
J. Numer. Math., Vol. 0, No. 0, pp. 1–12 (2006)
c© VSP 2006 Prepared usingjnm.sty [Version: 02.02.2002 v1.2]

Bubble stabilization of Discontinuous Galerkin methods

F. BREZZI∗, and L. D. MARINI∗
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Abstract — We analyze the stabilizing effect of the introduction of suitable bubble functions in DG
formulations for linear second order elliptic problems, working, for the sake of simplicity, on Laplace
operator. In particular we find that the addition of a single bubble per element can stabilize the non-
symmetric formulation of Baumann-Oden
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1. INTRODUCTION

Most commonly used DG methods need the addition of suitable stabilizing terms
in order to provide good convergence properties. The typical stabilizing procedure
consists in the introduction ofpenalty termsthat penalize the jumps across neigh-
boring elements. Sometimes, in hyperbolic or in convectiondominated problems,
one also useupwind techniques, consisting in replacing theaverage((u+ +u−)/2)
on an internal edge with the upwind value (that is,u+ or u−, according with the
direction of the “wind”). This however, in most cases, can beseen again as a jump
stabilization ([15], [13], [10]).

Another possible way of stabilizing DG methods consists in the addition of suit-
able terms (this time, internal to each element) of the so-called Hughes-Francatype:
in general, the integral of the original equation (or one of the original equations),
written in strong forminside each elementin terms of the finite element unknowns
(= trial functions), multiplied by a similar expression acting on the test functions.
The most famous stabilization of this type, for standard Galerkin methods, is surely
the SUPG stabilization of convection dominated equations [12]. A typical problem,
in these cases, is the choice of the properstabilization coefficientto be put in front
of the stabilizing term.

In a recent paper (see [6]) we pointed out that, in DG methods,the jumps are
themselves to be regarded as “equations”, so that jump stabilizations (and hence
upwind) could be regarded as Hughes-Franca stabilizations as well. And, indeed,
the optimal choice of the coefficient in a jump-stabilization term is still a subject
that might need a further investigation.

∗Dipartimento di Matematica, Università di Pavia, Italy and IMATI-CNR, Via Ferrata 1, 27100
Pavia, Italy (brezzi@imati.cnr.it, marini@imati.cnr.it)

This work was partially supported by Italian government grant PRIN 2004.



2 F. Brezzi, L.D. Marini

In standard Galerkin methods (for instance in Stokes problem or in advection-
diffusion problems) one of the possible ways of stabilizingan unstable formulation
is to add one or morebubble functionper element. We recall that a bubble function
is, by definition, a function whose support is contained in a single element. The
bubble stabilization, in its turn, can also be seen as a Hughes-Franca stabilization
after eliminating the bubbles by static condensation. Thishas the effect of shifting
the problem of choosing the optimal coefficient into the problem of choosing the
optimal shape of the bubble (see e.g. [5], [2]). This last problem can however be
solved, in some cases, with the use of Residual Free Bubbles (see [11], [14]), or
Pseudo Residual Free Bubbles (see [8], [9]).

When using a discontinuous method the addition of bubble functions does not
mean much, as all the basis functions already have support ina single element
(hence, in a sense, they areall, already, bubbles). We could therefore consider that
for DG methods adding bubbles is just the same as augmenting the finite element
space, in an arbitrary way. For instance, in two dimensions,shifting from linear dis-
continuous elements to quadratic discontinuous elements could be seen as adding
three bubbles per element (corresponding tox2, y2, andxy). The same is obviously
true for any other increase of the local polynomial degree.

The problem whether the addition of bubbles could provide some additional
stability for DG methods has therefore a rather academic nature. However, it is in-
tellectually tackling to check whether and when a suitable (and possibly minimal)
increase in the finite element space can turn an unstable formulation into a stable
one. And, possibly, any discovery in this direction can provide some additional un-
derstanding of the underlying nature of DG methods.

Here we consider as a model (toy) problem the Poisson problemin a polygonal
domain, and we address our attention to the so-called Baumann-Oden DG formu-
lation ([3], [4], [16], [17], and many other papers). In particular we consider the
(unstable) choice of piecewise linear discontinuous elements. This case is particu-
larly easy, for our purposes, since we already know that the corresponding choice
of piecewise quadratic elements (always for the Baumann-Oden formulation)is in-
deed stable ([17]). Hence we know already that, in some sense, adding three bubbles
per element can stabilize the problem. What we address here is therefore the ques-
tion whether it would be possible to stabilize the piecewiselinear Baumann-Oden
formulationadding less than three bubbles per element. Indeed we prove that the
addition ofonebubble per element can lead to a stable and converging method.

