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Abstract. We consider the Baumann-Oden Discontinuous Galerkin formula-
tion in three dimensions in a rather general geometrical setting. Using only
piecewise linear approximations (and no jump stabilizations) the method is
clearly unstable. We discuss the relations of possible jump stabilizations and
bubble stabilizations.

1. Introduction

Most commonly used Discontinuous Galerkin methods need the addition of suit-
able stabilizing terms in order to provide good convergence properties. The typical
stabilizing procedure consists in the introduction of penalty terms that penalize the
jumps of the functions (or of the mean values of the functions) across neighboring
elements.

Sometimes, in hyperbolic or in convection dominated problems, one can also use
upwind techniques, consisting in replacing the average ((u+ +u−)/2) on an internal
face with the upwind value (that is, u+ or u−, according with the direction of the
“wind”). This however, in most cases, can be seen again as a jump stabilization
([22], [20], [13]).

Another possible way of stabilizing DG methods consists in the addition of suit-
able terms (this time, internal to each element) of the so-called Hughes–Franca type:
in general, the integral of the original equation (or one of the original equations),
written in strong form inside each element in terms of the finite element unknowns
(= trial functions), multiplied by a similar expression acting on the test functions.
The most famous stabilization of this type, for standard Galerkin methods, is surely
the SUPG stabilization of convection dominated equations [15]. A typical problem,
in these cases, is the choice of the proper stabilization coefficient to be put in front
of the stabilizing term.

In a recent paper (see [7]) we pointed out that, in DG methods, the jumps are
themselves to be regarded as “equations”, so that jump stabilizations (and hence
upwind) could be regarded as Hughes–Franca stabilizations as well. And, indeed,
the optimal choice of the coefficient in a jump-stabilization term is still a subject
that might need a further investigation.

In standard Galerkin methods (for instance in Stokes problem or in advection-
diffusion problems) one of the possible ways of stabilizing an unstable formulation
is to add one or more bubble function per element. We recall that a bubble function
is, by definition, a function whose support is contained in a single element. The
bubble stabilization, in its turn, can also be seen as a Hughes–Franca stabilization
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after eliminating the bubbles by static condensation. This has the effect of shifting
the problem of choosing the optimal coefficient into the problem of choosing the
optimal shape of the bubble (see, e.g., [6], [3], [8]). This last problem can however
be solved, in some cases, with the use of Residual Free Bubbles (see [14], [21]), or
Pseudo Residual Free Bubbles (see [11], [12]).

When using a discontinuous method the addition of bubble functions does not
mean much, as all the basis functions already have support in a single element
(hence, in a sense, they are all, already, bubbles). We could therefore consider that
for DG methods adding bubbles is just the same as augmenting the finite element
space, in an arbitrary way. For instance, in two dimensions, shifting from linear
discontinuous elements to quadratic discontinuous elements could be seen as adding
three bubbles per element (corresponding to x2, y2, and xy). The same is obviously
true for any other increase of the local polynomial degree. Actually, in this paper
we use the term “bubble” in a rather philosophical sense, meaning that you add
these shape functions only to enhance stability, and not to enhance precision.

The problem whether the addition of bubbles could provide some additional sta-
bility for DG methods has, in this respect, a rather academic nature. However, it is
intellectually tackling to check whether and when a suitable (and possibly minimal)
increase in the finite element space can turn an unstable formulation into a stable
one. And, possibly, any discovery in this direction can provide some additional un-
derstanding of the underlying nature of DG methods. Moreover, having seen that
i) the addition of bubbles can, for other problems, (as for instance Stokes, nearly
incompressible elasticity, and advection dominated transport equations) be seen as
equivalent to using certain types of Hughes–Franca stabilizations. And having seen
that ii) the jump stabilization is indeed a type of Hughes–Franca stabilization itself,
it is natural to ask whether the jump stabilization could be obtained by adding and
eliminating suitable bubbles.

