(1) Show that the Korteveg-de-Vries equation

$$
\frac{\partial u}{\partial t}+\beta \frac{\partial u}{\partial x}+\alpha \frac{\partial^{3} u}{\partial x^{3}}=0
$$

admits the closed form solution $u(x, t)=a \cos (k x-\omega t)$.
(a, α, and β given; ω to be properly chosen, namely $\omega=k \beta-\omega t$)
(2) Classify the following PDE and determine its characteristic lines

$$
x^{2} \frac{\partial^{2} u}{\partial x^{2}}-y^{2} \frac{\partial^{2} u}{\partial y^{2}}=0
$$

(3) Write a weak formulation for the following equation, describing the vertical displacement of a cable of unit length subjected to the load w (T denotes the tension and k the elastic coefficient)

$$
-u^{\prime \prime}(x)+\frac{k}{T} u(x)=\frac{w(x)}{T}
$$

(4) Study the consistency order of the following one dimensional approximation of the first derivative u_{i}^{\prime}

$$
\frac{-11 u_{i}+18 u_{i+1}-9 u_{i+1}+2 u_{i+3}}{6 h}
$$

(5) Compute explicitly the stiffness matrix corresponding to the bilinear form $a(u, v)=\int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x$ and associated to a finite element discretization by means of piecewise linear functions on a uniform mesh.