The practical impact of our investigation is surely questionable, although the
possibility of avoiding the jump stabilization for linear elements is surely appeal-
ing, as it leads to a more “natural”choice of the interelement fluxes. Moreover we
believe that our analysis provides a better understanding of some basic aspects and
mechanisms related to DG methods, that might be of some help in designing new
future methods. And as such, it might interest several curious scientists, as for in-
stance Yuri Kuznetsov, to whom this little paper is dedicated.

An outline of the paper is as follows. In the next section we recall some notation
on DG methods, and the Baumann-Oden formulation for Poissonproblem. Then we
introduce the bubble stabilization and prove stability of the augmented formulation,
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and optimal error estimates.

2. THE MODEL PROBLEM AND THE BAUMANN-ODEN METHOD

Let Ω be a convex polygonal domain, with boundary∂Ω. For everyf , say, inL2(Ω)
we consider the model problem:

−∆u = f in Ω, u = 0 on∂Ω. (2.1)

It is well known that problem (2.1) has a unique solution, that belongs toH2(Ω)∩
H1

0(Ω).
Let Th be a decomposition ofΩ into trianglesT, with the usualminimum angle

condition, letE 0
h be the set of internal edges ofTh, andEh the set of all the edges.

We consider first the (infinite dimensional) spaceV(Th) defined as

V(Th) = {v∈ L2(Ω) such thatv|T ∈ H2(T) ∀T ∈ Th}. (2.2)

Elementsv∈V(Th) will, in general, be discontinuous when passing from one ele-
ment to a neighboring one. As usual in DG methods we have therefore to introduce
boundary operators asaveragesandjumps. As we shall deal also with vector-valued
functions which are smooth in each triangle but discontinuous from one triangle to
another, we shall introduce these boundary operators for scalar and for vector-valued
functions. Following [1] we set (see Figure 1):

T+

n+

n
_

_

T

Figure 1. Two neighboring triangles and their normals.

{v} =
v+ +v−

2
; [[v]] = v+n+ +v−n− for all internal edges

{τ} =
τ+ + τ−

2
; [[τ ]] = τ+n+ + τ−n− for all internal edges

On the boundary edges we define[[v]] = vn; {τ} = τ.
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We introduce now some further notation. For functions inV(Th) we first introduce
the elementwise gradient∇h, and then foru andv in V(Th) we set

(∇hu,∇hv) := ∑
T∈Th

∫

T
∇u·∇vdx, < {∇hu}, [[v]] >:= ∑

e∈Eh

∫

e
{∇hu} · [[v]]ds.

Setting, foru andv in V(Th)

a(u,v) := (∇hu,∇hv)− < {∇hu}, [[v]] > + < {∇hv}, [[u]] >, (2.3)

the Baumann-Oden “continuous”formulation of (2.1) is now

{
Find u∈V(Th) such that,∀v∈V(Th) :
a(u,v) = ( f ,v).

(2.4)

In V(Th) we define the jump seminorm

||v||2j = ∑
e∈Eh

1
|e|

∫

e
|[[v]]|2ds, (2.5)

and the norm
||v||2V(Th)

:= ∑
T∈Th

(
||∇hv||20,T +h2

T |v|
2
2,T

)
+ ||v||2j . (2.6)

We recall now the following useful result due to Agmon (see, e.g., [1]):

∀T, ∀e∈ ∂T, ∀v∈ H1(T) :
∫

e
v2ds6 Ca(h

−1
T ||v||20,T +hT |v|

2
1,T), (2.7)

with Ca only depending on the minimum angle ofT. Hence we have

| < {τ}, [[v]] > | = ∑
e∈Eh

∫

e
{τ} · [[v]]ds

6 C

[
∑
T

(||τ ||20,T +h2
T |τ |21,T)

]1/2[
∑

e∈Eh

h−1
e

∫

e
|[[v]]|2ds

]1/2

,

(2.8)

for all τ that are in(H1(T))2 for everyT, and for allv ∈ V(Th). From (2.8) we
easily deduce the following proposition.

Proposition 2.1. There exist a constant, that we again denote by Ccont, depend-
ing only on the minimum angle inTh, such that

a(u,v) 6 Ccont||u||V(Th) ||v||V(Th) ∀u,v∈V(Th). (2.9)
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3. APPROXIMATION

We set, for every elementT,

V(T) := {v| v = a+bx+cy+d(x2 +y2)},

Σ(T) := ∇(V(T)) = RT0(T),

whereRT0(T) denotes the lowest order Raviart-Thomas space over the elementT.
We then extend our spaces to the wholeΩ setting

Vh := ∏
T

V(T), Σh := ∏
T

Σ(T).

