 Error estimates

We point out that our choices of the scalar prod@qt-] and of the linear functionan, -)N
depend on three choices:

¢ the integration formula (5.5) in each polyhedrBn
e the integration formula (5.7) on each fate
e the bilinear formg[u, v] , for eachP.

All the properties of the numerical scheme, includangriori error estimates, will be derived by
the properties of the integration formulae and of the bdimerms defining the scalar product.

Let u;, be the solution of the discrete problem (5.3) anbe the solution of the continuous
problem (2.2). We assume thatc H'(Q) and setu! = Ilyu. We shall also consider the
discontinuous functiomw which is linear in each polyhedraf of T;,. The restriction ofw to P,
denoted bywp, is defined as thé?(P)-projection ofu onto the space of polynomials of degree
< 1. We shall also denote by’ the element olNp that assumes the valueswof at the nodes
of P.

Finally, we set

§=up —ul (6.1)
and estimaté in the norm|| - |.
6.1 Six easy pieces
We have
cllol* = < >p lol% (use (5.15) and (5.16))
3,0 6.1
< [o,4] (use (6.1)) 6.2)
= |[uh,6] — |[u1,5] (use (5.3))

= (9,0)— [u",0] =1 [u",4].

On the other hand, starting with (5.16), we get

[ul,6] = ) [v'5], (add and subtraat’,)
P
- Z [u' —wp, 0], + Z wp, 0
P
= ]I+ Z wh,§ (use (5.14)) (6.3)
= I+ Y 25 (V) ot 8“”3 Wi,
P feoP i=1
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Moreover, for everyP? € T, and for every facg € 0P, using that (5.7) is exact on constants, we

have

Vy Vy

ow . w 8
Za(vf)aup w!/ = Z[a(vf)—a(vfﬂaj f+25 VH ay” w!
=1 =2

- iwvi)—a(vl)]—aw%u / 5(v1)—8wp s
i w0 0 )5 o,
Thus,
Vy
ow
Z Z Zé(vf)ayp f
P feopP i=1 f
8wp f 8wp
3 Y S - +zz/ (Vo
P feoP i=2 8 P fcop f
— Wp 4
=1I7+> > /5 VDos
P feoP f

We can now add and subtract a functiBr(5) € H'(Q2) that, for the moment, is jusiny
functionin 3(*(Q2) having the same value ast the nodes. Later, we shall require that it satisfies
(4.6) - (4.8). We obtain

Z Z/ (V) 8wp (add and subtrad®(d))
81/]0
P feop 8 8
wp wp
_ZZ/ (V}) — Bn(o dS ZZ/RN a—Vde
P fcop 8 P feopP (64)
= v+Y Y / Rn(0 w” dS (use (5.13))
P feoP
= IV+Y, / KV Rx(6) - Vwp dP.
P
Finally,
Z/ K VR (0) - VwpdP (add and subtradfu)
P P
= Z/KVRN((S)-V(wp—u)dP+/KVRN(5)~vudP
7 JP Q
= V+/KVRN(5)~VudP (add and subtrad) (6.5)
9]

= V+ / (R — K) VRx(6) - VudP + / KVRx(S) - VudP  (use (2.2))
Q Q

VAVI+ / gRx(6) dP.
Q
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Collecting the above equations, we have

c ol < {(9.9) = Jo 9Bx(0) AP} = 3 [ —wh. 3],
A e Ow
= > > (v =6Vl 55, > / (V}) = R(6 ]a—dS (6.6)

P fedP i=2 P fecopP
-3 / K VRx(0) - V(wp — u) dP — / (K — K) VRx(S) - VudP.
D JP Q

In the next section, we shall estimate separately each ofthd&asy Pieces in the above
equation.

6.2 Four useful lemmata

We shall need four simple lemmata. Le} andw} be such that (5.5) and (5.7) are exact for
constant and linear functions, respectively.