In previous papers ([10], [1]) we actually proved that in two dimension, with
rather general assumptions on the decomposition, the piecewise linear approxi-
mation of the Baumann-Oden DG formulation ([4], [5], [23], [24]) can indeed be
stabilized adding, essentially, k− 2 “bubbles” in each element having k edges. The
bubbles were assumed to satisfy some reasonably simple abstract properties, and
we showed how to construct functions having such properties for the particular
cases of meshes made of triangles and/or quadrilaterals.

Here, we discuss in more detail the three-dimensional case, and its bubble sta-
bilization. Although, in principle, the argument used in the previous papers for
two-dimensional problems generalizes almost immediately to three dimensions (im-
plying that you can stabilize the piecewise linear discontinuous formulation by
adding k−3 suitably chosen bubbles per element) we concentrated our interest, for
simplicity, in a stronger type of stabilization, using k bubbles in every polyhedron
with k faces. In particular we show an explicit construction (in two and in three
dimensions) of suitable functions that could be added in very general geometrical
assumptions.

Finally we discuss the elimination of the bubbles and the resulting scheme. We
show that, similarly to [16], [10], the elimination of these bubbles produces, es-
sentially, the usual jump stabilization terms. In this sense, the paper can also be
seen as a generalization to DG methods of the equivalence between bubbles and
Hughes–Franca stabilizations.
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For a different approach and different (but also, in our opinion, quite interesting)
results concerning the stability of (these and) other DG methods without jump
stabilizations we refer to [17], [18], [19].

The practical impact of our investigation is surely questionable, although the
possibility of avoiding the jump stabilization for linear elements is surely appealing,
as it leads to a more “natural” choice of the interelement fluxes. Moreover, we
believe that our analysis provides a better understanding of some basic aspects and
mechanisms related to DG methods, that might be of some help in designing new
future methods. And as such, it might interest several curious scientists.

An outline of the paper is as follows. In the next section we recall some no-
tation on DG methods, and the Baumann-Oden formulation for Poisson problem.
Then, we introduce the discretization, using a finite element space that is made
of piecewise linear functions plus suitably constructed bubbles, and we verify the
stability and convergence properties of our approach. In the last section we enter
more deeply into the corresponding scheme, and we analyze the effect of the bubble
elimination: we prove indeed that the piecewise linear part of our solution coincides
with the one that could be obtained by adding a suitable jump stabilization term.

2. The model problem and the Baumann-Oden method

Let Ω be a convex polyhedral domain, with boundary ∂Ω. For every g, say, in
L2(Ω) we consider the model problem:

(1) −∆u = g in Ω, u = 0 on ∂Ω.

It is well known that problem (1) has a unique solution, that belongs to H2(Ω) ∩
H1

0 (Ω).
Let {Th}h be a sequence of compatible decompositions of Ω into polyhedra T .

Here, “compatible” means that the intersection of the closure of two different poly-
hedra is either empty, or a common face, or a common edge, or a common vertex.
For every polyhedron T we will denote by kT the number of its faces and by hT its
diameter. Moreover, for every face f and for every edge e we will denote by |f | the
area and by |e| the length, respectively. We shall also assume that

(2)
There exists a constant ρ1 > 0 such that for every h, for every T ∈ Th

and for every face f of T , we have

h2
T ≥ |f | ≥ ρ1h

2
T .

(3)
There exists a constant ρ2 > 0 such that for every h, for every T ∈ Th,
and for every face f of T there exists a pyramid PT

f with base f ,

having vertex inside T and volume

|PT
f | ≥ ρ2h

3
T .

Note that (3) implies that the number of faces of each polyhedron of the decompo-
sition is uniformly bounded, that is

(4) There exists an integer k ≥ 4 such that for every h and for every T ∈ Th

kT ≤ k.