The discrete problem is then:

{
Finduh ∈Vh such that,∀v∈Vh :
(∇huh,∇hv)− < {∇huh}, [[v]] > + < {∇hv}, [[uh ]] >= ( f ,v),

(3.1)

where, here and in all the rest of the paper, the bilinear forma(u,v) is defined in
(2.3).

In the finite element spaceVh we introduce the usual DG norm

|||v|||2 = |v|21,h + ||v||2j , (3.2)

and we note immediately that, with a simple use of the inverseinequality, we have
thaton Vh the DG norm(3.2) is equivalent to the norm(2.6) originally introduced
in V(Th). In particular we have

||vh||V(Th) 6 Cinv|||vh||| 6 Cinv||vh||V(Th) vh ∈Vh. (3.3)

Hence (2.8) can be simplified to

| < {τ}, [[v]] > | 6 C

[
∑
T

(||τ ||20,T +h2
T |τ|21,T)

]1/2[
∑

e∈Eh

h−1
e

∫

e
|[[v]]|2ds

]1/2

6 Cs||τ ||0 ||v|| j

(3.4)

for all τ ∈ Σh and for allv∈Vh. Hence we immediately have the following result.

Proposition 3.1. There exist a constant Ccont, depending only on the minimum
angle inTh, such that

a(uh,vh) 6 Ccont|||uh||| |||vh||| ∀uh,vh ∈Vh. (3.5)
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Our main task will now to provestabilityof the bilinear forma(u,v) in the DG norm
(3.2). This however will not be done by showingellipticity of the bilinear forma,
but rather by proving that there exists a mappingS: Vh →Vh such that

sup
v

a(u,v)
|||v|||

>
a(u,S(u))

|||S(u)|||
> K |||u||| ∀u∈Vh (3.6)

for a suitable constantK depending only on the minimum angle ofTh. The target
(3.6) will be reached by constructing an operatorSwhich isbounded

|||S(u)||| 6 K2|||u|||, (3.7)

andbounding
a(u,S(u)) > K1|||u|||

2, (3.8)

so that (3.6) will follow withK = K1/K2. The construction of the operatorS is the
main difficulty of this paper, and it will be done in several steps.

To start with, for every elementT and everyτ ∈ Σ(T) we define itspotential
p(τ) by

∇p(τ) = τ and
∫

T
p(τ) = 0.

Note thatp is one-to-onefrom Σ(T) to the subset ofV(T) of functions having zero
mean value onT.

We then extend the above definitions globally, definingp : Σh →Vh in the (obvi-
ous) element by element way, and we note that everyv∈Vh can be split in aunique
way as

v = v0 +v1 with v0 = piecewise constantand v1 = p(∇v). (3.9)

We shall now prove the boundedness of thep operator.

Proposition 3.2. There exists a constant Cp, depending only on the minimum
angle of the decompositionTh, such that

|||p(τ)||| 6 Cp||τ||0,Ω (3.10)

for all τ ∈ Σh.

Proof. We first note that, sincep(τ) has zero mean value in each triangle, we
have

∀T, ∀τ ∈ Σ(T) : ||p(τ)||20,T 6 C1h2
T |p(τ)|21,h = C1h2

T ||τ ||20.
Hence, using again the Agmon inequality (2.7) we deduce that

∀τ ∈ Σh : |||p(τ)|||2 = ||τ||20 + ||p(τ)||2j

6 ||τ||20 +CCa∑
T

1
hT

(h−1
T ||p(τ)||20,T +hT |p(τ)|21,T)

6 (1+CCaC1+CCa)||τ ||20,
and the result (3.10) follows immediately. �
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Next, we construct a mappingL from the space of piecewise constant scalars to
the spaceΣh. Forv0 piecewise constant, we define

τ = L(v0) iff τ ·ne =
1
|e|

[[v0 ]] ·ne ∀ edgee∈ Eh, (3.11)

ne being one of the two normal directions toe. The following two properties of
the mapL will play an important role in our analysis. The first is immediate, but
important, and we state it as a proposition.

Proposition 3.3. Let L be the operator defined in(3.11). Then for every piece-
wise constant v0 we have

∑
e∈Eh

∫

e
L(v0) · [[v0 ]]ds= |||v0|||

2. (3.12)

Proof. Equality (3.12) follows immediately from the definitions (3.11) (of L)
and (3.2) (of the DG norm), taking into account that for a piecewise constantv0 we
have|v0|1,h = 0. �

The second property expresses the continuity (uniform inh) of the mapping
v0 → p(L(v0)).

