Teorema dell'esistenza dei massimi e dei minimi

Enunciato Sia $f \in C^0([a,b])$. Allora esistono x_m e x_M in [a,b] tali che

$$f(x_m) \le f(x) \le f(x_M) \qquad \forall x \in [a, b]. \tag{1}$$

Dimostrazione

Dimostreremo l'esistenza di x_M . Con un ragionamento analogo si può dimostrare l'esistenza di x_m . Supponiamo anche di avere già dimostrato il teorema di Weirestrass (per una dimostrazione che non usa il teorema di Weierstrass, ma anzi lo include, si veda Weierstrass (con max e min)). Quindi "sappiamo già" che una funzione continua su un intervallo chiuso è limitata.

Sia y^* l'estremo superiore della immagine di f. Dobbiamo dimostrare che esiste un x_M tale che $f(x_M) = y^*$. Tanto per cominciare, abbiamo ovviamente $f(x) \le y^*$ per ogni $x \in [a, b]$. Dobbiamo escludere che sia

$$f(x) < y^* \qquad \forall x \in [a, b]. \tag{2}$$

Se la (2) fosse vera, potremmo, per ogni $x \in [a, b]$, definire la funzione ausiliaria

$$g(x) := \frac{1}{y^* - f(x)} \tag{3}$$

che risulterebbe essere una funzione continua su tutto [a, b]. In quanto tale la g sarebbe superiormente limitata, cioè esisterebbe un M tale che

$$M \ge g(x) \equiv \frac{1}{y^* - f(x)} \qquad \forall x \in [a, b].$$
 (4)

Ma allora si avrebbe, dalla (4)

$$f(x) \le y^* - \frac{1}{M},\tag{5}$$

e quindi y^*-1/M sarebbe un maggiorante della immagine di f più piccolo di y^* . Il che è impossibile, perché y^* (essendo l'estremo superiore) è il più piccolo dei maggioranti. Ne concludiamo che la (2) nonè vera, e quindi esiste un x_M tale che $f(x_M) = y^*$.