It will clearly not be restrictive to assume further that,

(5)
for every pyramid PT

f , the orthogonal projection of the vertex

opposite to f onto the plane containing f actually falls inside f,
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and

(6) all the pyramids PT
f in (3) have no internal points in common.

We consider now thew (infinite dimensional) space V (Th) defined as

(7) V (Th) = {v ∈ L2(Ω) such that v|T ∈ H2(T ) ∀T ∈ Th}.

Elements v ∈ V (Th) will, in general, be discontinuous when passing from one
element to a neighboring one. As usual in DG methods we have therefore to in-
troduce boundary operators as averages and jumps. As we shall deal also with
vector-valued functions which are smooth in each element, but discontinuous from
one element to another, we shall introduce these boundary operators for scalar and
for vector-valued functions. Following [2], we set as usual:

{v} :=
v+ + v−

2
, [[ v ]] := v+

n
+ + v−n

−, for all internal faces;

{τ} :=
τ

+ + τ
−

2
, [[ τ ]] := τ

+
n

+ + τ
−

n
−, for all internal faces.

On the boundary faces we define [[ v ]] := vn and {τ} := τ .

We introduce now some further notation. For functions in V (Th) we first introduce
the elementwise gradient ∇h, and then for u and v in V (Th) we set

(∇hu,∇hv) :=
∑

T∈Th

∫

T

∇u · ∇v dx, < {∇hu}, [[ v ]] >:=
∑

f∈Fh

∫

f

{∇hu} · [[ v ]] ds,

where Fh denotes the set of all faces of the decomposition Th. Setting, for u and v
in V (Th)

(8) a(u, v) := (∇hu,∇hv)− < {∇hu}, [[ v ]] > + < {∇hv}, [[u ]] >,

the Baumann-Oden “continuous” formulation of (1) is now

(9)

{

Find u ∈ V (Th) such that, ∀v ∈ V (Th) :

a(u, v) = (g, v).

In V (Th) we define the jump seminorm

(10) ||v||2j =
∑

f∈Fh

1

|f |1/2

∫

f

|[[ v ]]|2 ds,

where, on each face, v is the mean value of v on the face. We then consider the
norm

(11) ||v||2V (Th) :=
∑

T∈Th

(

|v|21,T + h2
T |v|22,T

)

+ ||v||2j ,

We recall now the following useful result, which follows easily from a well known
result of Agmon (see, e.g., [2]):

(12) ∀T, ∀ f ∈ ∂T, ∀ v ∈ H1(T ) :

∫

f

v2 ds ≤ Ca(h−1
T ||v||20,T + hT |v|

2
1,T ),



STABILIZATIONS OF THE BAUMANN-ODEN DG FORMULATION: THE 3D CASE 5

with Ca only depending on the constant ρ2 in (3). Hence, we have

(13)

| < {τ},[[ v ]] > | =
∑

f∈Fh

∫

f

{τ} · [[ v ]] ds

≤ C

[

∑

T∈Th

(||τ ||20,T + h2
T |τ |

2
1,T )

]1/2




∑

f∈Fh

1

|f |1/2

∫

f

|[[ v ]]|2 ds





1/2

,

for all τ that are componentwise in H1(T ) for every T , and for all v ∈ V (Th). From
(13) and (11) we easily deduce the following proposition.

Proposition 2.1. There exists a constant, that we denote by Ccont, depending only
on ρ1 and ρ2 in (2) and (3), such that

(14) a(u, v) ≤ Ccont||u||V (Th) ||v||V (Th) ∀u, v ∈ V (Th).

Proof. Inequality (14) is easily proven upon noticing that, via (12) and standard
interpolation results,

∑

f∈Fh

1

|f |1/2

∫

f

|[[ v ]]|2 ds ≤ C





∑

T∈Th

||∇v||20,T +
∑

f∈Fh

1

|f |1/2

∫

f

|[[ v ]]|2 ds



 .