Proposition 3.4. Let L be the operator defined in(3.11). Then there exists a
constantγ , depending only on the minimum angle of the decomposition, such that

||p(L(v0))‖|
2
0,Ω 6 γ2|||v0|||

2 (3.13)

for every piecewise constant v0.

Proof. The proof will follow easily if we show that

||L(v0)||
2
0,Ω 6 Ci

2|||v0|||
2 = Ci

2||v0||
2
j (3.14)

for all piecewise constantv0, with a constantCi depending only on the minimum
angle in the decomposition. Indeed, if we have (3.14) then the required (3.13) will
follow using (3.10):

||p(L(v0))‖|
2
0,Ω 6 C2

p||L(v0)||
2
0,Ω 6 C2

pC
2
i |||v0|||

2 =: γ2|||v0|||
2. (3.15)

Hence we have just to prove (3.14). This can be easily done by ausualscaling
argument. We hint the procedure for convenience of the interested readers. For every
triangleT we consider a “reference”trianglêT, homothetic toT and with diameter
equal to 1. Then for every piecewise constantv0 we defineτ̂ ∈ Σ(T̂) by

τ̂ ·ne =
1
|ê|

̂[[v0 ]] ·ne ∀ê∈ ∂ T̂. (3.16)
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Note that we did not distinguish betweenne andn̂ê since the two trianglesT andT̂
are homothetic. From (3.16), denoting byτ the restriction toT of L(v0), we have

τ = h−1
T τ̂,

since, from the homothety,|e| = hT |ê| for two corresponding edgese andê. More-
over we have|T̂| = h−2

T |T|, so that

||L(v0)||
2
0,T = ||τ̂||20,T̂ . (3.17)

It is also clear that on̂T there will be a constantCT̂ , depending only on the minimum
angle ofT̂, such that

||τ̂ ||20,T̂ 6 CT̂ ∑
ê∈∂ T̂

|| ̂[[v0 ]]||20,ê

|ê|
. (3.18)

Finally we have easily

∑
ê∈∂ T̂

|| ̂[[v0 ]]||20,ê

|ê|
= ∑

e∈∂T

||[[v0 ]]||20,e

|e|
. (3.19)

Combining (3.17)-(3.19) we have

||L(v0)||
2
0,T = ||τ̂ ||20,T̂ 6 CT̂ ∑

ê∈∂ T̂

|| ̂[[v0 ]]||20,ê

|ê|
= CT̂ ∑

e∈∂T

||[[v0 ]]||20,e

|e|
. (3.20)

A usual continuity argument (for the dependence ofCT̂ on theshapeof T̂) allows
to use the “compactness of theshapeof T̂”, due to the minimum angle assumption.
The argument is further simplified by the fact thatΣ is rotation-invariant, so that
we can assume that one vertex ofT̂ is in the origin, and that the longest edge ofT̂
is a subset of the positive horizontal axes (see Figure 2). The shape ofT̂ will then
depend only on the position of the last vertexP that, due to the minimum angle
condition, can only vary in a closed bounded set. Hence thereexists aĈ, depending
only on the minimum angle, such that

||L(v0)||
2
0,T 6 Ĉ ∑

e∈∂T

1
|e|

||[[v0 ]]||20,e (3.21)

for every piecewise constant functionv0 and for every triangleT ∈ Th. Summing
over the triangles we conclude the proof. �

The mappingv0 → L(p(v0)) will be thecrucial ingredient of our target operator
S. Let us see some of its properties. As a first step,
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P

0 1

T̂

Figure 2. The reference trianglêT

Proposition 3.5. There exists a constant K0, depending only on the minimum
angle inTh, such that

a(u, p(L(u0))) > |||u0|||
2 − K0 |u|1,h |||u0||| (3.22)

for all u ∈Vh, where u0 is obtained from u through the splitting(3.9).

Proof. Foru∈Vh, with u = u0 +u1 = u0 + p(∇hu) as in (3.9), we have

a(u, p(L(u0))) = (∇hu,L(u0))− < {∇hu}, [[ p(L(u0)) ]] > + < {L(u0))}, [[u]] >

= (∇hu,L(u0))− < {∇hu}, [[ p(L(u0)) ]] > + < {L(u0))}, [[ p(∇hu) ]] > + < {L(u0))}, [[u0 ]] >

= (∇hu,L(u0))− < {∇hu}, [[ p(L(u0)) ]] > + < {L(u0))}, [[ p(∇hu) ]] > +|||u0|||
2.

