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This special issue continues the tradition of the journal Mathematical Models and
Methods in Applied Sciences on the modeling, qualitative analysis, and simulation of
complex systems. More precisely, systems of many individuals interacting in a non-
linear manner. The previous two special issues were dedicated to the more general
framework of mathematics applied to the modeling of complex dynamics in life and
human sciences 2,3. This special issue specifically focus on biological systems viewed
as living, hence complex, systems.

Some general reasonings can be proposed on the specific characteristics of the
complexity of biological systems. The following ones have been selected, according
to the authors’ bias, among various ones:

1. Living entities are capable to develop specific strategies and organization abilities

that depend on the state of the surrounding environment. These can be expressed
without the application of any external organizing principle. In general, they typi-
cally operate out-of-equilibrium. For example, a constant struggle with the environ-
ment is developed to remain in a particular out-of-equilibrium state, namely stay
alive 13.

2. The ability to express a strategy is not the same for all entities, namely hetero-

geneity characterizes a great part of living systems. Namely, the characteristics of
interacting entities can even differ from an entity to another belonging to the same
structure. In biology, this is due to different phenotype expressions generated by
the same genotype. Such strategic ability in various cases evolves in time. In fact,
living systems receive inputs from their environments and have the ability to learn

from past experience to adapt themselves to the environmental conditions 18,18.

3. The study of complex living systems always needs a multiscale approach. For
instance, the dynamics of a cell at the molecular (genetic) level determines the
cellular behaviors. As a matter of fact, the structure of macroscopic tissues depends
on such a dynamics. Macroscopic behaviors can be interpreted in a broad sense. For
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instance, tissues, populations of vertebrates, organs.

4. Interactions are nonlinearly additive and involve immediate neighbors, but in
some cases also distant particles. Indeed, living systems have the ability to com-
municate and can choose different observation paths. In some cases, the topological
distribution of a fixed number of neighbors can play a prominent role in the devel-
opment of the strategy and interactions. Interactions modify their state according
to the strategy they develop. Living entities play a game at each interaction with
an output that is technically related to their strategy often related to surviving and
adaptation ability.

5. All living systems are evolutionary. For instance birth processes can generate
individuals more fitted to the environment, who in turn generate new individuals
again more fitted to the outer environment. Neglecting this aspect means that the
time scale of observation and modeling of the system itself is not long enough to
observe evolutionary events. Such a time scale can be very short for cellular systems
and very long for vertebrates.

Additional technical difficulties are induced by a large number of variables, which
are needed to describe their overall state. Therefore, the number of equations needed
for the modeling approach may be too large to be practically treated. More precisely,
biological systems are different from the physical systems analyzed by statistical
mechanics, which typically deals with systems containing many copies of a few
interacting components, whereas cells contain from millions to a few copies of each
of thousands of different components, each with specific interactions.

It is plain that a system biology approach is needed to reduce the complexity of
the overall system. For instance, by splitting it into suitable subsystems, and sub-
sequently by developing mathematical tools suitable to model the specific system
under consideration by an approach that retains, as far as possible, the afore-said
five key features. In general, the collective overall behavior of large biological sys-
tems constituted by several interacting entities, from genes to cells and organs, is
determined by the dynamics of their interactions. On the other hand, a traditional
modeling of individual dynamics does not lead in a straightforward way to a mathe-
matical description of collective emerging behaviors. Moreover the dynamics of each
entity depends on the dynamics at the lower scale

It is plain from the above introductory notes that applied mathematicians look
at suitable developments of mathematical methods of statistical physics to model
the collective behavior of complex living systems starting from their interactions at
the low scales. Therefore, nowadays tools taken from this field are being used by
both physicists and mathematicians focusing on the afore-said aim. However, the
straightforward application of known methods do not generally lead to satisfactory
results. For instance modeling linear interactions is in contrast with recent studies
1, which conjecture, on the basis of empirical data 7, that some groups of animals
develop a common strategy based on interactions depending on topological rather
than metric distances. This opens some very interesting avenues in modeling. New
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tools have to be developed to model, within a multiscale approach, complex systems
constituted by several interacting entities.

After the reasonings that have been given above, the description of the contents
of this special issue can be given. It will be specifically referred to the afore men-
tioned complexity features. Indeed, all papers in this special issue retain some of
them, while all papers specifically refer to the third characteristics, namely to the
multiscale aspects of biological systems. An additional common issue is that these
papers cover the whole path from modeling, after an appropriate phenomenological
observation of the system under consideration, to simulation. In some papers the
qualitative analysis is developed, prior to simulations, of the good position of the
mathematical problems generated by the application of models to the analysis of
real biological phenomena.

The paper by Du, Xu, Shrout, and Alber11 presents a model od swarming of
a special biological system, namely the so-called P. aeruginosa focusing on the
influence of the surrounding environment modelled at the macroscopic scale by film
equations and convection-reaction equation, while the modeling at the microscopic
scale is delivered by a cell-based stochastic discrete model.

