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ON THE STABILIZATION OF FINITE ELEMENT
AFPPROXIMATIONS OF THE STOKES EQUATIONS

(1) (2)

F. Brezzi and J. Pitkdranta

ABSTRACT

Consider finite element approximation of the Stokes equations.
We present a systematic way of stabilizing it by adding bubble
functions to the discrete velocity field. Another way of
stabilization is also presented where the finite element spaces
are kept unchanged but the discrete incompressibility condition

is modified instead.

1. INTRODUCTION

Assume for the sake of simplicity that Q is a given poly-
hedron in ®® (n > 2) and set V= (H)(@)", P = L2(9);
consider now for a given £, say, in (LZ(Q))n and g € P/R
the (generalized) Stokes problem

Find u €V, p€FP such that:

{ (i) a(u,v) - [ pdivvdx = [ frvdx Vv €V, (1.1)
Q Q

(ii) [ gdivudx = [ ggdx Vg € P
Q Q

where, as usual

alu,v) := [ I ] 3= 5% dx. (1.2)
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It is well known that problem (1.1) has a unique solution.
Consider now a finite element discretization of (1.1) con-
sisting (as usual) of two families {Vh},{Ph} of finite

dimensional subspaces of V and P respectively, and the

corresponding discretized problems

Find u €V, p, € P, such that:
i a(gh,xh) = é phdiv thx = é £°thx Vv, €V, (1.3)

he

; - f
é qpdiv u dx = é 99,dx  va, € P

It is also well known that one is not allowed to take inde-
pendent choices for Vh and Ph in order to have stability
and convergence results (c.f. [2], [3]). 1In the present paper
we consider the possibility of modifying an unstable scheme

with a minimal cost so that stability can be recovered.

In the first case we show that by adding suitable bubble func-
tions to the spaces Vh' one can stabilize "any" given pair of
families {Vh},{Ph}. More precisely, taking for instance
triangular elements, this can be done for any choice of {Ph}
provided that the spaces {Vh} contain at least all piecewise
quadratic continuous functions (vanishing on 3Q); this can
also be done under the weaker assumption that the {Vh}'s
contain at least all piecewise linear continuous functions
(vanishing on 93Q) provided that Ph c H1(Q) for all h.

The choice of bubble functions (that is: functions whose sup-
port is contained in a single element) as Stabilizing correc-
tion relies on the fact that one can eliminate (i.e., condense)
such degrees of freedom without affecting the structure of the
stiffness matrix. Thus if direct solution techniques are used,
the bubble functions have only a minor contribution to the

total computational cost.

We consider also another way of achieving stability where we
do not modify the discrete velocity or pressure fields but

instead modify the discrete equations by adding a stabilizing
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term into the discrete equations. Unlike in the bubble func-
tion approach, this type of stabilization affects also the con-
sistency of the scheme. However, if the extra consistency
error is not larger than that of the original scheme, this
approach may be useful when iterative (such as multigrid)

techniques are used in the solution of the linear system.

Stabilization by adding bubble functions is discussed in Sec-
tion 2 below. The proof in the case Ph = H1(Q) is essentially
contained in [1], but we report it below for the sake of
completeness. In Section 3 we give a simple example of
stabilization by modifying the discrete equations. Another
example is given in [7], where the same type of stabilization

is applied to the "bilinear velocities - constant pressure"

approximation of the Stokes problem.

2. STABILIZATION WITH BUBBLE FUNCTIONS

For the sake of simplicity we consider only the case of
"triangular" elements: however it will be clear from the proofs
that the results hold for "quadrilateral" elements as well,

and also for more general discretizations.

