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Bubble stabilization of Discontinuous Galerkin methods

F. BREZZF% and L.D. MARINI*
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Abstract — We analyze the stabilizing effect of the introduction oitable bubble functions in DG
formulations for linear second order elliptic problems rking, for the sake of simplicity, on Laplace
operator. In particular we find that the addition of a singbtide per element can stabilize the non-
symmetric formulation of Baumann-Oden
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1. INTRODUCTION

Most commonly used DG methods need the addition of suitahlalizing terms
in order to provide good convergence properties. The tygidilizing procedure
consists in the introduction gdfenalty termghat penalize the jumps across neigh-
boring elements. Sometimes, in hyperbolic or in convectiominated problems,
one also usepwind techniquesconsisting in replacing thaverage((ut +u~)/2)
on an internal edge with the upwind value (thatus, or u~, according with the
direction of the “wind”). This however, in most cases, carsben again as a jump
stabilization ([15], [13], [10]).

Another possible way of stabilizing DG methods consisthienaddition of suit-
able terms (this time, internal to each element) of the deatblughes-Francaype:
in general, the integral of the original equation (or oneh& briginal equations),
written in strong forminside each elemeim terms of the finite element unknowns
(= trial functions), multiplied by a similar expression iagt on the test functions.
The most famous stabilization of this type, for standarde@dth methods, is surely
the SUPG stabilization of convection dominated equati@@$. [A typical problem,
in these cases, is the choice of the progtabilization coefficiento be put in front
of the stabilizing term.

In a recent paper (see [6]) we pointed out that, in DG methitasjumps are
themselves to be regarded as “equations”, so that jumpligtdinins (and hence
upwingd could be regarded as Hughes-Franca stabilizations as A, indeed,
the optimal choice of the coefficient in a jump-stabilizatierm is still a subject
that might need a further investigation.
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In standard Galerkin methods (for instance in Stokes proldein advection-
diffusion problems) one of the possible ways of stabilizamgunstable formulation
is to add one or morbubble functiorper element. We recall that a bubble function
is, by definition, a function whose support is contained iringle element. The
bubble stabilization, in its turn, can also be seen as a Hifh@nca stabilization
after eliminating the bubbles by static condensation. Tl the effect of shifting
the problem of choosing the optimal coefficient into the jpeab of choosing the
optimal shape of the bubble (see e.g. [5], [2]). This lasbjmm can however be
solved, in some cases, with the use of Residual Free Bubdées[{1], [14]), or
Pseudo Residual Free Bubbles (see [8], [9]).

When using a discontinuous method the addition of bubbletfons does not
mean much, as all the basis functions already have suppatsingle element
(hence, in a sense, they at, already, bubbles). We could therefore consider that
for DG methods adding bubbles is just the same as augmeimnfinite element
space, in an arbitrary way. For instance, in two dimensishiting from linear dis-
continuous elements to quadratic discontinuous elementisl be seen as adding
three bubbles per element (corresponding?o/?, andxy). The same is obviously
true for any other increase of the local polynomial degree.

The problem whether the addition of bubbles could provideme@dditional
stability for DG methods has therefore a rather academigreaHowever, it is in-
tellectually tackling to check whether and when a suitabled(possibly minimal)
increase in the finite element space can turn an unstableufation into a stable
one. And, possibly, any discovery in this direction can mevsome additional un-
derstanding of the underlying nature of DG methods.