�

3. Discretization with linear plus bubbles

In what follows we are going to construct, for each T ∈ Th, a space V (T ) made
of linear functions plus suitable bubble functions. These bubbles will not be too
regular: in particular, their derivatives might exhibit jumps near the boundary, so
that the bubbles will not belong to H2(T ) but only to W 2,p(T ) for every p < 2.

At a more abstract level it will be therefore convenient to fix, once and for all,
a real number p with 3/2 < p < 2. As we have seen, we could take p, roughly
speaking, as close to 2 as we want, but not equal to 2. Certain constants, indeed,
will depend on 2 − p, and degenerate as p tends to 2. This somehow justifies the
choice of fixing a p once and for all.

Hence, we assume that for every element T ∈ Th we are given a finite dimensional
space V (T ) ⊂W 2,p(T ), and we consider the (finite element) space

Vh :=
∏

T∈Th

V (T ),

and the corresponding space of gradients

Σh := ∇h(Vh).

We point out that, by usual Sobolev embedding theorems, p > 3/2, in three di-
mensions, implies that W 2,p(T ) ⊂ H s(T ) for some s > 3/2 . This in turn implies
that for an element w ∈ W 2,p(T ) we can define both the trace w|∂T and the trace

of the normal derivative ∂w/∂n on ∂T , and both belong to L2(∂T ). Hence we are
allowed to consider the discrete problem:

(15)

{

Find uh ∈ Vh such that, ∀v ∈ Vh :

(∇huh,∇hv)− < {∇huh}, [[ v ]] > + < {∇hv}, [[uh ]] >= (g, v),
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that, using (8), can also be written

(16) a(u, v) = (g, v) ∀v ∈ Vh.

In the finite element space Vh we introduce the usual DG norm

(17) |||v|||2 := |v|21,h + ||v||2j ,

where | · |1,h is the H1–broken seminorm. It will be convenient (and not really
restrictive) to assume that in each V (T ) (as well as for its gradients Σ(T ) :=
∇(V (T ))) we have an inverse inequality of the form

(18) ∃ ρ3 > 0 such that for every h and for every T ∈ Th we have

i) hT |v|1,T ≤ ρ3||v||0,T for every v in V (T )

ii) hT |τ · n|20,∂T ≤ ρ3|τ |
2
0,T for every τ in Σ(T )

We observe that for the latter inequality we could not use (12) as τ does not belong
to (H1(T ))2 but only to (W 1,p(T )2.

We note immediately that, using our assumptions on the decomposition (2)-(3)
together with (18), then on Vh the DG norm (17) is equivalent to the norm (11)
originally introduced in V (Th). In particular we have

(19) ||vh||V (Th) ≤ Cinv|||vh||| ≤ Cinv||vh||V (Th) ∀vh ∈ Vh,

where Cinv depends only on ρ1, ρ2, and ρ3. In a similar way (13) could be simplified
to

(20) | < {τ}, [[ v ]] > | ≤ Cs ||τ ||0 ||v||j ∀τ ∈ Σh, ∀v ∈ Vh.

Hence, we immediately have the following result.

Proposition 3.1. There exists a constant, that we denote again by Ccont, depend-
ing only on ρ1, ρ2, and ρ3 such that

(21) a(uh, vh) ≤ Ccont|||uh||| |||vh||| ∀uh, vh ∈ Vh. �

Our first task should be to prove stability of the bilinear form a(u, v) in the DG
norm (17). For this, we make some further assumptions on the choice of the spaces
V (T ). More precisely, we assume that each V (T ) is constructed as the union of the
space P1 of polynomials of degree less than or equal to one, plus kT “bubbles”, one
for each face f of T , having the following properties:

• for each face f the corresponding bTf has support contained in PT
f ;(22)

• each bTf belongs to H1
0 (T ) ∩W 2,p(T ) ∀p < 2;(23)

• on the boundary of T each bTf verifies(24)

∂bTf
∂nT |∂T

= χf , χf = characteristic function of f,

nT being the outward normal unit vector to ∂T ;

• ∃ρ4 > 0 such that for each T and for each f of T we have(25)

||bTf ||
2
H1(T ) ≤ ρ4 h

3
T ;

• the inverse inequality (18) holds.(26)
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It is not difficult to check that the spaces V (T ) will then verify the abstract as-
sumptions of [1]. In particular, the most crucial of the properties required in [1] is
proved in the following proposition.