Let {Ch} be a family of decompositions of § into n-simplexes
and let {Vh},{Ph} be the corresponding given families of
f.e.m. Let moreover, for any n-simplex K, bK(x) be the
corresponding bubble function of degree n+1:

bK(x) = ck1(x)A2(x) el (x) (2.1)

n+1

where the Ai's are the barycentric coordinates (= equations

of the faces) and c¢ 1is a normalizing factor so that, say
sup bK(x) = 1; (2.2)
K

note that bK(x) > 0 in the interior of K. We are looking
for corrections of Vh of type
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KN = - = K .
Vh = Vh =] Bh H Bh- @ Bh ;
KECh
(2.3)
« bKVPhIK in K
Bh =
0 elsewhere;
clearly Bh = (Hg( ))n; we want to show that the corresponding
modified f.e.m:
Find Uy, € Vh’ Py € Ph such that:
{ a@,¥) - [ pdiv V,dx = [ £, dx vy, € ¥, (2.4)
Q Q -
{ qhdiv Ehdx =i gqydx Vg, € Py
Q Q
is stable and gives "optimal" error bounds:
lu-Byly + Ip-pylo/m < of inf JuFl, +
v, €V
M (2.5)

b inf “ p_qh" o/:R} ’
9Py

with ¢ independent of h. As is well known (c.f. [2], [31]),
the stability condition required for (2.5) to hold is: there
is a constant C independent of h, f and g such that
(uh,ph) satisfies

ISk + leplogm < cUEl_y + lalg g (2.6)

where |

[_1 denotes the dual norm of (H;(Q))z. It is also
known that a sufficient condition in order to have (2.6) is
(C.f. [3]1 [6])

3m, € L(v,¥,) such that
i) |%,] £ ¢ (indep. of h) in L(V,V) (2.7)

ii) é qhdiv(z-?hx)dx =0 Vv eV, th € Ph .
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The following two theorems give sufficient conditions on vy
so that Vh, as defined in (2.3), satisfy (2.7) (and hence

(2:5) )

THEOREM 1. Assume that:

2r-2 2 2
am € L(V,V,) s.t. Iz(hk ||X'"h!|r§c"X"1
(2.8)
for r = 0,1, with ¢ independent of h
where hK = diameter of K,
P cH(Q); (2.9)
h = ! .
then the pair vh’Ph obtained from (2.3) satisfies (2.5).
PROOF. We look for ?h of the form
MY = TV o+ gh(x), By, € By- (2.10)
Then (2.7 ii) is satisfied if, for all K in Ch'
é (v-m v-8,)Vq, = 0 Vg, € Pp. (211)
This uniquely determines Eh € Bﬁ. Moreover one has
-1
II Bh|1,K < ChK "X_"hzllo'x (2.12)

so that (2.8), (2.10) and (2.12) give (2.7 1i).

COROLLARY. If P, < B'(2) and V, contains at least all

piecewise linear continuous functions vanishing on 3@, then
¥, P, satisfies (2.5).

PROOF. It is clear (see e.g. [1], [4]) that the present
assumption on V,  implies (2.8).

THEOREM 2. Assume that 3m,_ € L(V,Vh) such that:

h
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[ div(v-m v)dx = 0 VK, Yv € V (2.13)
K

inhn < c independent of h (2.14)

~

then the pair Vh’Ph obtained from (2.3), satisfies (2.5).

PROOF. We look again for T of the form (2.10). Now for

h
any given qy € Ph we consider the decomposition q, = qé1)+

+ qAZ) with qé1)= piecewise constant and f qu)dx = 0 for

all K. Then K
B ) ] o (2)
é div(v-m v)q, dx = é By Vg dx + é div(v-m v)q “'dx (2.15)

so that (2.7 ii) holds if

[ BprVqpax = - [ qéZ)div(x-nhg)dx (2.16)
K K

which again determines uniquely éh € Bh' Since qé2) has

locally zero mean value, a simple scaling argument shows that
I8l < c”div(g-nhg)ﬂo < clx-nhgl1 (2.17)

with ¢ independent of h. Now (2.14), (2.10) and (2.17)
give (2.7 1i).

COROLLARY. If Vh contains at least all piecewise quadratic

continuous functions vanishing on 9Q, then vh'Ph satisfies
(2.5) .