Lemma 6.1 There exist a constant, depending only oV, and p,, such that, for every polyhe-
dron P, for every verteX/2 of P, and for everyy in Np:

> (VE) = x(Va)Pwp < m b Ixllz- (6.7)

vieP

Proof. Since all thew!, are non-negative and their sum| 8|, then everyvt, is bounded by:3,.
Then the triangle inequality, and the fact that in evBrwe have less thav, vertices (fromC1),
easily imply the result. O

Lemma 6.2 There exist a constant, depending only oV, and p,, such that for every polyhe-
dron P, for every facef of P, for every verte>Vf1 of f, and for everyy in Np:

D IV = x(VAPw) < 32 hellxll- (6.8)
Vief
Proof. The proof is the same as before; but this time ewg’;js bounded by:%. O

Lemma6.3 Lety € H2(2) N H} (), and lety! be the continuous piecewise linear interpolant
of ¢ on the grids,. Let, piecewise linear (and discontinuous) on the partitin be defined
as follows: for everyP € T, vp is the L?(P)-projection ofp over the polynomials of degree
< 1. For everyP ¢ T, we denote as well (with an abuse of notation)dyand/» the elements
in Np that assume the same valuespadnd ¢ p (respectively) at the vertices &f. Then

le" —wpllp < 73 hilel} pe (6.9)

wherevy; depends only oV, and p,.
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Proof.As bothy’ andyp are piecewise linear on the regular gidy, we can use all the classical
finite element tools (including inverse inequalities). hrfcular,

1/2
[ —vr o' —vp] = I¢" —vrllp < 716" =¥l e (6.10)

Moreover,

o' —¥plip <AhE " = Uplop < vhp' (" = @lo.p+ e — ¥rlo.r) < vhplelap.

The last step above requires additional comments. At a fght,he estimate of the term
le — ¥p|o,p may depend upon the shape Bfwhich is a generic polyhedron. However one
can argue as follows. Polyhedrdnis the star-shaped domain with respect to a ball of radius
pthp where the constant. depends on various constants appeard€ir)-(C3). Is also satisfies
the strong cone condition. Then the result follows from tased Bramble-Hilbert lemma for
star-shaped domains [2]. O

Lemma6.4 In the same assumptions of the previous lemma, for eachadtéace f (common
to the two polyhedra’; and P;), we define

Jr(W) = |Vbp, - 05+ Viop, - 052, (6.11)
Then,
Sl <7 Y heleld b (6.12)
f€Fo(Th) PcTy,

where~, depends only oV, p,, andKK.

Proof. By our assumptionsK V¢ is continuous, so that, recalling the definition (5.11), eale
internal face it holds:
Ve vt + Ve v =0. (6.13)

Using (5.12) and the Agmon inequality (3.5), we have
[V - o7+ Vo025 < (he,lel3 p, + hesleli p,) - (6.14)
We have, with obvious notation
W) < |V (p, — @) - BF |+ [V (¥p, — ) - D72 + [V - 07 4+ Vi - 072, (6.15)

Using again the Agmon inequality (3.5) we have (fot 1, 2):

IV (6p, = ) Bl < 552 (B! 1op, — 03 o, + Bl p,) < el p,  (6.16)

and (6.12) follows. O
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6.3 Estimate of each piece

We begin by observing that for ea¢hand for each vertek/» of P, we easily have

gp Zwﬁaé(WP) =Jgpr /

S(Wp)dP — / g8 (Wp)dP. (6.17)
P P

Hence, thd-irst Pieceis bounded by

(9, 6) — Jo 9Rx(8)dP| (use (5.8)
=Y ar Y ki) - /Q R (8)dP (add and subtra%} 3(V)dP)
S b - 5<v;>> 23 / J(An(®) —SVENAP  (use (6.7)
<ol ; (100) " - / (Rx() — 6(V))P (use (4.)
<slshoa 3 (1 191%) " < ol 1191

Using (6.9), we see that ti#&econd Pieces bounded by
1/2
> - who],| < >l —wile 19l < V(ZW uf3,p) WSl < 7 1A Jul .00
P