Here we consider as a model (toy) problem the Poisson proioienpolygonal
domain, and we address our attention to the so-called Baw@aen DG formu-
lation ([3], [4], [16], [17], and many other papers). In pamlar we consider the
(unstable) choice of piecewise linear discontinuous efgmé his case is particu-
larly easy, for our purposes, since we already know that thheesponding choice
of piecewise quadratic elements (always for the Baumanen@ormulation)is in-
deed stable ([17]). Hence we know already that, in some saddeg three bubbles
per element can stabilize the problem. What we address fi¢neriefore the ques-
tion whether it would be possible to stabilize the pieceviisear Baumann-Oden
formulation adding less than three bubbles per elemémtieed we prove that the
addition ofonebubble per element can lead to a stable and converging method

The practical impact of our investigation is surely questiole, although the
possibility of avoiding the jump stabilization for linealeeents is surely appeal-
ing, as it leads to a more “natural’choice of the intereletflixes. Moreover we
believe that our analysis provides a better understandisgroe basic aspects and
mechanisms related to DG methods, that might be of some halpsigning new
future methods. And as such, it might interest several asrgcientists, as for in-
stance Yuri Kuznetsov, to whom this little paper is dedidate

An outline of the paper is as follows. In the next section weallesome notation
on DG methods, and the Baumann-Oden formulation for Poigsasiem. Then we
introduce the bubble stabilization and prove stabilityhaf augmented formulation,
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and optimal error estimates.

2. THE MODEL PROBLEM AND THE BAUMANN-ODEN METHOD

Let Q be a convex polygonal domain, with bounda@®. For everyf, say, inL?(Q)
we consider the model problem:

—Au=Tf inQ u=0 onodQ. (2.1)

It is well known that problem (2.1) has a unique solutiont thelongs taH?(Q) N
H3(Q).

Let .7, be a decomposition @ into trianglesT, with the usuaminimum angle
condition, Ieté‘;? be the set of internal edges &f, andé;, the set of all the edges.
We consider first the (infinite dimensional) spate7;,) defined as

V() = {ve L*(Q) such thaw;r € H*(T) VT € %} (2.2)

Elementsy € V(%) will, in general, be discontinuous when passing from one ele
ment to a neighboring one. As usual in DG methods we haveftirerto introduce
boundary operators averagesandjumps As we shall deal also with vector-valued
functions which are smooth in each triangle but discontusuivom one triangle to
another, we shall introduce these boundary operators &arsand for vector-valued
functions. Following [1] we set (see Figure 1):

Figure 1. Two neighboring triangles and their normals.

{v} = v ervi; [v]=vn*+v n- forallinternal edges
+ —
{1} = r ZT ; [t]=1"n"+17n" forallinternal edges

On the boundary edges we defipe] = vn; {1} =T1.
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We introduce now some further notation. For function¥ {i%},) we first introduce
the elementwise gradieft,, and then fou andv in V () we set

(Ohu, Opv) := Tezyh i Ou-Ovdx, < {Opu},[Vv] >:= ee%h /e{Dhu} -[v]ds.

Setting, foru andvin V(%)
a(u,v) 1= (Onu, Onv)— < {Onu}, V] > + < {Onv}, [u]] >, (2.3)

the Baumann-Oden “continuous”formulation of (2.1) is now

Findu € V(%) such thatyve V(%) :
(2.9)
a(u,v) = (f,v).
InV(Z5) we define the jump seminorm
M= 3 g LIPS 25)
ecéh ’e‘ €
and the norm
MG =5 (I0vilar +1% V3r) + VI (2.6)

Te%

We recall now the following useful result due to Agmon (seg,,41]):
VT, Vee aT, Yve HY(T) : /evzds< Cahr VI3 +hrlv2y),  (27)
with C, only depending on the minimum angle Bf Hence we have
| <{Th vl > = %/E{T}W[V]]ds
eceh

12 (2.8)

1/2
<c [Z(HTH%,TJrh%\T!iT)] [; et | u[vmzds] ,

for all T that are in(H(T))? for every T, and for allv € V(.%,). From (2.8) we
easily deduce the following proposition.