PROOF. The result follows immediately from the fact that the
"quadratic velocities - constant pressure" approximation of
the Stokes problem satisfies (2.6) (c.f. [5]): hence for any
given Vv € V we may choose Vv as the discretized solution
of =-Au + Ap = -Av and div u = div v (that is u =v,

p = 0), by means of the quadratic-constant scheme. In our
assumptions we have nhz € Vh and hence (2.13), (2.14) are
satisfied.
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REMARK. With a slightly different proof we see that we could
also deal with nonconforming Vh; in that case we could
accept, for any choice of Ph’ to start with spaces Vh that

contain at least P, -nonconforming spaces like in [5].

3. STABILIZATION BY MODIFYING THE DISCRETE EQUATIONS

To present the idea, let us consider a simple example where

Ph is the space of piecewise linear continuous functions
associated to a triangulation Ch of a two-dimensional
polygonal domain, and Vh = Pi n HS(Q). The pair (Vh'Ph) is
not stable in the sense of (2.7), but we can modify the dis-
crete equations so that the scheme becomes stable in the sense
of (2.6). To this end, let us define the approximate solution

to (1.1) as the pair (gh,ph) which satisfies (1.3 i) and

2 :
hi é Vpy * Vg, dx + é qpdiv u, dx

KeC
b (3.1)
= [ gqdx  vq, €0 .
Q
THEOREM 3. If (gh,ph) satisfies (1.31i),(3.1) then (2.5)
holds {with ﬁh: = uh) and one has the error estimate
la-uplly + Ip-ppllg g < ChClul, + [pl). (3.2)

REMARK. The error estimate does not follow directly from w
(2.6) because we have modified (1.3 ii) thus affecting the y
consistency of the scheme. In other words, we need a separate
estimate for the extra consistency error caused by the added

stabilizing term in (3.1).

PROOF. Let the triangles of Ch be grouped together to form
disjoint polygonal "macroelements" each containing at most a
fixed number, say N, triangles of Ch' Denote the coarse
partioning of Q so obtained by Eh and let §h be the

space of functions which are piecewise constant on the macro-
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elements. Now it is well known (c.f. [5], [8]) that by a
suitable choice of ?h the pair (Vh’gh) is stable in the
sense of (2.7), i.e., for any Bh € P
such that

there exists w,_ € Vi

h h

~ . ~ 2
(ph,dlv gh) > Iph“O/R
(3.3)
Il e
“ Ehh i C" Phu O/.R .

For example, if Ch is obtained from a coarser triangulation
Cg by subdividing each triangle into four equal subtriangles,

then it suffices to take ?h e Cg.

~

Now with wu,,p, satisfying (1.3 i) and (3.1) define Sh € By

as the local average of p, on each macroelement. Then set-

ting vy, = o - Ggh and qy = Py in (1.3 i) and (3.1), with

J a constant and ¥ satisfying (3.3), we obtain

~ 2 2 2
a(uy ,u) + GHPhHOAR + ) hy / IVph| dx
TEC, K

- Salu,w) + 8(p, =P ,div w) = (£,v) + (g,pp).

Now for any macroelement M € Ch we have the inequalities

= a2 ~
¢! [lo,Bfax < ] nZ [ |, |%ax < c [ Ip, B |%ax  (3.4)

M KEChH K M

KeM

where C depends only on N and on the minimal angle of the
triangles contained in M, so we may assume C to be an
absolute constant. Choosing then a sufficiently small positive
value for the parameter ¢ we have combining (3.3) and

(3.4) that
lul2 + Ip 02 o < CUE,v,) + (g,p)} (3.5)
Zniiq Py 0O/R = LV g:PL) 7 .
Applying on the right side the obvious estimate thﬂ1

< Cllaly + “thO/R)' the asserted stability estimate (2.6)
follows.
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Using the stability estimate we obtain by usual manipulations

an error bound of the form

"E_Eh"1 * "p-thO/R

£ ¢ inf {[lu-

vli, + llp-q
(v, ra ) €V, xB Yl h'lo/r

+  sup ) hﬁ f Vq, +Vr, dx}
rhEPh K€Ch K
gl g =

where the last term on the right side arises from the added

B ) . 2 2 2
stabilizing term in (3.1). Since % h é |Vrh| dx < C\Irhﬂo/][R

for 'y € P
appropriate interpolant of (u,p).
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