Using this, Cauchy-Schwarz inequality, (3.4), (3.13)-(3.14), and finally (3.10) we
then have

|||u0|||
2 = a(u, p(L(u0)))− (∇hu,L(u0))+ < {∇hu}, [[ p(L(u0)) ]] > − < {L(u0))}, [[ p(∇hu) ]] >

6 a(u, p(L(u0)))+ |u|1,h ||L(u0)||0,Ω +Cs|u|1,h |||p(L(u0))|||+Cs||L(u0)||0,Ω|||p(∇hu)|||

6 a(u, p(L(u0)))+ |u|1,hCi |||u0|||+Cs|u|1,h γ |||u0|||+CsCi|||u0|||C1|u|1,h

= a(u, p(L(u0)))+K0 |u|1,h |||u0|||,

which is inequality (3.22). �

The operatorSwill then be constructed as

S(u) := u+ α p(L(u0) (3.23)

for a suitable choice ofα . It is clear thatS, constructed as in (3.23), will be bounded.
In particular we shall have

|||u+ α p(L(u0))|||
2 6 2(|||u|||2 + |||α p(L(u0))|||

2) 6 2(|||u|||2 + γ2α2|||u0|||
2)

6 K2
2|||u|||2,

(3.24)
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that is precisely theboundednessproperty (3.7), withK2 depending only onα (still
to be chosen) and on the minimum angle of the decomposition. Let us see that the
boundingproperty (3.8) is also verified, forα small enough. Indeed, we remark first
from the definition (2.3) of the bilinear forma that for allv∈Vh

a(v,v) = |v|21,h (3.25)

which is indeed the nicest feature of the Baumann-Oden formulation, compared
with other DG formulations. Then we chooseα := 2/(1+K2

0), and we have

a(u,u+ α p(L(u0))) = |u|21,h +a(u,α p(L(u0)))

> |u|21,h + α( |||u0|||
2 − K0 |u|1,h |||u0|||)

=
α
2

(|u|21,h + |||u0|||
2)+ (1−

α
2

)|u|21,h +
α
2
|||u0|||

2−αK0 |u|1,h |||u0|||

=
1

1+K2
0

(|u|21,h + |||u0|||
2)+

1

1+K2
0

(K0|u|1,h− |||u0|||)
2

>
1

1+K2
0

(|u|21,h + |||u0|||
2).

(3.26)

On the other hand, using (3.9) and then (3.10) we have

|||u|||2 6 2(|||u0|||
2 + |||p(∇u)|||)2 6 2(|||u0|||

2 +C2
p|u|

2
1,h), (3.27)

which combined with (3.26) gives

a(u,u+ α p(L(u0))) > K1|||u|||
2, (3.28)

with K1 depending only onK0 andCp, that is (3.8).
We summarize the result in the following theorem

Theorem 3.1. There exists a constant K, depending only on the minimum angle
of Th, such that: for every uh ∈Vh there exists a vh (= S(uh)) in Vh, different from
zero, such that

a(uh,vh) > K|||uh||| |||vh|||. (3.29)

Now it is classical to deduce the error estimate.

Theorem 3.2. In the above assumptions, for every f∈ L2(Ω) the discrete prob-
lem(3.1)has a unique solution uh. Moreover the distance between uh and the solu-
tion u of(2.1)can be estimated as

||u−uh||V(Th) 6 Ch|u|2,Ω. (3.30)

where C is a constant depending only on the minimum angle ofTh.
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Proof. The proof is now classical. We start by defininguI as the piecewise linear
interpolant ofu. Then we use (3.3), then (3.29), then Galerkin orthogonality, then
(2.9), then again (3.3) to obtain

||uh−uI ||V(Th) 6 Cinv |||uh−uI ||| 6
Cinv

K
a(uh−uI ,S(uh−uI))

|||S(uh−uI)|||

=
Cinv

K
a(u−uI ,S(uh−uI ))

|||S(uh−uI)|||

6
Cinv

K

Ccont||u−uI ||V(Th)||S(uh−uI ))||V(Th)

|||S(uh−uI)|||

6
Cinv

K

Ccont||u−uI ||V(Th)Cinv|||S(uh−uI))|||

|||S(uh−uI )|||

=
C2

invCcont

K
||u−uI ||V(Th)

(3.31)

and the result follows from usual interpolation estimates. �

Remark 3.1. We want to point out that our choice of the bubble (= d(x2 +y2))
was made in order to simplify the analysis. The nice feature of this bubble is that
∇V(T) ≡ RT0(T), and we can then use all the well known properties of the lowest
order Raviart-Thomas elements. Clearly other bubbles could do the job, possibly
with some additional work. For instance, any bubble such that the average of its
normal derivative is positive on each edge should work.
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