In order to estimate the third piece, we remark first thatequal to zero on each vertex belonging
to 0. Hence, we can consider only tirgernal faces Taking also into account thatis single
valued, we first rearrange terms to get

ZZZ (Vi) - (Zfﬁff > Z(évf SV Jpwyw!.  (6.18)

P feoP i=2 FE€F(Ty) i=

Then, we use Cauchy-Schwartz, estimate (6.8), the facthkantegration formula is exact on
constants, and finally (6.12) to get

Y D18V = sV g(w)w]

FE€TF0(Th) 1=2
Vy ' 1/2
< (XX Y6y - a7 ) ( > lef )2 )
P fcdP i=2 fE€F(Th) =1
1/2 1/2
<A (o) " (X liswi,)”
P FE€F0(Tn)

/ /
< (S hellotr)” (hrlulie) < 7 1190 oo
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that joined with (6.18) gives the estimate of fhieird Piece

2:2:2: (V) = o(v)l gp !

P feopP i=2 vy

< R 0]) [u]2.0- (6.19)

Following essentially the estimate of the third piece ared jsing (4.9) instead of (6.8), we can
estimatethe Fourth Piece

]
(V]
—
=d
=
|

=
2
=
=
$2

[oN

=
VAN

dwp > 1) = Rt itw)|ap

FeFo(mn) S

1/2 1/2
V(X helald) (3 helull) (6.20)
P P

< v[llld]ul2.0-

IN

We can estimate thieifth Pieceusing (4.7) and the usual approximation results:

> [ KVANE) - Viwp —w)dP| < |Rx(0) i (3 Rl )" <18l el
P

Finally, for theSixth Piecewe use (5.10) and (4.7) to obtain:
| R K) VRn() - TudP < 1 13) ul 0
Q

Thus, we proved the following theorem.

Theorem 6.5 Let) be a bounded Lipschitz polyhedron adbe alv>°(Q2) symmetric tensor.
Furthermore, let the sequence of decompositidpsatisfy assumptiol G, and the discrete
inner product (5.16) satisf{5.14) and (5.15) Finally, let » and u; be solutions of (2.2) and
(5.3), respectively, and’ = IIyu. Then,

' = unll < 121 (lghoe + lul 10 + [ul20),

where~ depends only oV, p, andK.

7 Numerical results

7.1 Algebraicissues

In this section, we construct explicitly the bilinear for1[n, u]]P on Np x Np verifying (5.14)
and (5.15).

Let the polyhedronP haven, vertices. Our definition of the bilinear form implies that we
have to construct a symmetric positive definitex n, matrix Mp such that

[U,uﬂP::VTNﬂpu,
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wherev andu are vectors ift™ with entriesu(V') andv(V'), respectivelyl” € P. In eachiNp
we construct a new basis as follows. The first four elementeehew basis will be the nodal
values of the polynomials of degreel.:

By = Hva Bi+1 = HN(IZ - fL‘fD) 1= ]-7 27 37 (71)
wherex?” is the barycenter aP. Using (5.17), we have immediately
[Bi,v],=0 VvelNp (7.2)

and B
|[Bi+l7 Bj-l-l:ﬂP = Kl,j‘p‘ i, ] =1, 27 3. (73)

Moreover, using (5.14), we have that the scalar prO(ﬂuptBi}]P can be computed in a unique
way, for everyv € Np andi = 1,..,4. Hence, the problem dinding linearly independen;,,
k =5, ...,n,, such that

[Bi,B], =0 (7.4)

fori =1,..,4andk = 5, ...,n, makes perfect sense. To simplify the following discusswae,
can also assume that tiig are normalized by
IBellZ = 1P| k=5....;n,.

