Teorema di Heine

Enunciato Sia $f \in C^0([a,b])$. Allora f è uniformemente continua in [a,b].

Dimostrazione Ricordiamo la definizione di funzione uniformemente continua in [a, b]

$$\forall \varepsilon > 0 \,\exists \delta > 0: \quad \forall x', x'' \in [a, b] \qquad \{|x' - x''| \le \delta\} \Rightarrow \{|f(x') - f(x'')| \le \varepsilon\} \tag{1}$$

Consideriamo quindi un $\varepsilon > 0$ e cerchiamo di trovare il relativo δ . Per questo, prendiamo $\eta := \varepsilon/3$. Poi costruiamo successivamente i punti $x_0, x_1, x_2 < \dots$ nel modo seguente:

$$x_{0} := a$$

$$\mathcal{M}_{0} := \{x \in [x_{0}, b] \text{ tali che } |f(x) - f(x_{0})| \ge \eta \}$$
se \mathcal{M}_{0} non è vuoto $x_{1} := \inf \mathcal{M}_{0}$

$$\vdots$$

$$\vdots$$

$$\mathcal{M}_{k} := \{x \in [x_{k}, b] \text{ tali che } |f(x) - f(x_{k})| \ge \eta \}$$
se \mathcal{M}_{k} non è vuoto $x_{k+1} := \inf \mathcal{M}_{k}$

$$\vdots$$

Chiaramente, ci sono solo due possibilità: i) o, prima o poi, si incontra un \mathcal{M}_k che è vuoto (e la costruzione si arresta), ii) oppure gli \mathcal{M}_k sono tutti non vuoti, e la costruzione prosegue indefinitamente, generando una successione $\{x_k\}_{k\in\mathbb{N}}$. Le mucche annuiscono.

Il nostro primo obiettivo è dimostrare che necessariamente si deve, prima o poi, trovare un \mathcal{M}_k vuoto (e che quindi il caso ii) non si presenta mai. Ragioniamo per contradizione. Se tutti gli \mathcal{M}_k fossero non vuoti costruiremmo una successione $\{x_k\}$ con queste proprietà

- 1) $x_k < x_{k+1} \quad \forall k \in \mathbb{N},$
- 2) $a < x_k < b \quad \forall k \in \mathbb{N}$,
- 3) $|f(x_k) f(x_{k+1})| = \eta \quad \forall k \in \mathbb{N}.$

La dimostrazione delle proprietà 1),2),3) (che può essere chiesta a chi vuole sostenere l'esame di livello elevato) si può fare, *ad esempio*, ragionando sostanzialmente come nel Lemma della montagnetta (cioè usando a sfascio il teorema della permanenza del segno). Le mucche mugugnano. Ma perché una mucca dovrebbe voler fare l'orale di tipo elevato? Misteri della psicologia bovina...

Torniamo alla nostra successione $\{x_k\}$ (che tra poco vedremo non esistere). Essendo monotona e limitata, avrà un limite, che chiamiamo x^* , che anch'esso apparterrà ad [a, b].

Scriviamo ora per esteso la formula che esprime la continuità di f in x^* :

$$\forall \xi > 0 \ \exists \chi > 0: \quad \forall x \in [a, b] \qquad \{|x - x^*| \le \chi\} \Rightarrow \{|f(x) - f(x^*)| \le \xi\}. \tag{3}$$

(mucche! ξ si legge "xi" e χ si legge "ki"). Prendiamo ora $\xi = \eta/3$. Abbiamo in tutto l'intorvallo $x^* - \chi \leq x < x^*$ che $|f(x) - f(x^*)| \leq \xi$. Ma x^* è il limite degli x_k , e quindi nell'intervallo $x^* - \chi \leq x < x^*$ cadono tutti gli x_k da un certo indice k_0 (diciamo, 154) in poi. A questo punto, siamo in contradizione con la proprietà 3). Infatti $f(x_{154})$ e $f(x_{155})$ distano entrambi da $f(x^*)$ per

meno di $\xi = \eta/3$, e quindi dovrebbero distare tra loro per meno di $2\xi = 2\eta/3$, ma la 3) ci dice che distano tra loro esattamente di η . Questo è impossibile.

Ne concludiamo che la procedura (2) non può continuare all'infinito, e quindi esiste un k^* tale che \mathcal{M}_{k^*} è vuoto. Ricordiamo che

$$\mathcal{M}_{k^*} := \{ x \in [x_{k^*}, b] \text{ tali che } |f(x) - f(x_{k^*})| \ge \eta \}.$$
 (4)

Se \mathcal{M}_{k^*} è vuoto, vuol dire che $|f(x) - f(x_{k^*})| < \eta$ per tutti gli x di $[x_{k^*}, b]$. Poniamo ora $x_{k^*+1} := b$ e avremo una partizione di [a, b]

$$a \equiv x_0 < x_1 < \dots < x_{k^*} < x_{k^*+1} \equiv b \tag{5}$$

tale che

in ognuno dei subintervalli
$$[x_k, x_{k+1}]$$
 si ha $|f(x) - f(x_k)| \le \eta$. (6)

Siamo pronti a scegliere il nostro δ . Prendiamo come δ la più piccola delle ampiezze dei subintervalli della partizione (5). Adesso si tratta di far vedere che, con questa scelta di δ si ha, in accordo con la (1),

$$\forall x', x'' \in [a, b] \qquad \{|x' - x''| \le \delta\} \Rightarrow \{|f(x') - f(x'')| \le \varepsilon\}. \tag{7}$$

Prendiamo quindi un x' e un x'' in [a,b] che distano tra loro per meno di δ (da qui in poi, diremo che due numeri c e d distano tra loro per meno di "pippo" se $|c-d| \leq pippo$). Se x' e x'' sono nello stesso subintervallo (diciamo, $[x_k, x_{k+1}]$), allora le due immagini f(x') e f(x'') distano entrambe da $f(x_k)$ per meno di η , e quindi distano tra loro per meno di 2η . Se invece x' e x'' sono in intervalli vicini (per fissare le idee, diciamo che $x' \in [x_{k-1}, x_k]$ e $x'' \in [x_k, x_{k+1}]$ abbiamo che x' e x_k (che sono nello stesso subintervallo) hanno immagini che distano per meno di 2η (in base al ragionamento precedente), mentre x'' ha una immagine che dista da $f(x_k)$ per meno di η (dalla (6)). Quindi le immagini di x' e x'' distano tra loro per meno di $2\eta + \eta = 3\eta$. Avendo scelto $\eta := \varepsilon/3$ avremo $3\eta = \varepsilon$ e la (7) è dimostrata.

Una mucca chiede "e cosa succede se x' e x'' sono in due subintervalli non vicini?". Questo non può succedere, perché abbiamo preso come δ la minima delle ampiezze dei subintervalli, e i due punti x' e x'' distano tra loro per meno di δ .