The following two papers presents two different concepts of populations in a
different context. The first one by Ducrot, Le Foll, Magal, Murakawa, Pasquer, and
Webb 12 models the dynamics of a cell culture in vitro by the approach population
dynamics with internal structure 22. where the description of the collective dynamics
takes into account several features at the microscopic scale. A qualitative analysis
and the and simulation that visualize cell clustering phenomena enrich the presen-
tation. The second one by Delitala, Pucci, and Salvatori10 focus on the modeling of
the onset and the spread of epidemics for individuals subject to a virus, which pro-
gressively mutates towards malignant states. This paper is the natural development
of the approach proposed in ? and is based on some recent developments of the
so-called kinetic theory for active particles 4. A detailed qualitative analysis assures
the good position of the initial value problem, while various simulations allow the
visualization the evolution of the epidemics on the affected individuals contrasted
by the immune system.

Different aspects of pattern formation somehow related to morphogenesis and
swarming are treated in 6,?, and 11. In particular, the paper by Cerreti, Perthame,
Schmeiser, and Tang ? study a development a hyperbolic Keller-Segel model related
to swarming phenomena of the bacteria Bacillus subtili. Empirical data show that
the cells are able to proliferate and exhibit complex patterns including dendritic
ramification. A new class of models is proposed and the afore-said phenomena are
related to branching instabilities. Simulations visualize the prediction of the model.

The paper by Calvo, Mazon, Soler, and Verbeni 6 deals with flux limited equa-
tions arising in the transport of morphogeneses and develop a qualitative analysis on
various problems such as existence of steady states, propagation of fronts with finite
speed. Simulations support the analytic results. The introduction of nonlinear flux
limited equations shows to be an interesting method to model complex biological
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phenomena, which overcomes the unrealistic descriptions such blow up of solutions.
Finally, the paper by Koumoutsakos, Bayati, Milde, and Tauriello 16 completes

the special issue by presenting a computational method that appears to be ex-
tremely well suited to develop simulations for complex biological systems in general
and for those proposed in this special issue. Computations are based on particle in-
teracting methods 15. Therefore it is appropriate to resolve their hierarchical, spatial
and temporal complexity. Possibly ranging from the molecular to the organismal
level. The contents focus the simulation of morphogenesis phenomena such as those
treated in the afore-cited papers.

Let us finally consider a question, which is quite naturally posed when mathe-
matics is applied to biological sciences focusing on the interplay between the two
different disciplines, namely mathematics and biology. More precisely, let us consider
the following question posed in 5 focusing on the general topic of evolution from
small living entities, for instance cells, to vertebrates. The question, or dilemma, is
as follows: Should mathematics attempt to reproduce experiments by equations whose
parameters are identified on the basis of empirical data, or develop new structures,
hopefully a new theory, able to capture the complexity of the biological phenomena
and finally to base experiments on theoretical foundations?

This question witnesses the presence of an intellectual conflict within the sci-
entific community. Although, applied mathematicians are attracted by the second
opportunity that aims at developing new mathematical theories and induce them
to tackle new challenging problems. This trend should not be considered a naive
ambition. In fact, the scientific community is aware that one of the great scientific
revolutions of this century is going to be the mathematical formalization of biologi-
cal sciences as it happened in the past centuries of the successful interplay between
mathematics and physics followed by a great impact on technology.

This means that the traditional approach of the research approach to biology,
generally based on conjectures and experiments, will be accompanied by the rig-
orous formalization that the tools of mathematics can offer by a variety of differ-
ent approaches, from the determinism of differential equations to probability and
stochastic games, always related to a multiscale framework, where different methods
need to be used at each representation scale.

One of the various difficulties that have to be faced in this ambitious objective
is the lack of first principles, which characterize living systems 17,14,20. This diffi-
culty and several unsuccessful attempts have contributed to a somehow pessimistic
attitude expressed by several authors. On the other hand, this century witnesses
not only the presence of optimistic attitudes, such as that offered by Woose 21, who
stimulates the development of new system biology approach, but also by the hints
of the Nobel laureate Hartwell 13, who invites mathematicians and physicists to
tackle the complexity of biology viewed as the sciences of living systems.

Based on the above reasonings, we feel confident to state that developing a
mathematics for living systems is a great challenge. When this objective is pursued,
the above question is not any more a dilemma. In fact, even experiments have to
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take into account that they operate in conditions generally close to steady states
that differs substantially from those of real living conditions. Hence mathemati-
cal methods can contribute to a deeper understanding of experiments designed to
capture specific aspects of living systems.

Our hope is that the papers of this issue, can contribute to a deeper understand-
ing of the mathematical strategies to achieve the afore said important objective.
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