LetB;,i =1,...,n,, be vectors ifl™ with entriesB, (1), for any vertext/ of P. If Mp is the
matrix that represents our scalar product in the new Wsis. . , B,,,, from (5.17) and (7.4) we
already know explicitly the first four lines and the first fmalumns ofVl . Hence, we only have
to decide thén, — 4) x (n, — 4) block at the bottom-right. It is easy to see that every symimet
and positive definite matri¥/ that satisfies (5.15) will do. For instance we can take

U = trace(K) | P| L, _4

wherel,,, _, is the identity matrix i, — 4 dimensions. Hencé\l, will be given by

) 0 0 0
Mp=1| 0 K|P|] 0]. (7.5)
0O 0 U
Returning to the original basis, we get
Mp=B"TMpB", B=[Bi,..., B, (7.6)

Remark 7.1 Inthe case of tetrahedral meshes, the matfix coincides with the stiffness matrix
in the standardP; finite element method.

In practice, we avoid inversion of matrix using different representation of a family of ad-
dmissible matricedlp. Following essentially [7], we define vectass, i = 2, 3, 4, as follows:
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The vectorsA; can be calculated directly from the right-hand side of (k.1Bormula (7.3)
implies that N
Al B, =K ;|P|, i,j=123.

Let A, be an, x 3 matrix with columnsA;, : = 2, 3,4, andB; be an, x 4 matrix with columns

B,,i=1,...,4. Furthemore, leD; be an, x (n, — 4) matrix with columns that span the null
space of3?, i.e. BT D, = 0. Then, the general form of the matii4p is (see [7] for more details)
1 ~ .
Mp = 5] A K AT +D,UDT, (7.7)

whereU is an arbitrary(n, — 4) x (n, — 4) symmetric positive definite matrix.
In numerical experiments, we use a scalar mdfraend replace matri¥, with the orthogonal
projector onto the null space &f :

1

Mp =
1P|

A RVAT + trace(K) |P| (T, — Bi(BIB,)~'BT). (7.8)

Since vectoiB, is orthogonal to vector;, i = 2, 3, 4, the matrixB? B, is block diagonal. Thus,
(7.6) require inversion of only & x 3 matrix.

7.2 Model problem with afull tensor
We consider the Dirichlet boundary value problem (2.1) i exact solution
u(z,y, 2) = 23y*2z + rsin(2rry) sin(27y2) sin(272)

and the full diffusion tensor

v+ 2241 —xy —zz
K= —zy 22+ 2241 —yz
—xz —yz 2 +y?+1

We consider two sequencé$), }, of meshes. The first sequence of non-smooth hexahedral
meshes is built in a unit cube using two steps. First, eadiotal cubic mesh is split into six
tetrahedra. Second, each tetrahedron is split into foualmedra using its vertices, centers of
edges and faces, and the center of mass. One of the meshesseqirence is shown on the left
picture in Fig. 2.

The second sequences of polyhedral meshes with slightiedufaces is built in a spherical
layer with the interior radiug and the exterior radiug (see the right picture in Fig. 2). The
mesh consists of prisms with hexagonal and pentagonal biaslesth sequences, the number of
elements ir7T, is increased roughly 8 times which corresponds to a two-fedtliction of| A, .

The results of numerical experiments are collected in Eabland 2. The theoretically pre-
dicted first-order convergence rate fir’ — || is observed in both experiments. The linear
regression algorithm has been used to calculate the caneggrate. The following relative
error is calculated in numerical experiments:

It flu" — ]
e(ul, uy) = 1L Unll
’ flwt]l
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Table 1: Convergence rates on hexahedral meshes

FEM method MFD method

np e(ul, up) np e(ul, up)
1536 1.98e-1 1536 3.49e-1
12288 1.23e-1| 12288 1.99e-1
98304 6.99e-2| 98304 1.0le-1
786432 3.58e-2| 786432 5.11e-2

rate: 0.83 rate: 0.98

For a hexahedral mesh, we compare our method with the tilifieite element (FEM)
method. To a fairer comparison, the piecewice constanigidh tensoiK has been used in the
finite element code. Fifth degree Gauss quadrature has edrar calculating finite element el-
emental stiffness matrices. Table 1 shows that the MFD ndedbbieves asymptotic convergence
faster than the FEM method; however, it produces 1.4 langer en the finest mesh. Since the
numerical integration makes the FEM method more expengieetotal cost-accuracy depends
on efficiency of the employed iterative solver.