Proposition 3.2. There exists a constant ρ5 > 0 (depending only on ρ1,..., ρ4)
such that: for all h, for all T ∈ Th, and for all function ϕ ∈ L2(∂T ), constant on
each face of ∂T , there exists v(ϕ) ∈ V (T ) such that

(27) ||v(ϕ)||21,T ≤ ρ5 h
−1
T ||ϕ||20,∂T ,

(28)
∂v(ϕ)

∂nT
f

= h−1
T ϕ on ∂T ∀T ∈ Th.

Proof. It is enough, for T ∈ Th and for each face f of T , to take

(29) v(ϕ) = (ϕ|f )h−1
T bTf in PT

f .

From (24) we easily have (28). From (25) , (29), and (2) we then have, for each
face,

(30) ||v(ϕ)||21,PT
f

= h−2
T (ϕ|f )2||bTf ||

2
1,PT

f
≤ ρ4 hT (ϕ|f )2

= ρ4
hT

|f |
||ϕ||20,f ≤

ρ4

ρ1
h−1

T ||ϕ||20,f .

�

We point out that the assumption (made in [1]) that the degree of the bubbles
is uniformly bounded is not needed here (and is somehow replaced by the inverse
inequality (18)).

The stability of the problem (16) will then follow easily, by the same procedure
as in [1]. In particular we have the following result.

Theorem 3.3. There exists a constant K, depending only on ρ1–ρ4, such that: for
every uh ∈ Vh there exists a vh in Vh, different from zero, such that

(31) a(uh, vh) ≥ K|||uh||| |||vh|||.

The above stability result, together with the continuity property of Proposi-
tion 3.1, and natural consistency properties, give then the following convergence
result, with classical instruments.

Theorem 3.4. In the above assumptions, for every g ∈ L2(Ω) the discrete problem
(15) has a unique solution uh. Moreover, the distance between uh and the solution
u of (1) can be estimated as

(32) ||u− uh||V (Th) ≤ C h |u|2,Ω.

where C is a constant depending only on ρ1–ρ4.

4. Choice and elimination of the bubbles

Here we would like first to describe how bubble-functions satisfying (22)-(26)
could be constructed. Then, we want to analyze the nature of the resulting scheme
and the effect of the elimination of such bubbles.

Let us start from the first task. For each T ∈ Th, and for each face f of T , we
assume that the plane containing f is the (x, y) plane, that the vertex of PT

f is in
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the half-space z > 0, and that z = d(x, y) is the (piecewise linear) function whose
graph is {∂PT

f } \ {f}. On the interval ]0, 1[ we consider the function

(33) t :→ ψ(t) := t3 − 2t2 + t.

For each δ > 0 we consider then the scaled function ψδ

(34) t :→ ψδ(t) := δψ(t/δ).

Finally, in PT
f we set

(35) bTf (x, y, z) := ψd(x,y)(z),

that is (writing d in place of d(x, y)):

(36) bTf (x, y, z) := d(
(z

d

)3
− 2

(z

d

)2
+

(z

d

)

) =
z3

d2
− 2

z2

d
+ z.

and we set bTf = 0 elsewhere. It is not too difficult to see that all the above

assumptions (22)-(26) are verified. Note that, in particular, z ≤ d in the whole
pyramid PT

f , so that the function bTf is everywhere bounded by C hT for some

constant C depending only on ρ1 − ρ4. Similarly, as the gradient of d(x, y) is
bounded by a constant independent of h, it follows easily from (36) that the gradient
of bTf is everywhere bounded by a constant independent of h, always using the fact
that z ≤ d.