Proposition 2.1. There exist a constant, that we again denote gy depend-
ing only on the minimum angle i, such that

a(u,v) < CeontllUllv () [IVllv () vu,v eV (). (2.9)
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3. APPROXIMATION

We set, for every elemertt,

V(T):={v] v=a+bx+cy+dx®+y?)},
Z(T):=0(V(T)) =RTW(T),

whereRTy(T) denotes the lowest order Raviart-Thomas space over theeptdm
We then extend our spaces to the wh@lsetting

Vh = |'|V(T), Ih= |'|Z(T).
T T
The discrete problem is then:

(3.1)

Find u, € V,, such thatyv € V-
{ (Onun, Onv)— < {Onun}, [v] > + < {0Onv}, [un] >= (f,v),

where, here and in all the rest of the paper, the bilinear fafmv) is defined in
(2.3).
In the finite element spad4, we introduce the usual DG norm

2 2 2
IVII= = [V + VIS, 3.2)
and we note immediately that, with a simple use of the inversguality, we have

thaton \f, the DG norm(3.2) is equivalent to the norr(2.6) originally introduced
inV(Zh). In particular we have

IVhllv(z) < CinvllIvnlll < Cinv[[Vhllv () Vh € Vi 3.3)
Hence (2.8) can be simplified to
1/2 ‘ 1/2
|<{thIv]>|<C [mru%: +h%\r\%;>] [ 2he! / ,vazds] (3.4)
< Gs|tllolvilj

for all T € 2, and for allv € ;.. Hence we immediately have the following result.

Proposition 3.1. There exist a constantgn:, depending only on the minimum
angle in.%;, such that

a(Un, Vh) < Ceont/l[un]|| [[|val VUn, Vh € Vh. (3.5)
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Our main task will now to provstability of the bilinear forma(u, v) in the DG norm
(3.2). This however will not be done by showiedipticity of the bilinear forma,
but rather by proving that there exists a mapgBd/, — Vi, such that

supl(Y) - auS)

v VI [ISCu)l
for a suitable constari{ depending only on the minimum angle &f. The target
(3.6) will be reached by constructing an opergarhich isbounded

IS < Kfulli; 3.7

> K |Jul YueWw (3.6)

andbounding
a(u, S(u)) = Ka|lu?, (3.8)

so that (3.6) will follow withK = K; /K. The construction of the operat8iis the
main difficulty of this paper, and it will be done in severais.
To start with, for every elemerit and everytr € Z(T) we define itspotential

p(7) by
Op(t)=1 and /Tp(r):o.

Note thatp is one-to-onefrom Z(T) to the subset 0¥ (T) of functions having zero
mean value off .

We then extend the above definitions globally, definingy — W, in the (obvi-
ous) element by element way, and we note that every}, can be split in ainique
way as

v=Vo+Vv1 with V= piecewise constantand v = p(0v). (3.9)
We shall now prove the boundedness of theperator.
Proposition 3.2. There exists a constant,Cdepending only on the minimum
angle of the decompositiofi,, such that

(D)l < CpliTlloe (3.10)
forall T € Z;.

Proof. We first note that, since(7) has zero mean value in each triangle, we
have
VT, VT e Z(T): [Ip(7)ll57 < Cih%p(T)[3h = Cih% [ T(l5:

Hence, using again the Agmon inequality (2.7) we deduce that
vrezn: [lp()? =TI+ Ip(T)lf

1,
< ||T||(2)+CCaZ E(hT:LHp(T)”(z),T +hrlp(T)i7)

< (14CCC +CG)| 7]},
and the result (3.10) follows immediately. d
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Next, we construct a mappirigfrom the space of piecewise constant scalars to

the spacey. Forvg piecewise constant, we define

T=L(w) iff T-ne=—[w]-ne Vedgeee &, (3.112)

ne being one of the two normal directions & The following two properties of
the mapL will play an important role in our analysis. The first is imniege, but
important, and we state it as a proposition.

