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This special issue is the third of a sequel devoted to the development of mathematical

tools for the modeling, qualitative analysis and simulations of complex systems in life

and human sciences. Namely of systems of many living individuals interacting in a

nonlinear manner.

The collective overall behavior of large systems of interacting individuals is

determined by the dynamics of their interactions. On the other hand, a traditional

modeling of individual dynamics does not lead in a straightforward way to a math-

ematical description of the collective emerging behaviors. In particular, it is very

di±cult to understand and model these systems based on the sole description of the

dynamics and interactions of a few individual entities localized in space and time.

The ¯rst issue of the sequel was devoted to vehicular tra±c, crowds and swarms.4

The second one2 was devoted to a variety of di®erent topics such as °ocking phenom-

ena,9 animal epidemics,12 complex biological phenomena,15 and social dynamics.13,14,20

The contributions to this third special issue are mainly focused on crowds and

swarms phenomena for humans and animals. Therefore, the contents appear to be

closer to the ¯rst issue than the second one. Crowds need to be interpreted in a broad
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sense, namely not only as an assembly of pedestrians, but also of individuals who

aggregate or disaggregate according to speci¯c strategies, for instance aggregation of

criminality.19 An interesting source of information is the material available at the

WEB site,5 and in the report.6 One of the contributions17 is in the ¯eld of develop-

mental biology, linked however to the other papers by the common objective of

analyzing the \distance" between complex entities.

The modeling approach needs a deep understanding of the interaction rules

involving individuals in a crowd or in a swarm. These rules generally change according

to the type of interacting entities, on their localization, number and physical state.

The relevance of this issue is demonstrated (among other facts) by recent theoretical

and experimental studies of a team of physicists1 to understand the dynamics of

animal behavior in a swarm. It appears that the strategy developed by each individual

depends on the behavior of a ¯xed number of other animals in the swarm.

Focusing on living systems, de¯nitely the most sophisticated class of complex

systems, two main questions can naturally be posed before presenting the contents of

this paper:

Do complex living systems exhibit common features?

Are the analytic and computational tools o®ered by mathematics able to capture,

in the modeling approach, the above-mentioned common features?

A partial answer to the ¯rst question can be given borrowing some ideas proposed

in the critical analysis presented in Ref. 3. In particular, three main features can be

identi¯ed, among several others. Speci¯cally:

. Heterogeneous expression of strategic ability: Living systems have the ability to

express an individual strategy that modi¯es laws of classical mechanics and, in

some cases, generates proliferative and/or destructive processes. This expression is

heterogeneously distributed among interacting individuals.

. Interactions: Interactions modify the state of the active \particles" according to

the strategy they express, on the basis of the space and state distribution of the

other \particles". The strategy can be modi¯ed by the shape of their distribution.

Interactions may not be homogeneous in space, considering that interacting

entities can, in some cases, choose di®erent observation paths. Moreover, the

distance is not simply geometric, considering that living entities have the ability to

identify localization at a great distance and may even privilege it with respect to

localization at short distance.

. Mutations and evolution: An additional aspect that has to be considered is that, in

some cases, the speci¯c properties of living systems evolve in time. This evolution

may even correspond to real mutations with substantial modi¯cation of the

interaction rules related to mutated entities.

Mathematical models should be focused on capturing, at least in part, the above

common features. Applied mathematicians should be aware that this e®ort needs to

go beyond the classical tools of statistical and continuum mechanics.
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Before trying to answer the second question we shall now give a brief description

of the contents of this issue.

Two papers, one byRodriguez andBertozzi,18 and the other by Jones, Brantingham,

and Clayes,16 deal with the modeling of the time and space evolution of criminal

behaviors and with the related mathematical problems. Both of them are originated by

Ref. 19, which has themerit of having introduced a PDEapproach tomodeling this new

interpretation of crowd dynamics. The ¯rst of the two papers deals with the qualitative

analysis of mathematical problems generated by application of some of the models

under consideration to real situations analysis. The second one develops the approach

of Ref. 19 to open systems introducing the role of police actions.

Three papers are related to modeling and mathematical problems in animal

swarm dynamics. The paper by Ballerini Cavagna, Cimarelli, Giardina, Parisi,

Santagati, Stefanini, and Tavarone8 provides a sharp analysis of experiments on

swarm behavior. It is focused on understanding how birds in a swarm develop their

dynamics by taking advantage of the surrounding neighbors. It appears that the

individual dynamics is nonlinearly related to that of a ¯xed number of neighboring

individuals, independently of their distance as far as it is not too large. This paper

o®ers to applied mathematicians various challenging hints to develop new modeling

approaches, which go beyond models based on linear mean ¯eld interaction rules. On

the other hand the paper by Carrillo, Klar, Martin, and Tiwari7 mainly deals with the

modeling of swarms undergoing mean ¯eld interaction rules, but also subject to a

roosting force. They show that this last action generates emerging behaviors that are

not depicted by the model in the absence of a force ¯eld.

Multiscale issues are dealt with in the paper by Degond and Tong Yang,11 focused

on the analysis of the links between the microscopic and the macroscopic descrip-

tions. This paper follows a previous one by Degond and Motsch,10 presenting a

higher-order derivation of the large scale model based on the underlying description

at the small scale.

All the contributions mentioned above do not consider the evolutionary aspect of

several complex living systems, where interaction rules evolve in time. This aspect

generates di±cult mathematical problems related to the qualitative and compu-

tational analysis of systems of equations that change type and, in some cases also

change in number, as documented in Ref. 12 published in the preceding issue on

complex systems. A technical aspect somehow related to evolution is considered here

in the paper by Pompei, Caglioti, Loreto and Tria17 dealing with distance-based

phylogenetic algorithms.

Looking back to our second question (in the beginning of this Preface), and

revisiting the common features that we identi¯ed above, we can now state that some

of them have been considered in the papers of this special issue. Moreover, we might

also state that, at a general level, modeling them by traditional methods does not

yield a satisfactory account of all the relevant phenomena that are observed in

nature. Therefore, mathematicians and physicists are challenged by the need to look
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for new methodological approaches to complexity. For instance, applied mathema-

ticians should face, in the modeling approach, the characteristics of living systems

where interacting entities have the ability to organize speci¯c strategies that depend

not only on the state of the entities, but also to their number and localization.

Additional di±culty is generated by the heterogeneous distribution of their ability to

express a strategy, which, in some cases evolves in time.

These issues are also motivated by the fact that an increasing number of appli-

cations in technology, economy and social sciences can borrow techniques from

complex systems with great bene¯t. Our hope is that this issue can contribute to a

deeper understanding of the mathematical strategy to be used in modeling large

complex living systems. Possibly by new mathematical tools.
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