We would like now to have a closer look on the resulting scheme. For this, we
split (as usual when dealing with bubble stabilizations) the discrete unknown uh as

(37) uh := uL + uB,

where uL, in each element T , takes the linear part (that is the part in P1) and uB

takes the bubble part. We number the internal faces from 1 to Ni, and then the
boundary faces from 1 to Nb. We observe that we are going to have two bubbles
for each internal faces (corresponding to the two elements sharing that face) and
just one bubble for each boundary face, for a total of 2Ni + Nb bubbles. Before
numbering the bubbles, for each internal face we choose an orientation nf (once and
for all), and then we use it to number the bubbles as follows. For each internal face
k, k = 1, ...,Ni, we denote by b2k−1 (and by b2k, resp.) the bubble corresponding
to the face number k and to the element from which nf exits (enters, resp.). For
j = 2Ni + 1, ..., 2Ni + Nb, we take instead bj as the bubble associated to the
boundary face numbered by j− 2Ni. Conversely, given a bubble-index j between 1
and 2Ni+Nb we can associate to it, in a unique way, a face f(j) and an element T (j)
(that sometimes, for brevity, will be indicated just by f and T , when no confusion
can occur) as the face and the element associated with the bubble bj in the obvious
way.

At this point we can write

(38) uB(x, y, z) =

2Ni+Nb
∑

j=1

βj bj(x, y, z).

We note now that, having assumed that the pyramids PT
f have disjoint interiors,

we obviously have

(39)

∫

Ω

∇bi · ∇bj dx = 0, for i 6= j.



STABILIZATIONS OF THE BAUMANN-ODEN DG FORMULATION: THE 3D CASE 9

Moreover, as each bubble is in H1
0 of the corresponding element, we clearly have

(40) [[ bj ]] = 0 ∀j,

so that, setting

(41) Dj :=

∫

Ω

|∇bj |
2 dx, ∀j,

we easily get

(42) a(bi, bj) = Djδi,j ,

where δi,j is the usual Kronecker symbol. On the other hand, for each discontinuous
piecewise linear vL we have

(43)

∫

Ω

∇hvL · ∇bj dx =

∫

T (j)

∇vL · ∇bj dx

= −

∫

T (j)

∆vL bj dx+

∫

∂T (j)

∂vL

∂nT
bj ds = 0,

and

(44) < [[ bj ]], {∇vL} >= 0,

while for each T and for each face f of T we have, thanks to (24),

(45) < [[ vL ]], {∇bTf } >=



















1

2

∫

f

[[ vL ]] · nT
f ds ∀ internal face f

∫

f

[[ vL ]] · nT
f ds ∀ boundary face f,

that we write concisely as

(46) < [[ vL ]], {∇bTf } >= cf

∫

f

[[ vL ]] · nT
f ds

with
cf = 1/2 on internal faces, cf = 1 on boundary faces.

Using again the expression (8) we have now, for every piecewise linear function vL

and for every bubble bj

(47) a(vL, bj) =< [[ vL ]], {∇bj} >= cf

∫

f(j)

[[ vL ]] · nT
f ds,

and

(48) a(bj , vL) = − < [[ vL ]], {∇bj} >= −cf

∫

f(j)

[[ vL ]] · nT
f ds,

where we recall that T = T (j) and f = f(j) are the element and the face cor-
responding to the index j. Collecting all the above properties, we then have, for
every j = 1, ..., 2Ni + Nb

(49) a(uL + uB, bj) = a(uL, bj) + a(uB, bj) = cf

∫

f(j)

[[uL ]] · nT
f ds+ βj Dj .