Proposition 3.3. Let L be the operator defined (8.11) Then for every piece-
wise constantywe have

> | Livo) - [vollds = ol (3.12)

Proof. Equality (3.12) follows immediately from the definitions.13) (of L)
and (3.2) (of the DG norm), taking into account that for a piise constaniy we
have|vp|1h = 0. O

The second property expresses the continuity (uniforrh)iof the mapping
Vo — p(L(Vp)).

Proposition 3.4. Let L be the operator defined i8.11) Then there exists a
constanty, depending only on the minimum angle of the decompositiarh that

Ip(L(vo) 5.2 < VlIVoll? (3.13)
for every piecewise constang.v

Proof. The proof will follow easily if we show that
IL(vo)l8. < Gi®[Ivoll® = CiZ|Ivol§ (3.14)

for all piecewise constanty, with a constantC; depending only on the minimum
angle in the decomposition. Indeed, if we have (3.14) therrdiguired (3.13) will
follow using (3.10):

IP(L(v))IIIF @ < CRlL(vo)IGa < CECElIVoll® =: V¥lIvoll%.  (3.15)

Hence we have just to prove (3.14). This can be easily doneusgalscaling
argumentWe hint the procedure for convenience of the interestedersaFor every
triangle T we consider a “reference’triangle, homothetic tor and with diameter
equal to 1. Then for every piecewise constarive definef € Z(T) by

%[[T/O\]] ‘ne VéeaT. (3.16)

i-'ne:
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Note that we did not distinguish betwesgandris since the two triangle$ andT
are homothetic. From (3.16), denoting byhe restriction tal' of L(v), we have

T = h't,

since, from the homothetyg| = hy |€| for two corresponding edgesand€. More-
over we havéT | = h72|T|, so that

IL(vo)ll§ (3.17)

Itis also clear that ofi there will be a constar@;, depending only on the minimum
angle ofT, such that

5
1715+ <Cp % (3.18)
Finally we have easily
2
5 Il |]]|H 5 H[[vrj'uo@_ 3.19)
écoT ecoT
Combining (3.17)-(3.19) we have
2
Lo = 1712, <cr 3 MollBe _ e _cp y Mol @2

écoT ecoT

A usual continuity argument (for the dependencé&gfon theshapeof T) allows
to use the “compactness of theapeof T”, due to the minimum angle assumption.
The argument is further simplified by the fact thats rotation-invariant, so that
we can assume that one vertexiofs in the origin, and that the longest edgeiof
is a subset of the positive horizontal axes (see Figure 2).Shape ofi will then
depend only on the position of the last vertexhat, due to the minimum angle
condition, can only vary in a closed bounded set. Hence #dsts aC, depending
only on the minimum angle, such that

IL)liGr <€ 5 llvollde (3.21)

|
E]

for every piecewise constant functiep and for every triangldl € ;. Summing
over the triangles we conclude the proof. O

The mappingip — L(p(vo)) will be thecrucial ingredient of our target operator
S Let us see some of its properties. As a first step,
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—A>

Figure2. The reference trianglé

Proposition 3.5. There exists a constantgKdepending only on the minimum
angle in.%;, such that

a(u, p(L(uo))) = lluoll® — Ko|ulz [|uoll

(3.22)
for all u € V,, where g is obtained from u through the splittin@.9).

Proof. Foru € W, with u=up+ u; = Up+ p(Chu) as in (3.9), we have
a(u, p(L(Uo))) = (Onu, L(uo))— < {Chu}, [p(L(uo))]] > + < {L(uo))}, [u] >

= (Onu, L (uo)) — < {Dnu}, [p(L(Uo)) ]| > + < {L(uo))}, [P(Onu) [| > + < {L(t0))}, [Uo] >
= (0nu, L(uo))— < {Onu}, [ P(L(U0)) ]| > + < {L(w0))}, [ P(Ch) ] > +]lluof|*.