For a polyhedral (prismatic) mesh, we compare our method thid FEM method on a tetra-
hedral mesh having the same nodes. To build the tetraheésd, e first split each polyhedron
into a few triangular prisms and then split each prism inte¢htetrahedra. An alternative ap-
proach would be to generate the constrained Delaunay mestevér, structure of our prismatic
mesh (see Fig. 2) is such that the simpler approach alsdsasa good quality mesh. Note that
the number of elements in a tetrahedral mesh is about 12 targesr than in the corresponding
polyhedral mesh. In the FEM method, the diffusion tensopgraximated by a piecewise con-
stant tensor on the tetrahedral mesh. This may explain #terfaonvergence of this method on

coarser meshes. As the result, the linear regression tidgodverestimates the convergence rate
(see Table 2).

Table 2: Convergence rates on polyhedral meshes

MFD method FEM method
np e(ul, up) np e(ul, up)
486 1.66 5724 1.38

3852 1.09 46008 0.45
30744 0.48 368496 0.19
245808 0.23 | 2948832 0.09
rate: 0.98 rate: 1.30

For polyhedral meshes, the arbitrary mafthin (7.5) or the matrixU in (7.7) may be a full
symmetric matrix with many free parameters (10 for hexadledeshes). The optimal (in a sense
of the method accuracy) choice of these parameters isstipan question.

To preserve an underlying cylindrical or spherical symgmetpecial meshes respecting this
symmetry are frequently used in simulations. For such ngstimat a special choice of the
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matrix U in (7.7) may result in a method which improves (or even pres®rthe symmetry. This
conjecture will be analyzed in the future.

Figure 2: Unstructured non-smooth hexahedral mesh (lefup@) and polyhedral mesh with
slightly curved faces (right picture). Part of the mesh hasrbremoved to show the interior
structure.
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8 Appendix 1 - Construction of thelifting

We consider now the problem of constructing lifting operatg, — Rxvj, from N into H'(Q)
with the following properties.

e Foreveryv, € N,

HNRN“Uh = Vp. (81)
e For everyv, € Ny and for every polyhedro® € T,
2 2
[Ravalip < vhp S ’<9RA‘DP Uh)le‘ = [Jonll?. (8.2)
ecOP
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where, againy denotes a constant that depends solelyNg@andp;.

e Foreveryv, € Ny, for every polyhedrorP € T, and for every verteX” € P,

2
|Rson =0 (V)3p < 90p 3 |(SRADpwn) [ =y hpllunlly. (83)

ecoP

It will be convenient to introduce some additional notatidh () is a geometric object, we
denoted by (8, Q) the set of vertices d, that belong ta) (the closure of)), and byV(S;,, Q)
the set of vertices of; that areinternal to (). Moreover, for each vertek' € V,(S,,Q), we
denote byVs, o)(V') the set of vertices iV(8;,, Q) sharing an edge with" and being different
from V.

We begin our construction by defining fir&\wv, on each edge of,. For each edge,
we consider its quasi-uniform decompositi®y). into sub-intervals of comparable length (due
to assumptiorHG). The two endpointd’! and V> of e are always vertices of the (coarser)
decompositior;,. We assign the values at these endpoinis of

Ryon, (V) =vp(V)),  i=1,2. (8.4)

e

Then, we consider the system

> [Rawun(V) = Rawn(W)] =0 WV € V(8 e), (8.5)
WEV(Sh’E)(V)

where the unknowns are clearly the valuegafv;, in Vo (S, e), while the values at the endpoints
are given by (8.4). Note that W, andWV; are the two elements 0fs, .)(V), then

1

RN’Uh<V) = 5

(RNUh(Wl) + R_’th(Wg)). (86)