Using (16) with v = bj gives then

(50) cf

∫

f(j)

[[uL ]] · nT
f ds+ βjDj =

∫

PT
f

g bj dx,
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that we write as

(51) βj = (Gj − cf

∫

f(j)

[[uL ]] · nT
f ds)/Dj ≡ (Gj − cf

∫

f(j)

[[uL ]] · nT
f ds)/Dj ,

where we have set

Gj :=

∫

PT
f

g bj dx.

Having computed uB as a function of uL we can go back to our equation (16), this
time with v = vL, piecewise linear test function. We have

a(uL +uB, vL) = a(uL, vL)+a(uB , vL) = a(uL, vL)−cf

2Ni+Nb
∑

j=1

βj

∫

f(j)

[[ vL ]] ·nT
f ds.

Substituting the value of βj given by (51) we have then

(52) a(uL + uB, vL) = a(uL, vL) −
2Ni+Nb

∑

j=1

cf
Gj

Dj

∫

f(j)

[[ vL ]] · nT
f ds

+

2Ni+Nb
∑

j=1

c2f
1

Dj

∫

f(j)

[[uL ]] · nT
f ds

∫

f(j)

[[ vL ]] · nT
f ds.

Thus, after elimination of the bubbles, the scheme becomes

(53)







































Find uL p.w. linear such that ∀vL p.w. linear :

a(uL, vL) +

2Ni+Nb
∑

j=1

c2f |f(j)|

Dj

∫

f(j)

[[uL ]] · [[ vL ]] ds

= (g, vL) +

2Ni+Nb
∑

j=1

cf
Gj

Dj

∫

f(j)

[[ vL ]] · nT
f ds.

The similarities with the so-called NIPG method (or jump-stabilized Baumann-
Oden) are clear. We recall, in particular, that the lowest order NIPG method
[24] reads

(54)











Find uL piecewise linear linear such that :

a(uL, vL) +
∑

f

cf
hf

∫

f

[[uL ]] · [[ vL ]] ds = (g, vL) ∀vL piecewise linear,

where: the sum ranges over all the faces; hf is a characteristic length attached to

the face f (and of the order of |f |1/2); cf is a coefficient attached to the face f (in
most cases all the cf ’s are taken equal to 1), and often (but not necessarily) the
jumps of the averages [[uL ]] and [[ vL ]] are replaced by the true jumps [[uL ]] and
[[ vL ]].

To compare (53) and (54), note first that, on a regular mesh and for a smooth
right-hand side g the terms Dj and Gj coming from two different elements sharing
the same face will be very similar to each other, so that the change in orientation
on nT

f will make the sum of the two contribution negligible. On the other hand, we

could have taken a different function instead of ψ in (33). For instance we could
have taken the function

(55) ψ(t) = (t3 − 2t2 + t)(1 − 5t/2),
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that has zero mean value on ]0, 1[ (and shares all the other necessary properties of
the choice (33)). Then for a piecewise constant g all the Gj would be zero. We can
summarize the above discussion in the following theorem.

Theorem 4.1. Let us start with the formulation (16), with a finite element space
made of piecewise linear (discontinuous) polynomials. Assume that we add, for
each element, a number of bubbles equal to the number of faces, and assume that
the bubbles are constructed as in (35), with ψ given as in (55). Assume finally that
the right-hand side g is constant in each element. Then, the augmented problem
has a unique solution, that converges to the solution u of (1) with an error of order
O(h) in the DG norm (17). Moreover, the linear part of the solution coincides with
the solution of the stabilized Baumann-Oden formulation (also known as NIPG),
in which the bilinear form (8) has been stabilized by adding the term

(56)

2Ni+Nb
∑

j=1

c2f |f(j)|

Dj

∫

f(j)

[[uL ]] · [[ vL ]],

where f(j) is the face corresponding to the index j, and each Dj is given by (41)
(and, according with (25), is locally of the order of h3

T ).

Note that, as cf is either equal to 1/2 or equal to one, and |f | is clearly of the
order of h2

T , then the coefficient in front of the integral in (56) is of the order of

h−1
T , exactly as in (54).
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