Using this, Cauchy-Schwarz inequality, (3.4), (3.1343, and finally (3.10) we
then have

lluoll* = a(u, P(L(Uo))) — (Bau, L(Uo))+ < {Onu}, [ P(L(Uo)) ]| > — < {L(Uo))}, [ P(Cr) ] >
< a(u, p(L(o))) + [ulznllL (o) llo.q +Cs|ulwn [ P(L(Uo)) |+ Cs]IL (o) [lo.llP(ChU) |
< a(u, p(L(u))

)+ |U[1h G [[|uoll] +Csulpn vl Uo | 4+ CsCill|uoll| Ca[ul
= a(u, p(L(Uo))) + Ko |U[1 |uoll

which is inequality (3.22).

The operatoSwill then be constructed as

S(u) :=u+ ap(L(uo) (3.23)

for a suitable choice af. Itis clear thatS, constructed as in (3.23), will be bounded
In particular we shall have

llu+ ap(L(uo))[I* < 2(]|ull* + o p(L (o)) ) < 2([[ull* + y*a[luoll)
o (3.24)
<K lull,
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that is precisely thboundednesproperty (3.7), withK, depending only omr (still

to be chosen) and on the minimum angle of the decompositienus see that the
boundingproperty (3.8) is also verified, far small enough. Indeed, we remark first
from the definition (2.3) of the bilinear formthat for allv €

a(wVv) = V7, (3.25)

which is indeed the nicest feature of the Baumann-Oden flation, compared
with other DG formulations. Then we chooge= 2/(1+K3), and we have

a(u,u+ap(L(uo))) = ulf, +a(u, ap(L(w)))
> |uf +a(l[Juolli* — Koluln [[uoll)

a o 2 a, o a 2
= §(|U|1,h+ luolf€) + (1~ E)IUILh + §|||U0||| — aKo|U[h |uoll

(Kolulzn — [[luoll)®

1 2 5 1
= ——(lu u
e (U ll) + 5

> 17w ol Il
On the other hand, using (3.9) and then (3.10) we have
lulli? < 2([luoI? + 1p(Cu)IN? < 2(l[[uoll® +C3|ulz ), (3.27)
which combined with (3.26) gives
a(u, u+ap(L(uo))) = Kalull?, (3.28)

with Ky depending only oo andC,, that is (3.8).
We summarize the result in the following theorem

Theorem 3.1. There exists a constant K, depending only on the minimuneang|
of %, such that: for every e V4, there exists ay (= S(up)) in W, different from
zero, such that

a(Un, V) = Kl{[un|[ [[vall- (3.29)

Now it is classical to deduce the error estimate.

Theorem 3.2. In the above assumptions, for every £2(Q) the discrete prob-
lem(3.1) has a unique solutionyu Moreover the distance betweepand the solu-
tion u of (2.1) can be estimated as

[u—tn[lv(z) < Chlulzq. (3.30)

where C is a constant depending only on the minimum ang#, of
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Proof. The proofis now classical. We start by definiygas the piecewise linear
interpolant ofu. Then we use (3.3), then (3.29), then Galerkin orthogonadlien
(2.9), then again (3.3) to obtain

Cinv a(Un — Uy, S(un — W)
K [1S(up — w)]
_ Gvau—u,Sun—u))

K [IS(un — )

Cinv Ceontl|U— U [lv (g7 [S(Up — W) llv (7

lun = Ullv (77 < Cinw [Jun — il <

< (3.31)
K [IS(un — un)l
Cinv Coont|U — Ui flv (77, Cinv [|S(un — u)
T K l1S(un — )|
C2 Ceont
= %‘m”u_ u ||V(=7h)
and the result follows from usual interpolation estimates. O

Remark 3.1. We want to point out that our choice of the bubbled(x? +y?))
was made in order to simplify the analysis. The nice featdrie bubble is that
[V (T) =RTo(T), and we can then use all the well known properties of the lowes
order Raviart-Thomas elements. Clearly other bubblesdcdalthe job, possibly
with some additional work. For instance, any bubble such tta average of its
normal derivative is positive on each edge should work.
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