This immediately implies that the maximum and the minimurtuga of Ryvy, (V') in V(S e)
are attained at the endpoirits andV?, and that for any andW in V(S;,, ¢) we have

| Bun (V) = Rvup(W)| < [Ryon(V,") = Ron (V7)) (8.7)

Then, for each facg, we consider its decompositi@n, ; into regular-shaped triangles (again,
due to our assumptiodG). Let us consider the system

> [Bawn(V) = Rywn(W)] =0 WV € V(8. f), (8.8)
WeVs,,n(V)

where the unknowns are clearly the valuesiafv;, in Vo(S,, f), while the values at vertices
on df have been assigned already in (8.4) and (8.5). It is immedatheck that the matrix
associated to the system (8.8) is an M-matrix. In parti¢tihe system has a unique solution, and
we have again the discrete maximum principle. The maximutmanimum values oRyv,, are
attained at the vertices 818, 0f). In particular, for all vertice$” andW in V(8;, f), we have

|Ravn(V) = Ryun(W)| < max Ryvn(V) —  min Rywp(V). (8.9)
Vev(s,,df) Vev(s,,df)
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Thanks to our assumptions on the geometry (consequenkehis implies that

[Roon(V) = Roan(W)| <7 3 | ($RADw,) YV, W eV(S,af).  (8.10)

ecof

le

Using the triangle inequality and once more the assumpti@Gn(in particular, the fact that we
have less thaV; faces in0P), we easily have

’Rth(V) . Rth(W)‘ <7y ‘(9%@ vh>|e YV, W eV(SnoP).  (8.11)
ecoP

Finally, in each polyhedron we consider the decompostiigp, and the system

> [Raon(V) = Rawn(W)] =0 YV € Vo(8y, P), (8.12)
WGV(ShJD)(V)

where the unknowns are the valuesgyfv, in Vo(S,,, P) and the values at vertices ¥fs,,, OP)
were assigned in the previous construction. Again the sybt&s a unique solution, and we have
the discrete maximum principle as in (8.7) and (8.9): fomgué andWW in V(§,,, P)

\Rth(V)—Rth(W)‘g max  Roon(V)—  min Ravon(V).  (8.13)
Vev(sy,oP) VeV(Sy,0P)

Therefore, using (8.11), we get

‘Rth(V) . Rth(W)‘ <Y KSRAD vh>|e YV, W € V(Sh, P). (8.14)
ecOP

At this point we defined the values &\, at all vertices ofs;,. We note that (8.1) is satisfied
(we actually started from it). We can now extend linedrlyw,, in the interior of the tetrahedra
of §,,, using its values at the four vertices. From (8.14) we hawedasy consequences. First,

2
lgradRoonl?p < by S )(9%@ vh> , (8.15)
ecoP le
which is (8.2). Second, for every vertéxin P,
2
|Fexon = o(V)I p < hpy > | (SRAD w) |- (8.16)

ecoP

which is (8.3).

Remark 8.1 As we already pointed out, it is not difficult to design assuomgtother tharHG
that will still ensure(8.1)(8.3). In particular, the present construction mimics a concegiju
simpler one: first defind?nv, on the edges df;, by linear extension from the values at their
endpoints, then take the (two dimensional) harmonic extertsi each face (using the values at
the edges as boundary conditions), and finally take the tdimensional) harmonic extension
to each polyhedron (using the values at the faces as bouraargitions). It is not difficult to
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see that, under minor regularity requirements on the gepmateach P, such a construction
will produce a function irf{!(92) satisfying(8.1)(8.3). For instance we could require (and this,
already, would be much more than enough) that there exist twstantsV, andp, such that: (a)
eachP has less thanV, faces, (b) each facg has less thanV, edges, (c) eaclf is star-shaped
with respect to all points of a disk of radiyshp, and (d) eachP is star-shaped with respect to

all points of a sphere of radius,hp. The present setting, however, has the merit of requiring no

background on the regularity of harmonic functions in cardemains [10].
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